Dehydration-Induced Space Group Transition Triggers Conformational Changes in Protein Structure
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of TsaGH11
2.2. Protein Crystallization
2.3. X-Ray Diffraction Data Collection
2.4. Crystal Structure Determination
2.5. Bioinformatics
3. Results
3.1. Crystal Dehydration and Data Collection
3.2. Overall Structure
3.3. Molecular Flexibility of TsaGH11Dehyd
3.4. Structural Comparison of TsaGH11Dehyd and TsaGH11Hyd
4. Discussion
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bose, K.; Rathore, I.; Mishra, V.; Bhaumik, P. Advancements in macromolecular crystallography: From past to present. Emerg. Top. Life Sci. 2021, 5, 127–149. [Google Scholar] [CrossRef]
- Förster, A.; Schulze-Briese, C. A shared vision for macromolecular crystallography over the next five years. Struct. Dyn. 2019, 6, 064302. [Google Scholar] [CrossRef] [PubMed]
- Jaskolski, M.; Dauter, Z.; Wlodawer, A. A brief history of macromolecular crystallography, illustrated by a family tree and its Nobel fruits. FEBS J. 2014, 281, 3985–4009. [Google Scholar] [CrossRef] [PubMed]
- Śledź, P.; Caflisch, A. Protein structure-based drug design: From docking to molecular dynamics. Curr. Opin. Struc. Biol. 2018, 48, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Maveyraud, L.; Mourey, L. Protein X-ray Crystallography and Drug Discovery. Molecules 2020, 25, 1030. [Google Scholar] [CrossRef]
- Kim, I.J.; Kim, S.R.; Bornscheuer, U.T.; Nam, K.H. Engineering of GH11 Xylanases for Optimal pH Shifting for Industrial Applications. Catalysts 2023, 13, 1405. [Google Scholar] [CrossRef]
- Nam, K.H. Engineering Xylose Isomerase for Industrial Applications. Catalysts 2024, 14, 597. [Google Scholar] [CrossRef]
- McPherson, A.; Gavira, J.A. Introduction to protein crystallization. Struct. Biol. Cryst. Communications. 2013, 70, 2–20. [Google Scholar] [CrossRef]
- Russo Krauss, I.; Merlino, A.; Vergara, A.; Sica, F. An Overview of Biological Macromolecule Crystallization. Int. J. Mol. Sci. 2013, 14, 11643–11691. [Google Scholar] [CrossRef]
- Eyal, E.; Gerzon, S.; Potapov, V.; Edelman, M.; Sobolev, V. The Limit of Accuracy of Protein Modeling: Influence of Crystal Packing on Protein Structure. J. Mol. Biol. 2005, 351, 431–442. [Google Scholar] [CrossRef]
- Bala, S.; Shinya, S.; Srivastava, A.; Ishikawa, M.; Shimada, A.; Kobayashi, N.; Kojima, C.; Tama, F.; Miyashita, O.; Kohda, D. Crystal contact-free conformation of an intrinsically flexible loop in protein crystal: Tim21 as the case study. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2020, 1864, 129418. [Google Scholar] [CrossRef]
- Jacobson, M.P.; Friesner, R.A.; Xiang, Z.; Honig, B. On the Role of the Crystal Environment in Determining Protein Side-chain Conformations. J. Mol. Biol. 2002, 320, 597–608. [Google Scholar] [CrossRef]
- Lombardo, A.; Wang, Y.; Ni, C.Z.; Dai, X.; Kodandapani, R.; Chiang, S.; White, C.A.; Pio, F.; Ruoslahti, E.; Ely, K.R.; et al. Conformational flexibility and crystallization of tandemly linked type III modules of human fibronectin. Protein Sci. 2008, 5, 1934–1938. [Google Scholar] [CrossRef] [PubMed]
- Van Aalten, D.M.F.; Joshua-Tor, L.; Crielaard, W.; Hellingwerf, K.J. Conformational substates in different crystal forms of the photoactive yellow protein—Correlation with theoretical and experimental flexibility. Protein Sci. 2008, 9, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Kursula, P.; Jiang, Y.; Lu, G.; Trescott, L.R.; Hou, Y.; Guan, X.; Wang, S.; Stamenkovich, A.; Brunzelle, J.; Sirinupong, N.; et al. New Conformational State of NHERF1-CXCR2 Signaling Complex Captured by Crystal Lattice Trapping. PLoS ONE 2013, 8, e81904. [Google Scholar] [CrossRef]
- Salinas-Garcia, M.C.; Plaza-Garrido, M.; Alba-Elena, D.; Camara-Artigas, A. Major conformational changes in the structure of lysozyme obtained from a crystal with a very low solvent content. Struct. Biol. Cryst. Commun. 2019, 75, 687–696. [Google Scholar] [CrossRef]
- Hinsen, K. Structural flexibility in proteins: Impact of the crystal environment. Bioinformatics 2008, 24, 521–528. [Google Scholar] [CrossRef]
- Masuda, T.; Suzuki, M.; Yamasaki, M.; Mikami, B. Subatomic structure of orthorhombic thaumatin at 0.89 Å reveals that highly flexible conformations are crucial for thaumatin sweetness. Biochem. Biophys. Res. Commun. 2024, 703, 149601. [Google Scholar] [CrossRef]
- Sanchez-Weatherby, J.; Moraes, I. Crystal Dehydration in Membrane Protein Crystallography. In The Next Generation in Membrane Protein Structure Determination; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2016; pp. 73–89. [Google Scholar]
- Heras, B.; Edeling, M.A.; Byriel, K.A.; Jones, A.; Raina, S.; Martin, J.L. Dehydration Converts DsbG Crystal Diffraction from Low to High Resolution. Structure 2003, 11, 139–145. [Google Scholar] [CrossRef]
- Park, H.; Tran, T.; Lee, J.H.; Park, H.; Disney, M.D. Controlled dehydration improves the diffraction quality of two RNA crystals. BMC Struct. Biol. 2016, 16, 19. [Google Scholar] [CrossRef]
- Russo Krauss, I.; Sica, F.; Mattia, C.A.; Merlino, A. Increasing the X-ray Diffraction Power of Protein Crystals by Dehydration: The Case of Bovine Serum Albumin and a Survey of Literature Data. Int. J. Mol. Sci. 2012, 13, 3782–3800. [Google Scholar] [CrossRef]
- Lobley, C.M.; Sandy, J.; Sanchez-Weatherby, J.; Mazzorana, M.; Krojer, T.; Nowak, R.P.; Sorensen, T.L. A generic protocol for protein crystal dehydration using the HC1b humidity controller. Acta Crystallogr. D Struct. Biol. 2016, 72, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Kiefersauer, R.; Than, M.E.; Dobbek, H.; Gremer, L.; Melero, M.; Strobl, S.; Dias, J.M.; Soulimane, T.; Huber, R. A novel free-mounting system for protein crystals: Transformation and improvement of diffraction power by accurately controlled humidity changes. J. Appl. Crystallogr. 2000, 33, 1223–1230. [Google Scholar] [CrossRef]
- Kim, I.J.; Kim, S.R.; Kim, K.H.; Bornscheuer, U.T.; Nam, K.H. Characterization and structural analysis of the endo-1,4-β-xylanase GH11 from the hemicellulose-degrading Thermoanaerobacterium saccharolyticum useful for lignocellulose saccharification. Sci. Rep. 2023, 13, 17332. [Google Scholar] [CrossRef] [PubMed]
- Nam, K.H. Comparative Analysis of Room Temperature Structures Determined by Macromolecular and Serial Crystallography. Crystals 2024, 14, 276. [Google Scholar] [CrossRef]
- Nam, K.H. Recognition of a Single β-D-Xylopyranose Molecule by Xylanase GH11 from Thermoanaerobacterium saccharolyticum. Crystals 2024, 14, 402. [Google Scholar] [CrossRef]
- Park, S.Y.; Ha, S.C.; Kim, Y.G. The Protein Crystallography Beamlines at the Pohang Light Source II. Biodesign 2017, 5, 30–34. [Google Scholar]
- Bury, C.S.; Brooks-Bartlett, J.C.; Walsh, S.P.; Garman, E.F. Estimate your dose: RADDOSE-3D. Protein Sci. 2018, 27, 217–228. [Google Scholar] [CrossRef]
- Otwinowski, Z.; Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997, 276, 307–326. [Google Scholar] [CrossRef]
- Vagin, A.; Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 22–25. [Google Scholar] [CrossRef]
- Casañal, A.; Lohkamp, B.; Emsley, P. Current developments in Coot for macromolecular model building of Electron Cryo-microscopy and Crystallographic Data. Protein Sci. 2020, 29, 1055–1064. [Google Scholar] [CrossRef]
- Liebschner, D.; Afonine, P.V.; Baker, M.L.; Bunkoczi, G.; Chen, V.B.; Croll, T.I.; Hintze, B.; Hung, L.W.; Jain, S.; McCoy, A.J.; et al. Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 2019, 75, 861–877. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.J.; Headd, J.J.; Moriarty, N.W.; Prisant, M.G.; Videau, L.L.; Deis, L.N.; Verma, V.; Keedy, D.A.; Hintze, B.J.; Chen, V.B.; et al. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 2018, 27, 293–315. [Google Scholar] [CrossRef] [PubMed]
- Drew, E.D.; Janes, R.W. 2StrucCompare: A webserver for visualizing small but noteworthy differences between protein tertiary structures through interrogation of the secondary structure content. Nucleic Acids Res. 2019, 47, W477–W481. [Google Scholar] [CrossRef] [PubMed]
- Kabsch, W.; Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 2004, 22, 2577–2637. [Google Scholar] [CrossRef]
- Krissinel, E.; Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. 2004, 60, 2256–2268. [Google Scholar] [CrossRef]
- Nam, K.H. pH-Induced structural changes in xylanase GH11 from Thermoanaerobacterium saccharolyticum. F1000Research 2024, 13, 242. [Google Scholar] [CrossRef]
Data Collection | |
X-ray source | 11C beamline, PLS II |
X-ray energy (eV) | 14,820 |
Space group | C2221 |
Cell dimension | |
a, b, c (Å) | 100.15, 102.89, 174.63 |
α, β, γ (°) | 90.0, 90.0, 90.0 |
Resolution (Å) | 50.0–2.70 (2.75–2.70) |
Unique reflections | 24,819 (1191) |
Completeness (%) | 98.2 (96.7) |
Redundancy | 5.6 (3.9) |
I/σ | 9.54 (2.15) |
Rmerge | 0.131 (0.334) |
CC1/2 | 0.984 (0.815) |
CC* | 0.996 (0.948) |
Refinement | |
Resolution (Å) | 49.35–2.70 (2.77–2.70) |
Rwork a | 0.1759 (0.2059) |
Rfree b | 0.2278 (0.2683) |
R.m.s. deviations | |
Bonds (Å) | 0.007 |
Angles (°) | 0.898 |
Overall B factors (Å2) | 38.75 |
Chain A/B/C/D | 29.20/28.75/48.25/49.00 |
Waters | 35.96 |
Ramachandran plot (%) | |
Favored | 95.17 |
Allowed | 4.69 |
Outliers | 0.14 |
PDB code | 8YPX |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, K.H. Dehydration-Induced Space Group Transition Triggers Conformational Changes in Protein Structure. Crystals 2025, 15, 674. https://doi.org/10.3390/cryst15080674
Nam KH. Dehydration-Induced Space Group Transition Triggers Conformational Changes in Protein Structure. Crystals. 2025; 15(8):674. https://doi.org/10.3390/cryst15080674
Chicago/Turabian StyleNam, Ki Hyun. 2025. "Dehydration-Induced Space Group Transition Triggers Conformational Changes in Protein Structure" Crystals 15, no. 8: 674. https://doi.org/10.3390/cryst15080674
APA StyleNam, K. H. (2025). Dehydration-Induced Space Group Transition Triggers Conformational Changes in Protein Structure. Crystals, 15(8), 674. https://doi.org/10.3390/cryst15080674