Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,185)

Search Parameters:
Keywords = Air Quality Information

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2103 KiB  
Article
Air-STORM: Informed Decision Making to Improve the Success of Solar-Powered Air Quality Samplers in Challenging Environments
by Kyan Kuo Shlipak, Julian Probsdorfer and Christian L’Orange
Sensors 2025, 25(15), 4798; https://doi.org/10.3390/s25154798 - 4 Aug 2025
Abstract
Outdoor air pollution poses a major global health risk, yet monitoring remains insufficient, especially in regions with limited infrastructure. Solar-powered monitors could allow for increased coverage in regions lacking robust connectivity. However, reliable sample collection can be challenging with these systems due to [...] Read more.
Outdoor air pollution poses a major global health risk, yet monitoring remains insufficient, especially in regions with limited infrastructure. Solar-powered monitors could allow for increased coverage in regions lacking robust connectivity. However, reliable sample collection can be challenging with these systems due to extreme temperatures and insufficient solar energy. Proper planning can help overcome these challenges. Air Sampler Solar and Thermal Optimization for Reliable Monitoring (Air-STORM) is an open-source tool that uses meteorological and solar radiation data to identify temperature and solar charging risks for air pollution monitors based on the target deployment area. The model was validated experimentally, and its utility was demonstrated through illustrative case studies. Air-STORM simulations can be customized for specific locations, seasons, and monitor configurations. This capability enables the early detection of potential sampling risks and provides opportunities to optimize monitor design, proactively mitigate temperature and power failures, and increase the likelihood of successful sample collection. Ultimately, improving sampling success will help increase the availability of high-quality outdoor air pollution data necessary to reduce global air pollution exposure. Full article
(This article belongs to the Special Issue Recent Trends in Air Quality Sensing)
Show Figures

Figure 1

15 pages, 1071 KiB  
Article
A Synthetic Difference-in-Differences Approach to Assess the Impact of Shanghai’s 2022 Lockdown on Ozone Levels
by Yumin Li, Jun Wang, Yuntong Fan, Chuchu Chen, Jaime Campos Gutiérrez, Ling Huang, Zhenxing Lin, Siyuan Li and Yu Lei
Sustainability 2025, 17(15), 6997; https://doi.org/10.3390/su17156997 - 1 Aug 2025
Viewed by 212
Abstract
Promoting sustainable development requires a clear understanding of how short-term fluctuations in anthropogenic emissions affect urban environmental quality. This is especially relevant for cities experiencing rapid industrial changes or emergency policy interventions. Among key environmental concerns, variations in ambient pollutants like ozone (O [...] Read more.
Promoting sustainable development requires a clear understanding of how short-term fluctuations in anthropogenic emissions affect urban environmental quality. This is especially relevant for cities experiencing rapid industrial changes or emergency policy interventions. Among key environmental concerns, variations in ambient pollutants like ozone (O3) are closely tied to both public health and long-term sustainability goals. However, traditional chemical transport models often face challenges in accurately estimating emission changes and providing timely assessments. In contrast, statistical approaches such as the difference-in-differences (DID) model utilize observational data to improve evaluation accuracy and efficiency. This study leverages the synthetic difference-in-differences (SDID) approach, which integrates the strengths of both DID and the synthetic control method (SCM), to provide a more reliable and accurate analysis of the impacts of interventions on city-level air quality. Using Shanghai’s 2022 lockdown as a case study, we compare the deweathered ozone (O3) concentration in Shanghai to a counterfactual constructed from a weighted average of cities in the Yangtze River Delta (YRD) that did not undergo lockdown. The quasi-natural experiment reveals an average increase of 4.4 μg/m3 (95% CI: 0.24–8.56) in Shanghai’s maximum daily 8 h O3 concentration attributable to the lockdown. The SDID method reduces reliance on the parallel trends assumption and improves the estimate stability through unit- and time-specific weights. Multiple robustness checks confirm the reliability of these findings, underscoring the efficacy of the SDID approach in quantitatively evaluating the causal impact of emission perturbations on air quality. This study provides credible causal evidence of the environmental impact of short-term policy interventions, highlighting the utility of SDID in informing adaptive air quality management. The findings support the development of timely, evidence-based strategies for sustainable urban governance and environmental policy design. Full article
Show Figures

Figure 1

19 pages, 4690 KiB  
Article
Immune-Redox Biomarker Responses to Short- and Long-Term Exposure to Naturally Emitted Compounds from Korean Red Pine (Pinus densiflora) and Japanese Cypress (Chamaecyparis obtusa): In Vivo Study
by Hui Ma, Jiyoon Yang, Chang-Deuk Eom, Johny Bajgai, Md. Habibur Rahman, Thu Thao Pham, Haiyang Zhang, Won-Joung Hwang, Seong Hoon Goh, Bomi Kim, Cheol-Su Kim, Keon-Ho Kim and Kyu-Jae Lee
Toxics 2025, 13(8), 650; https://doi.org/10.3390/toxics13080650 - 31 Jul 2025
Viewed by 243
Abstract
Volatile organic compounds (VOCs) are highly volatile chemicals in natural and anthropogenic environments, significantly affecting indoor air quality. Major sources of indoor VOCs include emissions from building materials, furnishings, and consumer products. Natural wood products release VOCs, including terpenes and aldehydes, which exert [...] Read more.
Volatile organic compounds (VOCs) are highly volatile chemicals in natural and anthropogenic environments, significantly affecting indoor air quality. Major sources of indoor VOCs include emissions from building materials, furnishings, and consumer products. Natural wood products release VOCs, including terpenes and aldehydes, which exert diverse health effects ranging from mild respiratory irritation to severe outcomes, such as formaldehyde-induced carcinogenicity. The temporal dynamics of VOC emissions were investigated, and the toxicological and physiological effects of the VOCs emitted by two types of natural wood, Korean Red Pine (Pinus densiflora) and Japanese Cypress (Chamaecyparis obtusa), were evaluated. Using female C57BL/6 mice as an animal model, the exposure setups included phytoncides, formaldehyde, and intact wood samples over short- and long-term durations. The exposure effects were assessed using oxidative stress markers, antioxidant enzyme activity, hepatic and renal biomarkers, and inflammatory cytokine profiles. Long-term exposure to Korean Red Pine and Japanese Cypress wood VOCs did not induce significant pathological changes. Japanese Cypress exhibited more distinct benefits, including enhanced oxidative stress mitigation, reduced systemic toxicity, and lower pro-inflammatory cytokine levels compared to the negative control group, attributable to its more favorable VOC emission profile. These findings highlight the potential health and environmental benefits of natural wood VOCs and offer valuable insights for optimizing timber use, improving indoor air quality, and informing public health policies. Full article
Show Figures

Figure 1

33 pages, 16026 KiB  
Article
Spatiotemporal Analysis of BTEX and PM Using Me-DOAS and GIS in Busan’s Industrial Complexes
by Min-Kyeong Kim, Jaeseok Heo, Joonsig Jung, Dong Keun Lee, Jonghee Jang and Duckshin Park
Toxics 2025, 13(8), 638; https://doi.org/10.3390/toxics13080638 - 29 Jul 2025
Viewed by 261
Abstract
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for [...] Read more.
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for the rapid dispersion of hazardous air pollutants (HAPs). In this study, we conducted spatiotemporal data collection and analysis for the first time in Korea using real-time measurements obtained through mobile extractive differential optical absorption spectroscopy (Me-DOAS) mounted on a solar occultation flux (SOF) vehicle. The measurements were conducted in the Saha Sinpyeong–Janglim Industrial Complex in Busan, which comprises the Sasang Industrial Complex and the Sinpyeong–Janglim Industrial Complex. BTEX compounds were selected as target volatile organic compounds (VOCs), and real-time measurements of both BTEX and fine particulate matter (PM) were conducted simultaneously. Correlation analysis revealed a strong relationship between PM10 and PM2.5 (r = 0.848–0.894), indicating shared sources. In Sasang, BTEX levels were associated with traffic and localized facilities, while in Saha Sinpyeong–Janglim, the concentrations were more influenced by industrial zoning and wind patterns. Notably, inter-compound correlations such as benzene–m-xylene and p-xylene–toluene suggested possible co-emission sources. This study proposes a GIS-based, three-dimensional air quality management approach that integrates variables such as traffic volume, wind direction, and speed through real-time measurements. The findings are expected to inform effective pollution control strategies and future environmental management plans for industrial complexes. Full article
Show Figures

Graphical abstract

28 pages, 10432 KiB  
Review
Rapid CFD Prediction Based on Machine Learning Surrogate Model in Built Environment: A Review
by Rui Mao, Yuer Lan, Linfeng Liang, Tao Yu, Minhao Mu, Wenjun Leng and Zhengwei Long
Fluids 2025, 10(8), 193; https://doi.org/10.3390/fluids10080193 - 28 Jul 2025
Viewed by 631
Abstract
Computational Fluid Dynamics (CFD) is regarded as an important tool for analyzing the flow field, thermal environment, and air quality around the built environment. However, for built environment applications, the high computational cost of CFD hinders large-scale scenario simulation and efficient design optimization. [...] Read more.
Computational Fluid Dynamics (CFD) is regarded as an important tool for analyzing the flow field, thermal environment, and air quality around the built environment. However, for built environment applications, the high computational cost of CFD hinders large-scale scenario simulation and efficient design optimization. In the field of built environment research, surrogate modeling has become a key technology to connect the needs of high-fidelity CFD simulation and rapid prediction, whereas the low-dimensional nature of traditional surrogate models is unable to match the physical complexity and prediction needs of built flow fields. Therefore, combining machine learning (ML) with CFD to predict flow fields in built environments offers a promising way to increase simulation speed while maintaining reasonable accuracy. This review briefly reviews traditional surrogate models and focuses on ML-based surrogate models, especially the specific application of neural network architectures in rapidly predicting flow fields in the built environment. The review indicates that ML accelerates the three core aspects of CFD, namely mesh preprocessing, numerical solving, and post-processing visualization, in order to achieve efficient coupled CFD simulation. Although ML surrogate models still face challenges such as data availability, multi-physics field coupling, and generalization capability, the emergence of physical information-driven data enhancement techniques effectively alleviates the above problems. Meanwhile, the integration of traditional methods with ML can further enhance the comprehensive performance of surrogate models. Notably, the online ministry of trained ML models using transfer learning strategies deserves further research. These advances will provide an important basis for advancing efficient and accurate operational solutions in sustainable building design and operation. Full article
(This article belongs to the Special Issue Feature Reviews for Fluids 2025–2026)
Show Figures

Figure 1

25 pages, 4161 KiB  
Article
Indoor/Outdoor Particulate Matter and Related Pollutants in a Sensitive Public Building in Madrid (Spain)
by Elisabeth Alonso-Blanco, Francisco Javier Gómez-Moreno, Elías Díaz-Ramiro, Javier Fernández, Esther Coz, Carlos Yagüe, Carlos Román-Cascón, Dulcenombre Gómez-Garre, Adolfo Narros, Rafael Borge and Begoña Artíñano
Int. J. Environ. Res. Public Health 2025, 22(8), 1175; https://doi.org/10.3390/ijerph22081175 - 25 Jul 2025
Viewed by 372
Abstract
According to the World Health Organization (WHO), indoor air quality (IAQ) is becoming a serious global concern due to its significant impact on human health. However, not all relevant health parameters are currently regulated. For example, particle number concentration (PNC) and its associated [...] Read more.
According to the World Health Organization (WHO), indoor air quality (IAQ) is becoming a serious global concern due to its significant impact on human health. However, not all relevant health parameters are currently regulated. For example, particle number concentration (PNC) and its associated carbonaceous species, such as black carbon (BC), which are classified as carcinogenic by the International Agency for Research on Cancer (IARC), are not currently regulated. Compared with IAQ studies in other types of buildings, studies focusing on IAQ in hospitals or other healthcare facilities are scarce. Therefore, this study aims to evaluate the impact of these outdoor pollutants, among others, on the indoor environment of a hospital under different atmospheric conditions. To identify the seasonal influence, two different periods of two consecutive seasons (summer 2020 and winter 2021) were selected for the measurements. Regulated pollutants (NO, NO2, O3, PM10, and PM2.5) and nonregulated pollutants (PM1, PNC, and equivalent BC (eBC)) in outdoor air were simultaneously measured indoor and outdoor. This study also investigated the impact of indoor activities on indoor air quality. In the absence of indoor activities, outdoor sources significantly contribute to indoor traffic-related pollutants. Indoor and outdoor (I-O) measurements showed similar behavior, but indoor concentrations were lower, with peak levels delayed by up to two hours. Seasonal variations in indoor/outdoor (I/O) ratios were lower for particles than for associated gaseous pollutants. Particle infiltration depended on particle size, with it being higher the smaller the particle size. Indoor activities also significantly affected indoor pollutants. PMx (especially PM10 and PM2.5) concentrations were mainly modulated by walking-induced particle resuspension. Vertical eBC profiles indicated a relatively well-mixed environment. Ventilation through open windows rapidly altered indoor air quality. Outdoor-dominant pollutants (PNC, eBC, and NOX) had I/O ratios ≥ 1. Staying in the room with an open window had a synergistic effect, increasing the I/O ratios for all pollutants. Higher I/O ratios were associated with turbulent outdoor conditions in both unoccupied and occupied conditions. Statistically significant differences were observed between stable (TKE ≤ 1 m2 s−2) and unstable (TKE > 1 m2 s−2) conditions, except for NO2 in summer. This finding was particularly significant when the wind direction was westerly or easterly during unstable conditions. The results of this study highlight the importance of understanding the behavior of indoor particulate matter and related pollutants. These pollutants are highly variable, and knowledge about them is crucial for determining their health effects, particularly in public buildings such as hospitals, where information on IAQ is often limited. More measurement data is particularly important for further research into I-O transport mechanisms, which are essential for developing preventive measures and improving IAQ. Full article
Show Figures

Figure 1

17 pages, 4705 KiB  
Article
Impact of Teachers’ Decisions and Other Factors on Air Quality in Classrooms: A Case Study Using Low-Cost Air Quality Sensors
by Zhong-Min Wang, Wenhao Chen, David Putney, Jeff Wagner and Kazukiyo Kumagai
Environments 2025, 12(8), 253; https://doi.org/10.3390/environments12080253 - 24 Jul 2025
Viewed by 622
Abstract
This study investigates the impact of teacher decisions and other contextual factors on indoor air quality (IAQ) in mechanically ventilated elementary school classrooms using low-cost air quality sensors. Four classrooms at a K–8 school in San Jose, California, were monitored for airborne particulate [...] Read more.
This study investigates the impact of teacher decisions and other contextual factors on indoor air quality (IAQ) in mechanically ventilated elementary school classrooms using low-cost air quality sensors. Four classrooms at a K–8 school in San Jose, California, were monitored for airborne particulate matter (PM), carbon dioxide (CO2), temperature, and humidity over seven weeks. Each classroom was equipped with an HVAC system and a portable air cleaner (PAC), with teachers having full autonomy over PAC usage and ventilation practices. Results revealed that teacher behaviors, such as the frequency of door/window opening and PAC operation, significantly influenced both PM and CO2 levels. Classrooms with more active ventilation had lower CO2 but occasionally higher PM2.5 due to outdoor air exchange, while classrooms with minimal ventilation showed the opposite pattern. An analysis of PAC filter material and PM morphology indicated distinct differences between indoor and outdoor particle sources, with indoor air showing higher fiber content from clothing and carpets. This study highlights the critical role of teacher behavior in shaping IAQ, even in mechanically ventilated environments, and underscores the potential of low-cost sensors to support informed decision-making for healthier classroom environments. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Figure 1

16 pages, 29184 KiB  
Article
Dehydration-Induced Space Group Transition Triggers Conformational Changes in Protein Structure
by Ki Hyun Nam
Crystals 2025, 15(8), 674; https://doi.org/10.3390/cryst15080674 - 24 Jul 2025
Viewed by 231
Abstract
Protein packing within crystal lattices plays a critical role in determining molecular flexibility; therefore, the observed conformation and flexibility of protein side chains can vary depending on the crystal space group. Protein crystal dehydration affects crystal lattice mosaicity, which can either reduce crystal [...] Read more.
Protein packing within crystal lattices plays a critical role in determining molecular flexibility; therefore, the observed conformation and flexibility of protein side chains can vary depending on the crystal space group. Protein crystal dehydration affects crystal lattice mosaicity, which can either reduce crystal quality or enhance X-ray diffraction intensity. It also often alters the crystal lattice, leading to space group transition. Accordingly, dehydration-induced space group transitions could theoretically offer an alternative when there are experimental limitations obstructing the obtainment of diverse crystal forms. However, this remains underexplored experimentally. Here, a dehydration-induced space group transition was explored to observe different conformations and flexibilities of the protein structure. Xylanase GH11 crystals from Thermoanaerobacterium saccharolyticum (TsaGH11) were air-dehydrated, and their structure at room temperature was determined. Upon dehydration, the space group of the TsaGH11 crystal changed from tetragonal to orthorhombic, affecting the protein–protein interfaces within the crystal lattice. The dehydrated crystal structure of TsaGH11 revealed multiple conformations of residues involved in substrate binding and recognition within the substrate-binding cleft. These diverse molecular conformations and flexibilities provide significant and previously unrevealed structural information for TsaGH11. This approach demonstrates the potential of dehydration-induced space group transitions to reveal diverse protein conformations, offering valuable insights into molecular properties and functions. Full article
Show Figures

Figure 1

17 pages, 2076 KiB  
Article
Threefold Threshold: Synergistic Air Pollution in Greater Athens Area, Greece
by Aggelos Kladakis, Kyriaki-Maria Fameli, Konstantinos Moustris, Vasiliki D. Assimakopoulos and Panagiotis T. Nastos
Atmosphere 2025, 16(7), 888; https://doi.org/10.3390/atmos16070888 - 19 Jul 2025
Viewed by 383
Abstract
This study investigates the health impacts of air pollution in the Greater Athens Area (GAA), Greece, by estimating the Relative Risk (RR) of hospital admissions (HA) for cardiovascular (CVD) and respiratory diseases (RD) from 2018 to 2020. The analysis focuses on daily exceedances [...] Read more.
This study investigates the health impacts of air pollution in the Greater Athens Area (GAA), Greece, by estimating the Relative Risk (RR) of hospital admissions (HA) for cardiovascular (CVD) and respiratory diseases (RD) from 2018 to 2020. The analysis focuses on daily exceedances of key air pollutants—PM10, O3, and NO2—based on the “Fair” threshold and above, as defined by the European Union Air Quality Index (EU AQI). Data from ten monitoring stations operated by the Ministry of Environment and Energy were spatially matched with six hospitals across the GAA. A Distributed Lag Non-linear Model (DLNM) was employed to capture both the delayed and non-linear exposure–response (ER) relationships between pollutant exceedances and daily HA. Additionally, the synergistic effects of pollutant interactions were assessed to provide a more comprehensive understanding of cumulative health risks. The combined exposure term showed a peak RR of 1.49 (95% CI: 0.79–2.78), indicating a notable amplification of risk when multiple pollutants exceed thresholds simultaneously. The study utilizes R for data processing and statistical modeling. Findings aim to inform public health strategies by identifying critical exposure thresholds and time-lagged effects, ultimately supporting targeted interventions in urban environments experiencing air quality challenges. Full article
(This article belongs to the Special Issue Urban Air Pollution Exposure and Health Vulnerability)
Show Figures

Figure 1

26 pages, 5914 KiB  
Article
BiDGCNLLM: A Graph–Language Model for Drone State Forecasting and Separation in Urban Air Mobility Using Digital Twin-Augmented Remote ID Data
by Zhang Wen, Junjie Zhao, An Zhang, Wenhao Bi, Boyu Kuang, Yu Su and Ruixin Wang
Drones 2025, 9(7), 508; https://doi.org/10.3390/drones9070508 - 19 Jul 2025
Viewed by 410
Abstract
Accurate prediction of drone motion within structured urban air corridors is essential for ensuring safe and efficient operations in Urban Air Mobility (UAM) systems. Although real-world Remote Identification (Remote ID) regulations require drones to broadcast critical flight information such as velocity, access to [...] Read more.
Accurate prediction of drone motion within structured urban air corridors is essential for ensuring safe and efficient operations in Urban Air Mobility (UAM) systems. Although real-world Remote Identification (Remote ID) regulations require drones to broadcast critical flight information such as velocity, access to large-scale, high-quality broadcast data remains limited. To address this, this study leverages a Digital Twin (DT) framework to augment Remote ID spatio-temporal broadcasts, emulating the sensing environment of dense urban airspace. Using Remote ID data, we propose BiDGCNLLM, a hybrid prediction framework that integrates a Bidirectional Graph Convolutional Network (BiGCN) with Dynamic Edge Weighting and a reprogrammed Large Language Model (LLM, Qwen2.5–0.5B) to capture spatial dependencies and temporal patterns in drone speed trajectories. The model forecasts near-future speed variations in surrounding drones, supporting proactive conflict avoidance in constrained air corridors. Results from the AirSUMO co-simulation platform and a DT replica of the Cranfield University campus show that BiDGCNLLM outperforms state-of-the-art time series models in short-term velocity prediction. Compared to Transformer-LSTM, BiDGCNLLM marginally improves the R2 by 11.59%. This study introduces the integration of LLMs into dynamic graph-based drone prediction. It shows the potential of Remote ID broadcasts to enable scalable, real-time airspace safety solutions in UAM. Full article
Show Figures

Figure 1

17 pages, 1408 KiB  
Article
Rapid Kinetic Fluorogenic Quantification of Malondialdehyde in Ground Beef
by Keshav Raj Bhandari, Max Wamsley, Bindu Nanduri, Willard E. Collier and Dongmao Zhang
Foods 2025, 14(14), 2525; https://doi.org/10.3390/foods14142525 - 18 Jul 2025
Viewed by 297
Abstract
Malondialdehyde (MDA), a mutagenic and carcinogenic compound, is widely studied in the meat industry and lipid peroxidation research due to its implications for food quality and safety. Current methods for quantifying MDA in solid tissues are labor-intensive, requiring multiple instruments and approximately two [...] Read more.
Malondialdehyde (MDA), a mutagenic and carcinogenic compound, is widely studied in the meat industry and lipid peroxidation research due to its implications for food quality and safety. Current methods for quantifying MDA in solid tissues are labor-intensive, requiring multiple instruments and approximately two hours to complete. This study presents an ultrafast kinetic fluorogenic method for quantifying MDA in ground beef, utilizing 2-thiobarbituric acid (TBA) as a fluorogenic probe. The total assay time is significantly shortened to 6 min from sample preparation to data acquisition. The assay’s robustness against matrix interference was validated using sample volume variation and standard addition calibration methods. Additionally, the effects of ambient exposure to air, washing, and cooking on MDA content in raw ground beef were quantified. While both ambient exposure to air and cooking increased MDA levels, washing raw ground beef and decanting cooked ground beef broth effectively reduced MDA levels in the ground beef. This simple and rapid assay can be adopted both in food research and industry. Moreover, insights from our study on the relationship between ground beef treatment and MDA concentration will help consumers make informed decisions about ground beef handling and consumption to lower their intake of MDA. Full article
(This article belongs to the Special Issue Spectroscopic Methods Applied in Food Quality Determination)
Show Figures

Figure 1

17 pages, 5116 KiB  
Article
Impact of Real-Time Boundary Conditions from the CAMS Database on CHIMERE Model Predictions
by Anita Tóth and Zita Ferenczi
Air 2025, 3(3), 19; https://doi.org/10.3390/air3030019 - 18 Jul 2025
Viewed by 199
Abstract
Air quality forecasts play a crucial role in informing the public about atmospheric pollutant levels that pose risks to human health and the environment. The accuracy of these forecasts strongly depends on the quality and resolution of the input data used in the [...] Read more.
Air quality forecasts play a crucial role in informing the public about atmospheric pollutant levels that pose risks to human health and the environment. The accuracy of these forecasts strongly depends on the quality and resolution of the input data used in the modelling process. At HungaroMet, the Hungarian Meteorological Service, the CHIMERE chemical transport model is used to provide two-day air quality forecasts for the territory of Hungary. This study compares two configurations of the CHIMERE model: the current operational setup, which uses climatological averages from the LMDz-INCA database for boundary conditions, and a test configuration that incorporates real-time boundary conditions from the CAMS global forecast. The primary objective of this work was to assess how the use of real-time versus climatological boundary conditions affects modelled concentrations of key pollutants, including NO2, O3, PM10, and PM2.5. The model results were evaluated against observational data from the Hungarian Air Quality Monitoring Network using a range of statistical metrics. The results indicate that the use of real-time boundary conditions, particularly for aerosol-type pollutants, improves the accuracy of PM10 forecasts. This improvement is most significant under meteorological conditions that favour the long-range transport of particulate matter, such as during Saharan dust or wildfire episodes. These findings highlight the importance of incorporating dynamic, up-to-date boundary data, especially for particulate matter forecasting—given the increasing frequency of transboundary dust events. Full article
Show Figures

Figure 1

18 pages, 1268 KiB  
Review
Perspectives on the Presence of Environmentally Persistent Free Radicals (EPFRs) in Ambient Particulate Matters and Their Potential Implications for Health Risk
by Senlin Lu, Jiakuan Lu, Xudong Wang, Kai Xiao, Jingying Niuhe, Xinchun Liu and Shinichi Yonemochi
Atmosphere 2025, 16(7), 876; https://doi.org/10.3390/atmos16070876 - 17 Jul 2025
Viewed by 202
Abstract
Environmental persistent free radicals (EPFRs) represent a class of long-lived, redox-active species with half lives spanning minutes to months. Emerging as critical environmental pollutants, EPFRs pose significant risks due to their persistence, potential for bioaccumulation, and adverse effects on ecosystems and human health. [...] Read more.
Environmental persistent free radicals (EPFRs) represent a class of long-lived, redox-active species with half lives spanning minutes to months. Emerging as critical environmental pollutants, EPFRs pose significant risks due to their persistence, potential for bioaccumulation, and adverse effects on ecosystems and human health. This review critically synthesizes recent advancements in understanding EPFR formation mechanisms, analytical detection methodologies, environmental distribution patterns, and toxicological impacts. While progress has been made in characterization techniques, challenges persist—particularly in overcoming limitations of electron paramagnetic resonance (EPR) spectroscopy and spin-trapping methods in complex environmental matrices. Key knowledge gaps remain, including molecular-level dynamics of EPFR formation, long-term environmental fate under varying geochemical conditions, and quantitative relationships between chronic EPFR exposure and health outcomes. Future research priorities could focus on: (1) atomic-scale mechanistic investigations using advanced computational modeling to resolve formation pathways; (2) development of next-generation detection tools to improve sensitivity and spatial resolution; and (3) integration of EPFR data into region-specific air-quality indices to enhance risk assessment and inform mitigation strategies. Addressing these gaps will advance our capacity to mitigate EPFR persistence and safeguard environmental and public health. Full article
Show Figures

Figure 1

13 pages, 2743 KiB  
Communication
Evaluating Air Pollution in South African Priority Areas: A Qualitative Comparison of Satellite and In-Situ Data
by Nasiphi Ngcoliso, Lerato Shikwambana, Zintle Mbulawa, Moleboheng Molefe and Mahlatse Kganyago
Atmosphere 2025, 16(7), 871; https://doi.org/10.3390/atmos16070871 - 17 Jul 2025
Viewed by 312
Abstract
Validating satellite data is essential to ensure its accuracy, reliability, and practical applicability. Such validation underpins scientific research, operational use, and informed policymaking by confirming that space-based measurements reflect real-world conditions. This is typically achieved by comparing satellite observations with ground-based measurements or [...] Read more.
Validating satellite data is essential to ensure its accuracy, reliability, and practical applicability. Such validation underpins scientific research, operational use, and informed policymaking by confirming that space-based measurements reflect real-world conditions. This is typically achieved by comparing satellite observations with ground-based measurements or established reference standards. Without thorough validation, data integrity is compromised, which can negatively affect decisions and economic outcomes. In this study, we validated data from the Sentinel-5P TROPOspheric Monitoring Instrument (TROPOMI) by comparing it with ground-based measurements from the South African Air Quality Information System (SAAQIS). The analysis focused on three monitoring stations—Kliprivier, Lephalale, and Middelburg—over the course of 2022. The pollutants examined include sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO). The results indicate that CO was the predominant pollutant across all sites, particularly in industrial areas. The study also found that satellite data generally overestimated pollution levels, especially during the winter months, emphasizing the importance of robust ground-based validation. Additionally, data quality challenges such as gaps and temporal misalignments affected the accuracy of both satellite and ground datasets. Lastly, the study shows the discrepancy between the ground-based instruments in South Africa and the TROPOMI, and it suggests how these instruments can be incorporated to provide a better understanding of the air quality. Full article
(This article belongs to the Special Issue Study of Air Pollution Based on Remote Sensing (2nd Edition))
Show Figures

Figure 1

19 pages, 3993 KiB  
Article
Optical Monitoring of Particulate Matter: Calibration Approach, Seasonal and Diurnal Dependency, and Impact of Meteorological Vectors
by Salma Zaim, Bouchra Laarabi, Hajar Chamali, Abdelouahed Dahrouch, Asmae Arbaoui, Khalid Rahmani, Abdelfettah Barhdadi and Mouhaydine Tlemçani
Environments 2025, 12(7), 244; https://doi.org/10.3390/environments12070244 - 16 Jul 2025
Viewed by 483
Abstract
The worldwide air pollution situation reveals significant environmental challenges. In addition to being a major contributor to the deterioration of air quality, particulate matter (PM) is also an important factor affecting the performance of solar energy systems given its ability to decrease light [...] Read more.
The worldwide air pollution situation reveals significant environmental challenges. In addition to being a major contributor to the deterioration of air quality, particulate matter (PM) is also an important factor affecting the performance of solar energy systems given its ability to decrease light transmission to solar panels. As part of our research, the present investigation involves monitoring concentrations of PM using a high-performance optical instrument, the in situ calibration protocol of which is described in detail. For the city of Rabat, observations revealed significant variations in concentrations between day and night, with peaks observed around 8 p.m. correlating with high relative humidity and low wind speeds, and the highest levels recorded in February with a monthly average value reaching 75 µm/m3. In addition, an experimental protocol was set up for an analysis of the elemental composition of particles in the same city using SEM/EDS, providing a better understanding of their morphology. To assess the impact of meteorological variables on PM concentrations in two distinct climatic environments, a database from the city of Marrakech for the year 2024 was utilized. Overall, the distribution of PM values during this period did not fluctuate significantly, with a monthly average value not exceeding 45 µm/m3. The random forest method identified the most influential variables on these concentrations, highlighting the strong influence of the type of environment. The findings provide crucial information for the modeling of solar installations’ soiling and for improving understanding of local air quality. Full article
Show Figures

Graphical abstract

Back to TopTop