Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,005)

Search Parameters:
Keywords = Age-related Macular Degeneration (AMD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7477 KiB  
Article
Bidirectional Hypoxic Extracellular Vesicle Signaling Between Müller Glia and Retinal Pigment Epithelium Regulates Retinal Metabolism and Barrier Function
by Alaa M. Mansour, Mohamed S. Gad, Samar Habib and Khaled Elmasry
Biology 2025, 14(8), 1014; https://doi.org/10.3390/biology14081014 - 7 Aug 2025
Abstract
The retina is highly sensitive to oxygen and blood supply, and hypoxia plays a key role in retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Müller glial cells, which are essential for retinal homeostasis, respond to injury and hypoxia [...] Read more.
The retina is highly sensitive to oxygen and blood supply, and hypoxia plays a key role in retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Müller glial cells, which are essential for retinal homeostasis, respond to injury and hypoxia with reactive gliosis, characterized by the upregulation of the glial fibrillary acidic protein (GFAP) and vimentin, cellular hypertrophy, and extracellular matrix changes, which can impair retinal function and repair. The retinal pigment epithelium (RPE) supports photoreceptors, forms part of the blood–retinal barrier, and protects against oxidative stress; its dysfunction contributes to retinal degenerative diseases such as AMD, retinitis pigmentosa (RP), and Stargardt disease (SD). Extracellular vesicles (EVs) play a crucial role in intercellular communication, protein homeostasis, and immune modulation, and have emerged as promising diagnostic and therapeutic tools. Understanding the role of extracellular vesicles’ (EVs’) signaling machinery of glial cells and the retinal pigment epithelium (RPE) is critical for developing effective treatments for retinal degeneration. In this study, we investigated the bidirectional EV-mediated crosstalk between RPE and Müller cells under hypoxic conditions and its impact on cellular metabolism and retinal cell integrity. Our findings demonstrate that RPE-derived extracellular vesicles (RPE EVs) induce time-dependent metabolic reprogramming in Müller cells. Short-term exposure (24 h) promotes pathways supporting neurotransmitter cycling, calcium and mineral absorption, and glutamate metabolism, while prolonged exposure (72 h) shifts Müller cell metabolism toward enhanced mitochondrial function and ATP production. Conversely, Müller cell-derived EVs under hypoxia influenced RPE metabolic pathways, enhancing fatty acid metabolism, intracellular vesicular trafficking, and the biosynthesis of mitochondrial co-factors such as ubiquinone. Proteomic analysis revealed significant modulation of key regulatory proteins. In Müller cells, hypoxic RPE-EV exposure led to reduced expression of Dyskerin Pseudouridine Synthase 1 (DKc1), Eukaryotic Translation Termination Factor 1 (ETF1), and Protein Ser/Thr phosphatases (PPP2R1B), suggesting alterations in RNA processing, translational fidelity, and signaling. RPE cells exposed to hypoxic Müller cell EVs exhibited elevated Ribosome-binding protein 1 (RRBP1), RAC1/2, and Guanine Nucleotide-Binding Protein G(i) Subunit Alpha-1 (GNAI1), supporting enhanced endoplasmic reticulum (ER) function and cytoskeletal remodeling. Functional assays also revealed the compromised barrier integrity of the outer blood–retinal barrier (oBRB) under hypoxic co-culture conditions. These results underscore the adaptive but time-sensitive nature of retinal cell communication via EVs in response to hypoxia. Targeting this crosstalk may offer novel therapeutic strategies to preserve retinal structure and function in ischemic retinopathies. Full article
Show Figures

Graphical abstract

28 pages, 3613 KiB  
Review
Epigenetic Alterations in Age-Related Macular Degeneration: Mechanisms and Implications
by Dana Kisswani, Christina Carroll, Fatima Valdes-Mora and Matt Rutar
Int. J. Mol. Sci. 2025, 26(15), 7601; https://doi.org/10.3390/ijms26157601 - 6 Aug 2025
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of irreversible vision loss among the elderly, and is influenced by a combination of genetic and environmental risk factors. While genetic associations in AMD are well-established, the molecular mechanisms underlying disease [...] Read more.
Age-related macular degeneration (AMD) is one of the leading causes of irreversible vision loss among the elderly, and is influenced by a combination of genetic and environmental risk factors. While genetic associations in AMD are well-established, the molecular mechanisms underlying disease onset and progression remain poorly understood. A growing body of evidence suggests that epigenetic modifications may serve as a potential missing link regulating gene–environment interactions. This review incorporates recent findings on DNA methylation, including both hypermethylation and hypomethylation patterns affecting genes such as silent mating type information regulation 2 homolog 1 (SIRT1), glutathione S-transferase isoform (GSTM), and SKI proto-oncogene (SKI), which may influence key pathophysiological drivers of AMD. We also examine histone modification patterns, chromatin accessibility, the status of long non-coding RNAs (lncRNAs) in AMD pathogenesis and in regulating pathways pertinent to the pathophysiology of the disease. While the field of ocular epigenetics remains in its infancy, accumulating evidence to date points to a burgeoning role for epigenetic regulation in AMD, pre-clinical studies have yielded promising findings for the prospect of epigenetics as a future therapeutic avenue. Full article
Show Figures

Figure 1

14 pages, 2398 KiB  
Article
TV-LSTM: Multimodal Deep Learning for Predicting the Progression of Late Age-Related Macular Degeneration Using Longitudinal Fundus Images and Genetic Data
by Jipeng Zhang, Chongyue Zhao, Lang Zeng, Heng Huang, Ying Ding and Wei Chen
AI Sens. 2025, 1(1), 6; https://doi.org/10.3390/aisens1010006 - 4 Aug 2025
Viewed by 111
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in developed countries. Predicting its progression is crucial for preventing late-stage AMD, as it is an irreversible retinal disease. Both genetic factors and retinal images are instrumental in diagnosing and predicting AMD progression. [...] Read more.
Age-related macular degeneration (AMD) is the leading cause of blindness in developed countries. Predicting its progression is crucial for preventing late-stage AMD, as it is an irreversible retinal disease. Both genetic factors and retinal images are instrumental in diagnosing and predicting AMD progression. Previous studies have explored automated diagnosis using single fundus images and genetic variants, but they often fail to utilize the valuable longitudinal data from multiple visits. Longitudinal retinal images offer a dynamic view of disease progression, yet standard Long Short-Term Memory (LSTM) models assume consistent time intervals between training and testing, limiting their effectiveness in real-world settings. To address this limitation, we propose time-varied Long Short-Term Memory (TV-LSTM), which accommodates irregular time intervals in longitudinal data. Our innovative approach enables the integration of both longitudinal fundus images and AMD-associated genetic variants for more precise progression prediction. Our TV-LSTM model achieved an AUC-ROC of 0.9479 and an AUC-PR of 0.8591 for predicting late AMD within two years, using data from four visits with varying time intervals. Full article
Show Figures

Figure 1

9 pages, 787 KiB  
Article
Real-World Efficacy and Durability of Faricimab in Aflibercept-Resistant Neovascular Age-Related Macular Degeneration
by Areum Jeong, Huiyu Liang, Seung Chul Baek and Min Sagong
J. Clin. Med. 2025, 14(15), 5412; https://doi.org/10.3390/jcm14155412 - 1 Aug 2025
Viewed by 219
Abstract
Objectives: This study aimed to evaluate the 6-month real-world outcomes of switching to faricimab in patients with aflibercept-resistant neovascular age-related macular degeneration (nAMD). Methods: A retrospective review was conducted on the eyes of 60 patients with aflibercept-resistant nAMD that were switched [...] Read more.
Objectives: This study aimed to evaluate the 6-month real-world outcomes of switching to faricimab in patients with aflibercept-resistant neovascular age-related macular degeneration (nAMD). Methods: A retrospective review was conducted on the eyes of 60 patients with aflibercept-resistant nAMD that were switched to faricimab. Best-corrected visual acuity (BCVA) and optical coherence tomography (OCT) parameters, including central subfield thickness (CST), subfoveal choroidal thickness (SFCT), and both the maximum height and width of pigment epithelial detachment (PED), at baseline and 1, 3, and 6 months after switching were evaluated. The type of PED and retinal fluid were also analyzed. Results: The results showed that BCVA remained stable at month 6 (p = 0.150), while CST significantly decreased (p = 0.020), and SFCT remained unchanged (p = 0.072). The maximum PED height significantly decreased (p = 0.030), while the maximum PED width did not change (p = 0.07). The mean injection interval significantly increased from 6.8 ± 2.4 weeks before switching to 11.2 ± 1.7 weeks after switching (p = 0.068). Furthermore, the dry macula rate was 43.3% at month 6. Conclusions: Switching to faricimab in aflibercept-resistant nAMD patients showed stable visual outcomes, significant anatomical improvements, and reduced treatment burden over 6 months in real-world clinical settings. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

10 pages, 710 KiB  
Article
CPAP Use and Retinal Disease Risk in Obstructive Apnea: A Cohort Study
by Dillan Cunha Amaral, Pedro Lucas Machado Magalhães, Muhammad Alfatih, Bruna Gabriel Miranda, Hashem Abu Serhan, Raíza Jacometti, Bruno Fortaleza de Aquino Ferreira, Letícia Sant’Ana, Diogo Haddad Santos, Mário Luiz Ribeiro Monteiro and Ricardo Noguera Louzada
Vision 2025, 9(3), 65; https://doi.org/10.3390/vision9030065 - 1 Aug 2025
Viewed by 169
Abstract
Obstructive sleep apnea (OSA) is a common condition associated with intermittent hypoxia, systemic inflammation, and vascular dysfunction; mechanisms implicated in retinal disease pathogenesis. This real-world retrospective cohort study used data from the TriNetX Research Network to assess whether continuous positive airway pressure (CPAP) [...] Read more.
Obstructive sleep apnea (OSA) is a common condition associated with intermittent hypoxia, systemic inflammation, and vascular dysfunction; mechanisms implicated in retinal disease pathogenesis. This real-world retrospective cohort study used data from the TriNetX Research Network to assess whether continuous positive airway pressure (CPAP) therapy reduces retinal disease incidence among adults with OSA and BMI between 25.0 and 30.0 kg/m2. After 1:1 propensity score matching, 101,754 patients were included in the analysis. Retinal outcomes included diabetic retinopathy (DR), age-related macular degeneration (AMD), retinal vein occlusion (RVO), and central serous chorioretinopathy (CSC). CPAP use was associated with a modest but statistically significant reduction in DR (3.2% vs. 3.4%, RR: 0.922, p = 0.016) and AMD (2.1% vs. 2.3%, RR: 0.906, p = 0.018), while no significant differences were found for RVO or CSC. These findings support prior evidence linking CPAP to improved retinal microvascular health and suggest a protective effect against specific retinal complications. Limitations include a lack of data on CPAP adherence, OSA severity, and imaging confirmation. Still, this study highlights the importance of interdisciplinary care between sleep and eye health, and the need for further prospective studies to validate CPAP’s role in preventing retinal disease progression in OSA patients. Full article
Show Figures

Figure 1

15 pages, 1216 KiB  
Review
Biomolecular Aspects of Reelin in Neurodegenerative Disorders: An Old Candidate for a New Linkage of the Gut–Brain–Eye Axis
by Bijorn Omar Balzamino, Filippo Biamonte and Alessandra Micera
Int. J. Mol. Sci. 2025, 26(15), 7352; https://doi.org/10.3390/ijms26157352 - 30 Jul 2025
Viewed by 338
Abstract
Recent findings highlight that Reelin, a glycoprotein involved in neural development, synaptic plasticity, and neuroinflammation, plays some specific roles in neurodegenerative disorders associated with aging, such as age-related macular degeneration (AMD) and Alzheimer’s disease (AD). Reelin modulates synaptic function and guarantees homeostasis in [...] Read more.
Recent findings highlight that Reelin, a glycoprotein involved in neural development, synaptic plasticity, and neuroinflammation, plays some specific roles in neurodegenerative disorders associated with aging, such as age-related macular degeneration (AMD) and Alzheimer’s disease (AD). Reelin modulates synaptic function and guarantees homeostasis in neuronal-associated organs/tissues (brain and retina). The expression of Reelin is dysregulated in these neurological disorders, showing common pathways depending on chronic neurogenic inflammation and/or dysregulation of the extracellular matrix in which Reelin plays outstanding roles. Recently, the relationship between AMD and AD has gained increasing attention as they share many common risk factors (aging, genetic/epigenetic background, smoking, and malnutrition) and histopathological lesions, supporting certain pathophysiological crosstalk between these two diseases, especially regarding neuroinflammation, oxidative stress, and vascular complications. Outside the nervous system, Reelin is largely produced at the gastrointestinal epithelial level, in close association with innervated regions. The expression of Reelin receptors inside the gut suggests interesting aspects in the field of the gut–brain–eye axis, as dysregulation of the intestinal microbiota has been frequently described in neurodegenerative and behavioral disorders (AD, autism, and anxiety and/or depression), most probably linked to inflammatory, neurogenic mediators, including Reelin. Herein we examined previous and recent findings on Reelin and neurodegenerative disorders, offering findings on Reelin’s potential relation with the gut–brain and gut–brain–eye axes and providing novel attractive hypotheses on the gut–brain–eye link through neuromodulator and microbiota interplay. Neurodegenerative disorders will represent the ground for a future starting point for linking the common neurodegenerative biomarkers (β-amyloid and tau) and the new proteins probably engaged in counteracting neurodegeneration and synaptic loss. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

27 pages, 4786 KiB  
Article
Whole RNA-Seq Analysis Reveals Longitudinal Proteostasis Network Responses to Photoreceptor Outer Segment Trafficking and Degradation in RPE Cells
by Rebecca D. Miller, Isaac Mondon, Charles Ellis, Anna-Marie Muir, Stephanie Turner, Eloise Keeling, Htoo A. Wai, David S. Chatelet, David A. Johnson, David A. Tumbarello, Andrew J. Lotery, Diana Baralle and J. Arjuna Ratnayaka
Cells 2025, 14(15), 1166; https://doi.org/10.3390/cells14151166 - 29 Jul 2025
Viewed by 470
Abstract
RNA-seq analysis of the highly differentiated human retinal pigment epithelial (RPE) cell-line ARPE-19, cultured on transwells for ≥4 months, yielded 44,909 genes showing 83.35% alignment with the human reference genome. These included mRNA transcripts of RPE-specific genes and those involved in retinopathies. Monolayers [...] Read more.
RNA-seq analysis of the highly differentiated human retinal pigment epithelial (RPE) cell-line ARPE-19, cultured on transwells for ≥4 months, yielded 44,909 genes showing 83.35% alignment with the human reference genome. These included mRNA transcripts of RPE-specific genes and those involved in retinopathies. Monolayers were fed photoreceptor outer segments (POS), designed to be synchronously internalised, mimicking homeostatic RPE activity. Cells were subsequently fixed at 4, 6, 24 and 48 h when POS were previously shown to maximally co-localise with Rab5, Rab7, LAMP/lysosomes and LC3b/autophagic compartments. A comprehensive analysis of differentially expressed genes involved in proteolysis revealed a pattern of gene orchestration consistent with POS breakdown in the autophagy-lysosomal pathway. At 4 h, these included elevated upstream signalling events promoting early stages of cargo transport and endosome maturation compared to RPE without POS exposure. This transcriptional landscape altered from 6 h, transitioning to promoting cargo degradation in autolysosomes by 24–48 h. Longitudinal scrutiny of mRNA transcripts revealed nuanced differences even within linked gene networks. POS exposure also initiated transcriptional upregulation in ubiquitin proteasome and chaperone-mediated systems within 4–6 h, providing evidence of cross-talk with other proteolytic processes. These findings show detailed evidence of transcriptome-level responses to cargo trafficking and processing in RPE cells. Full article
(This article belongs to the Special Issue Retinal Pigment Epithelium in Degenerative Retinal Diseases)
Show Figures

Graphical abstract

14 pages, 1517 KiB  
Review
HSV-1 Infection in Retinal Pigment Epithelial Cells: A Possible Contribution to Age-Related Macular Degeneration
by Victoria Belen Ayala-Peña
Viruses 2025, 17(8), 1056; https://doi.org/10.3390/v17081056 - 29 Jul 2025
Viewed by 358
Abstract
Herpes simplex virus type 1 (HSV-1) is associated with eye infections. Specifically, the acute consequences of eye infections have been extensively studied. This review gathers information on possible collateral damage caused by HSV-1 in the retina, such as age-related macular degeneration (AMD), a [...] Read more.
Herpes simplex virus type 1 (HSV-1) is associated with eye infections. Specifically, the acute consequences of eye infections have been extensively studied. This review gathers information on possible collateral damage caused by HSV-1 in the retina, such as age-related macular degeneration (AMD), a neurodegenerative disease. The synthesis and accumulation of Amyloid-β peptide (Aβ) is a key hallmark in these types of pathologies. AMD is a disease of multifactorial origin, and viral infections play an important role in its development. It is known that once this virus has entered the eye, it can infect adjacent cells, thus having the ability to infect almost any cell type with great tropism. In the retina, retinal pigment epithelial (RPE) cells are primarily involved in AMD. This work reviews publications that show that RPE can produce Aβ, and once they are infected by HSV-1, the release is promoted. Also, all the information available in the literature that explains how these events may be interconnected has been compiled. This information is valuable when planning new treatments for multifactorial neurodegenerative diseases. Full article
(This article belongs to the Special Issue Viruses and Eye Diseases)
Show Figures

Figure 1

17 pages, 13173 KiB  
Article
High-Resolution Imaging and Interpretation of Three-Dimensional RPE Sheet Structure
by Kevin J. Donaldson, Micah A. Chrenek, Jeffrey H. Boatright and John M. Nickerson
Biomolecules 2025, 15(8), 1084; https://doi.org/10.3390/biom15081084 - 26 Jul 2025
Viewed by 233
Abstract
The retinal pigment epithelium (RPE), a monolayer of pigmented cells, is critical for visual function through its interaction with the neural retina. In healthy eyes, RPE cells exhibit a uniform hexagonal arrangement, but under stress or disease, such as age-related macular degeneration (AMD), [...] Read more.
The retinal pigment epithelium (RPE), a monolayer of pigmented cells, is critical for visual function through its interaction with the neural retina. In healthy eyes, RPE cells exhibit a uniform hexagonal arrangement, but under stress or disease, such as age-related macular degeneration (AMD), dysmorphic traits like cell enlargement and apparent multinucleation emerge. Multinucleation has been hypothesized to result from cellular fusion, a compensatory mechanism to maintain cell-to-cell contact and barrier function, as well as conserve resources in unhealthy tissue. However, traditional two-dimensional (2D) imaging using apical border markers alone may misrepresent multinucleation due to the lack of lateral markers. We present high-resolution confocal images enabling three-dimensional (3D) visualization of apical (ZO-1) and lateral (α-catenin) markers alongside nuclei. In two RPE damage models, we find that seemingly multinucleated cells are often single cells with displaced neighboring nuclei and lateral membranes. This emphasizes the need for 3D analyses to avoid misidentifying multinucleation and underlying fusion mechanisms. Lastly, images from the NaIO3 oxidative damage model reveal variability in RPE damage, with elongated, dysmorphic cells showing increased ZsGreen reporter protein expression driven by EMT-linked CAG promoter activity, while more regular RPE cells displayed somewhat reduced green signal more typical of epithelial phenotypes. Full article
(This article belongs to the Section Molecular Biophysics: Structure, Dynamics, and Function)
Show Figures

Figure 1

22 pages, 1329 KiB  
Review
Visual Field Examinations for Retinal Diseases: A Narrative Review
by Ko Eun Kim and Seong Joon Ahn
J. Clin. Med. 2025, 14(15), 5266; https://doi.org/10.3390/jcm14155266 - 25 Jul 2025
Viewed by 228
Abstract
Visual field (VF) testing remains a cornerstone in assessing retinal function by measuring how well different parts of the retina detect light. It is essential for early detection, monitoring, and management of many retinal diseases. By mapping retinal sensitivity, VF exams can reveal [...] Read more.
Visual field (VF) testing remains a cornerstone in assessing retinal function by measuring how well different parts of the retina detect light. It is essential for early detection, monitoring, and management of many retinal diseases. By mapping retinal sensitivity, VF exams can reveal functional loss before structural changes become visible. This review summarizes how VF testing is applied across key conditions: hydroxychloroquine (HCQ) retinopathy, age-related macular degeneration (AMD), diabetic retinopathy (DR) and macular edema (DME), and inherited disorders including inherited dystrophies such as retinitis pigmentosa (RP). Traditional methods like the Goldmann kinetic perimetry and simple tools such as the Amsler grid help identify large or central VF defects. Automated perimetry (e.g., Humphrey Field Analyzer) provides detailed, quantitative data critical for detecting subtle paracentral scotomas in HCQ retinopathy and central vision loss in AMD. Frequency-doubling technology (FDT) reveals early neural deficits in DR before blood vessel changes appear. Microperimetry offers precise, localized sensitivity maps for macular diseases. Despite its value, VF testing faces challenges including patient fatigue, variability in responses, and interpretation of unreliable results. Recent advances in artificial intelligence, virtual reality perimetry, and home-based perimetry systems are improving test accuracy, accessibility, and patient engagement. Integrating VF exams with these emerging technologies promises more personalized care, earlier intervention, and better long-term outcomes for patients with retinal disease. Full article
(This article belongs to the Special Issue New Advances in Retinal Diseases)
Show Figures

Figure 1

26 pages, 1899 KiB  
Review
Extracellular Matrix (ECM) Aging in the Retina: The Role of Matrix Metalloproteinases (MMPs) in Bruch’s Membrane Pathology and Age-Related Macular Degeneration (AMD)
by Ali A. Hussain and Yunhee Lee
Biomolecules 2025, 15(8), 1059; https://doi.org/10.3390/biom15081059 - 22 Jul 2025
Viewed by 378
Abstract
The extracellular matrix (ECM) is a collagen-based scaffold that provides structural support and regulates nutrient transport and cell signaling. ECM homeostasis depends on a dynamic balance between synthesis and degradation, the latter being primarily mediated by matrix metalloproteinases (MMPs). These enzymes are secreted [...] Read more.
The extracellular matrix (ECM) is a collagen-based scaffold that provides structural support and regulates nutrient transport and cell signaling. ECM homeostasis depends on a dynamic balance between synthesis and degradation, the latter being primarily mediated by matrix metalloproteinases (MMPs). These enzymes are secreted as pro-forms and require activation to degrade ECM components. Their activity is modulated by tissue inhibitors of metalloproteinases (TIMPs). Aging disrupts this balance, leading to the accumulation of oxidized, cross-linked, and denatured matrix proteins, thereby impairing ECM function. Bruch’s membrane, a penta-laminated ECM structure in the eye, plays a critical role in supporting photoreceptor and retinal pigment epithelium (RPE) health. Its age-related thickening and decreased permeability are associated with impaired nutrient delivery and waste removal, contributing to the pathogenesis of age-related macular degeneration (AMD). In AMD, MMP dysfunction is characterized by the reduced activation and sequestration of MMPs, which further limits matrix turnover. This narrative review explores the structural and functional changes in Bruch’s membrane with aging, the role of MMPs in ECM degradation, and the relevance of these processes to AMD pathophysiology, highlighting emerging regulatory mechanisms and potential therapeutic targets. Full article
(This article belongs to the Special Issue Role of Matrix Metalloproteinase in Health and Disease)
Show Figures

Figure 1

37 pages, 1831 KiB  
Review
Deep Learning Techniques for Retinal Layer Segmentation to Aid Ocular Disease Diagnosis: A Review
by Oliver Jonathan Quintana-Quintana, Marco Antonio Aceves-Fernández, Jesús Carlos Pedraza-Ortega, Gendry Alfonso-Francia and Saul Tovar-Arriaga
Computers 2025, 14(8), 298; https://doi.org/10.3390/computers14080298 - 22 Jul 2025
Viewed by 418
Abstract
Age-related ocular conditions like macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma are leading causes of irreversible vision loss globally. Optical coherence tomography (OCT) provides essential non-invasive visualization of retinal structures for early diagnosis, but manual analysis of these images is labor-intensive and [...] Read more.
Age-related ocular conditions like macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma are leading causes of irreversible vision loss globally. Optical coherence tomography (OCT) provides essential non-invasive visualization of retinal structures for early diagnosis, but manual analysis of these images is labor-intensive and prone to variability. Deep learning (DL) techniques have emerged as powerful tools for automating the segmentation of the retinal layer in OCT scans, potentially improving diagnostic efficiency and consistency. This review systematically evaluates the state of the art in DL-based retinal layer segmentation using the PRISMA methodology. We analyze various architectures (including CNNs, U-Net variants, GANs, and transformers), examine the characteristics and availability of datasets, discuss common preprocessing and data augmentation strategies, identify frequently targeted retinal layers, and compare performance evaluation metrics across studies. Our synthesis highlights significant progress, particularly with U-Net-based models, which often achieve Dice scores exceeding 0.90 for well-defined layers, such as the retinal pigment epithelium (RPE). However, it also identifies ongoing challenges, including dataset heterogeneity, inconsistent evaluation protocols, difficulties in segmenting specific layers (e.g., OPL, RNFL), and the need for improved clinical integration. This review provides a comprehensive overview of current strengths, limitations, and future directions to guide research towards more robust and clinically applicable automated segmentation tools for enhanced ocular disease diagnosis. Full article
Show Figures

Figure 1

12 pages, 1130 KiB  
Article
Punctate Hyperfluorescence as a Favorable Predictive Factor for Treatment Response Following a Switch to Brolucizumab for Patients with Aflibercept-Refractory Neovascular Age-Related Macular Degeneration
by Hiroyuki Kamao, Katsutoshi Goto, Kenichi Mizukawa, Ryutaro Hiraki, Atsushi Miki and Shuhei Kimura
J. Clin. Med. 2025, 14(14), 5141; https://doi.org/10.3390/jcm14145141 - 19 Jul 2025
Viewed by 342
Abstract
Background/Objectives: To identify the predictive biomarkers of treatment response following a switch to brolucizumab in patients with aflibercept-refractory neovascular age-related macular degeneration (nAMD). Methods: This retrospective study included 47 eyes of 44 patients with nAMD who were switched to brolucizumab; a two-year [...] Read more.
Background/Objectives: To identify the predictive biomarkers of treatment response following a switch to brolucizumab in patients with aflibercept-refractory neovascular age-related macular degeneration (nAMD). Methods: This retrospective study included 47 eyes of 44 patients with nAMD who were switched to brolucizumab; a two-year follow-up was completed for 37 eyes of 34 patients after the switch. The patients were classified into two groups based on the presence (fluid group) or absence (dry group) of retinal fluid at one and two years after switching, and their visual acuity, central retinal thickness, subfoveal choroidal thickness, injection interval, and dry macular rate were evaluated. Results: A dry macula was achieved for approximately 80% of patients at two years after the switch (p < 0.001), and the mean injection interval was significantly extended from 6.4 ± 1.8 weeks to 10.5 ± 2.6 weeks during the same period (p < 0.001). Both the mean central retinal thickness and subfoveal choroidal thickness showed a significant decrease at two years after the switch (p < 0.001 for both). A significantly higher proportion of patients in the Dry group exhibited punctate hyperfluorescence in the fellow eye (p < 0.001), and all patients in the dry group achieved a dry macula at two years. Conclusions: Switching to brolucizumab may be an effective treatment option for patients with aflibercept-refractory nAMD. Punctate hyperfluorescence may serve as a favorable prognostic factor following a switch to brolucizumab. Full article
Show Figures

Figure 1

20 pages, 688 KiB  
Article
Multi-Modal AI for Multi-Label Retinal Disease Prediction Using OCT and Fundus Images: A Hybrid Approach
by Amina Zedadra, Mahmoud Yassine Salah-Salah, Ouarda Zedadra and Antonio Guerrieri
Sensors 2025, 25(14), 4492; https://doi.org/10.3390/s25144492 - 19 Jul 2025
Viewed by 560
Abstract
Ocular diseases can significantly affect vision and overall quality of life, with diagnosis often being time-consuming and dependent on expert interpretation. While previous computer-aided diagnostic systems have focused primarily on medical imaging, this paper proposes VisionTrack, a multi-modal AI system for predicting multiple [...] Read more.
Ocular diseases can significantly affect vision and overall quality of life, with diagnosis often being time-consuming and dependent on expert interpretation. While previous computer-aided diagnostic systems have focused primarily on medical imaging, this paper proposes VisionTrack, a multi-modal AI system for predicting multiple retinal diseases, including Diabetic Retinopathy (DR), Age-related Macular Degeneration (AMD), Diabetic Macular Edema (DME), drusen, Central Serous Retinopathy (CSR), and Macular Hole (MH), as well as normal cases. The proposed framework integrates a Convolutional Neural Network (CNN) for image-based feature extraction, a Graph Neural Network (GNN) to model complex relationships among clinical risk factors, and a Large Language Model (LLM) to process patient medical reports. By leveraging diverse data sources, VisionTrack improves prediction accuracy and offers a more comprehensive assessment of retinal health. Experimental results demonstrate the effectiveness of this hybrid system, highlighting its potential for early detection, risk assessment, and personalized ophthalmic care. Experiments were conducted using two publicly available datasets, RetinalOCT and RFMID, which provide diverse retinal imaging modalities: OCT images and fundus images, respectively. The proposed multi-modal AI system demonstrated strong performance in multi-label disease prediction. On the RetinalOCT dataset, the model achieved an accuracy of 0.980, F1-score of 0.979, recall of 0.978, and precision of 0.979. Similarly, on the RFMID dataset, it reached an accuracy of 0.989, F1-score of 0.881, recall of 0.866, and precision of 0.897. These results confirm the robustness, reliability, and generalization capability of the proposed approach across different imaging modalities. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

13 pages, 265 KiB  
Review
The Role of Cytokines in Degenerative Retinal Diseases: A Comprehensive Review
by Rubens Camargo Siqueira and Cinara Cássia Brandão
Biomedicines 2025, 13(7), 1724; https://doi.org/10.3390/biomedicines13071724 - 15 Jul 2025
Viewed by 409
Abstract
Degenerative retinal diseases, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), and retinitis pigmentosa (RP), are the leading causes of vision loss worldwide. Inflammation plays a crucial role in the pathogenesis of these diseases, with cytokines acting as key mediators of neuroinflammation, [...] Read more.
Degenerative retinal diseases, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), and retinitis pigmentosa (RP), are the leading causes of vision loss worldwide. Inflammation plays a crucial role in the pathogenesis of these diseases, with cytokines acting as key mediators of neuroinflammation, vascular dysfunction, and cellular degeneration. This review explores the complex role of cytokines in degenerative retinal diseases, highlighting their involvement in disease progression, cellular interactions, and potential therapeutic strategies. Understanding the cytokine network within the retina may provide novel insights into targeted interventions for these debilitating conditions. Full article
(This article belongs to the Special Issue Feature Reviews in Cytokines)
Back to TopTop