The Role of Cytokines in Degenerative Retinal Diseases: A Comprehensive Review
Abstract
1. Introduction
2. Cytokines in Retinal Degeneration: Mechanisms and Implications
2.1. Pro-Inflammatory Cytokines and Retinal Damage
2.1.1. Tumor Necrosis Factor-Alpha (TNF-α) and Retinal Cell Apoptosis
2.1.2. Interleukin-1 Beta (IL-1β) and Inflammasome Activation
- Induces photoreceptor and RPE apoptosis in AMD [9];
- Promotes vascular leakage and endothelial dysfunction in DR [10];
- Activates microglia, amplifying neuroinflammation in RP [11].
2.1.3. Interleukin-6 (IL-6) and Chronic Neuroinflammation
- Müller cell gliosis, leading to retinal dysfunction [12];
- Increased VEGF expression, worsening neovascularization in AMD and DR [13];
- Microglial activation, perpetuating chronic inflammation in RP [14].
2.2. Anti-Inflammatory Cytokines and Retinal Protection
2.2.1. Interleukin-10 (IL-10) and Microglial Regulation
- Inhibiting microglial activation, reducing oxidative stress-induced inflammation [16];
- Protecting RGCs and photoreceptors, preventing apoptosis [19];
- Suppressing TNF-α and IL-1β expression, counteracting neurotoxicity in AMD and DR [20].
2.2.2. Transforming Growth Factor-Beta (TGF-β) and Retinal Repair
- Suppressing inflammatory cytokine production, reducing chronic neuroinflammation [22];
- Promoting extracellular matrix remodeling, aiding in retinal repair [23];
- Regulating angiogenesis, modulating the VEGF pathway in AMD [24].
2.2.3. Interleukin-4 (IL-4) and M2 Macrophage Polarization
- Inhibits pro-inflammatory cytokines (TNF-α, IL-1β, IL-6), reducing neurotoxicity [26];
- Enhances neuroprotection, preserving photoreceptors in RP models [27];
- Modulates microglia-macrophage crosstalk, limiting chronic immune activation [28].
2.3. The Balance Between Pro- and Anti-Inflammatory Cytokines in Retinal Homeostasis
- Blocking pro-inflammatory cytokines (e.g., anti-TNF-α, IL-6 inhibitors);
- Enhancing anti-inflammatory pathways (e.g., IL-10 and TGF-β modulation);
- Targeting microglia and macrophage polarization to shift towards a neuroprotective phenotype.
3. Cytokine Profiles in Specific Retinal Degenerative Diseases
3.1. Age-Related Macular Degeneration (AMD)
3.1.1. Pro-Inflammatory Cytokines in AMD
- Tumor Necrosis Factor-Alpha (TNF-α): TNF-α is upregulated in AMD and has been linked to RPE apoptosis, choroidal endothelial cell activation, and increased vascular permeability [2].
- Interleukin-6 (IL-6): Elevated IL-6 levels in AMD patients correlate with inflammatory cell infiltration and complement activation, contributing to CNV progression [3].
- Interleukin-1 Beta (IL-1β): IL-1β promotes macrophage recruitment, inflammasome activation, and RPE damage, exacerbating AMD pathology [4].
- Vascular Endothelial Growth Factor (VEGF): VEGF is a key driver of pathological angiogenesis in neovascular AMD, contributing to the formation of leaky and fragile choroidal blood vessels [5].
3.1.2. Anti-Inflammatory Cytokines in AMD
- Interleukin-10 (IL-10): IL-10 suppresses pro-inflammatory cytokines and inhibits macrophage activation, reducing inflammation in AMD [6].
- Transforming Growth Factor-Beta (TGF-β): TGF-β has both protective and detrimental effects; while it regulates immune responses, it can also contribute to subretinal fibrosis in advanced AMD [7].
3.1.3. Therapeutic Implications in AMD
- Anti-VEGF Therapies: Agents such as ranibizumab, aflibercept, and bevacizumab effectively target VEGF, reducing neovascularization and inflammation [8].
- IL-1β Inhibitors: Targeting IL-1β with drugs like canakinumab may prevent inflammasome-mediated damage [9].
- TNF-α Blockers: Adalimumab and infliximab, TNF-α inhibitors, have been explored as potential treatments to reduce inflammation and vascular leakage in AMD, although local delivery methods remain a challenge [10].
3.2. Diabetic Retinopathy (DR)
3.2.1. Pro-Inflammatory Cytokines in DR
- TNF-α: Increased TNF-α levels in DR patients correlate with vascular endothelial dysfunction, capillary dropout, and BRB breakdown, leading to diabetic macular edema (DME) [12].
- IL-1β: IL-1β contributes to retinal endothelial cell apoptosis, microglial activation, and pericyte loss, exacerbating ischemia [13].
- IL-6: Elevated IL-6 levels have been found in the vitreous humor of DR patients and are associated with retinal neovascularization and inflammatory cell infiltration [14].
- VEGF: VEGF is the primary driver of pathological neovascularization in proliferative DR (PDR), promoting the growth of fragile retinal blood vessels [15].
3.2.2. Anti-Inflammatory Cytokines in DR
3.2.3. Therapeutic Implications in DR
- Anti-VEGF Therapy: Ranibizumab, bevacizumab, and aflibercept are first-line treatments for diabetic macular edema and proliferative DR [20].
- Corticosteroids: Intravitreal steroids (dexamethasone, triamcinolone) help reduce inflammation and vascular leakage [21].
- IL-6 and TNF-α Inhibitors: Tocilizumab (IL-6 blocker) and adalimumab (TNF-α inhibitor) have been explored for their potential to reduce chronic inflammation and vascular permeability in DR [22].
3.3. Retinitis Pigmentosa (RP)
3.3.1. Pro-Inflammatory Cytokines in RP
- TNF-α: TNF-α is upregulated in RP and promotes photoreceptor apoptosis by activating microglia and oxidative stress pathways [24].
- IL-6: IL-6 contributes to retinal gliosis, a process in which Müller cells undergo reactive changes, leading to secondary neuronal damage [25].
- IL-18: Elevated IL-18 levels in RP correlate with pro-apoptotic signaling and chronic inflammation [26].
3.3.2. Anti-Inflammatory Cytokines in RP
3.3.3. Therapeutic Implications in RP
- Neuroprotective Strategies: IL-10-based gene therapy has been explored to reduce neuroinflammation and slow photoreceptor degeneration [29].
- Microglial Modulation: Colony-stimulating factor 1 receptor (CSF1R) inhibitors reduce microglial activation and inflammation in RP models [31].
- Gene Therapy: CRISPR/Cas9-based cytokine modulation is being investigated to correct inflammatory imbalances at the genetic level [32].
- TNF-α Inhibitors: Adalimumab, as a TNF-α blocker, has been suggested as a potential therapy to reduce neuroinflammation and photoreceptor apoptosis in RP, though more clinical studies are needed [30].
4. Therapeutic Strategies Targeting Cytokines in Retinal Degenerative Diseases
- Cytokine inhibitors, which directly block pro-inflammatory cytokines.
- Microglial and immune cell modulation, targeting key regulators of inflammation.
- Gene therapy for cytokine regulation, addressing cytokine imbalances at a genetic level.
- Combination therapies, integrating multiple approaches for enhanced efficacy.
4.1. Cytokine Inhibitors
4.1.1. TNF-α Inhibitors
- Adalimumab and infliximab are monoclonal antibodies that neutralize TNF-α, reducing inflammatory responses in diabetic retinopathy and uveitic macular edema [1].
- Etanercept, a TNF receptor fusion protein, has been investigated for its ability to reduce neuroinflammation and microglial activation in RP [2].
4.1.2. IL-6 Inhibitors
4.1.3. IL-1β Inhibitors
- Canakinumab, an IL-1β monoclonal antibody, has demonstrated anti-inflammatory effects in experimental models of AMD and DR [6].
- Anakinra, an IL-1 receptor antagonist, has been tested for its protective effects on retinal endothelial cells [7].
4.2. Modulation of Microglial and Immune Cell Activity
4.2.1. CSF1R Inhibitors
4.2.2. Macrophage Polarization Therapy
- IL-4 and IL-13 therapies have been shown to drive M2 macrophage polarization, enhancing neuroprotection in AMD and RP [11].
4.3. Gene Therapy for Cytokine Modulation
4.3.1. Gene Silencing of Pro-Inflammatory Cytokines
4.3.2. Gene Delivery of Anti-Inflammatory Cytokines
- AAV-mediated IL-10 gene therapy has been tested for reducing inflammation in AMD and DR [14].
- TGF-β gene therapy is being investigated for controlling subretinal fibrosis in advanced AMD [15].
4.4. Combination Therapies: Targeting Multiple Pathways
4.4.1. Anti-VEGF + Cytokine Inhibitors
- Anti-VEGF (e.g., aflibercept) + TNF-α inhibitors (e.g., adalimumab) may provide superior control of inflammation and vascular leakage in AMD and DR [16].
4.4.2. Anti-Inflammatory Cytokines + Microglial Modulation
- IL-10 therapy + CSF1R inhibitors have been suggested for sustained neuroprotection in RP and AMD [19].
4.4.3. Personalized Cytokine Therapy
4.5. Future Perspectives and Challenges
- Optimizing drug delivery: Intravitreal administration limits systemic side effects but requires repeated injections.
- Long-term safety: Suppressing inflammation may lead to increased infection risk or altered immune responses.
- Identifying patient subgroups: Not all patients respond equally to cytokine inhibition, highlighting the need for personalized medicine approaches.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.G.; Klein, R.; Cheng, C.Y.; Wong, T.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob. Health 2014, 2, e106–e116. [Google Scholar] [CrossRef] [PubMed]
- Ambati, J.; Atkinson, J.P.; Gelfand, B.D. Immunology of age-related macular degeneration. Nat. Rev. Immunol. 2013, 13, 438–451. [Google Scholar] [CrossRef]
- Karlstetter, M.; Scholz, R.; Rutar, M.; Wong, W.T.; Provis, J.M.; Langmann, T. Retinal microglia: Just bystander or target for therapy? Prog Retin Eye Res. 2015, 45, 30–57. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Chen, M.; Forrester, J.V. Para-inflammation in the aging retina. Prog. Retin. Eye Res. 2009, 28, 348–368. [Google Scholar] [CrossRef]
- Seddon, J.M.; Gensler, G.; Milton, R.C.; Klein, M.L.; Rifai, N. Association between C-reactive protein and age-related macular degeneration. JAMA 2004, 291, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Nagineni, C.N.; Kommineni, V.K.; William, A.; Detrick, B.; Hooks, J.J. Regulation of VEGF expression in human retinal cells by cytokines: Implications for the role of inflammation in age-related macular degeneration. J. Cell Physiol. 2012, 227, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Boyd, Z.S.; Kriatchko, A.; Yang, J.; Agarwal, N.; Wax, M.B.; Patil, R.V. Interleukin-10 receptor signaling through STAT-3 regulates the apoptosis of retinal ganglion cells in response to stress. Invest. Ophthalmol. Vis. Sci. 2003, 44, 5206–5211. [Google Scholar] [CrossRef] [PubMed]
- Hageman, G.S.; Luthert, P.J.; Chong, N.V.; Johnson, L.V.; Anderson, D.H.; Mullins, R.F. An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog. Retin. Eye Res. 2001, 20, 705–732. [Google Scholar] [CrossRef]
- Ferrington, D.A.; Sinha, D.; Kaarniranta, K. Deficient autophagy in RPE: A contributing factor in age-related macular degeneration? Autophagy 2016, 12, 1930–1932. [Google Scholar]
- Parmeggiani, F.; Sato, G.; De Nadai, K.; RRomano, M.; Binotto, A.; Costagliola, C. Clinical and rehabilitative management of retinitis pigmentosa: Up-to-date. Curr. Genom. 2012, 12, 250–259. [Google Scholar]
- Rivera, J.C.; Sitaras, N.; Noueihed, B.; Hamel, D.; Madaan, A.; Zhou, T.; Honoré, J.C.; Quiniou, C.; Joyal, J.S.; Hardy, P.; et al. Microglia and interleukin-1β in ischemic retinopathy elicit microvascular degeneration through neuronal semaphorin-3A. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 1881–1891. [Google Scholar] [CrossRef]
- Antonetti, D.A.; Klein, R.; Gardner, T.W. Diabetic retinopathy. N. Engl. J. Med. 2012, 366, 1227–1239. [Google Scholar] [CrossRef] [PubMed]
- Roche, S.L.; Wyse-Jackson, A.C.; Gómez-Vicente, V.; Lax, P.; Ruiz-Lopez, A.M.; Byrne, A.M.; Cuenca, N.; Cotter, T.G. Progesterone attenuates microglial-driven retinal degeneration and stimulates protective fractalkine-CX3CR1 signaling. PLoS ONE 2016, 11, e0165197. [Google Scholar] [CrossRef]
- Campochiaro, P.A. Ocular neovascularization. J. Mol. Med. 2013, 91, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Xue, K.; MacLaren, R.E. Gene therapy for retinal diseases. Eye 2020, 34, 1671–1676. [Google Scholar]
- Bosco, A.; Romero, C.O.; Ambati, B.K. Microglial modulation as a therapeutic strategy in retinal degeneration. Neurotherapeutics 2021, 18, 1136–1152. [Google Scholar]
- Chen, Y.; Xia, Q.; Zeng, Y.; Zhang, Y.; Zhang, M. Regulations of Retinal Inflammation: Focusing on Müller Glia. Front. Cell Dev. Biol. 2022, 10, 898652. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pinilla, I.; Maneu, V.; Campello, L.; Fernández-Sánchez, L.; Martínez-Gil, N.; Kutsyr, O.; Sánchez-Sáez, X.; Sánchez-Castillo, C.; Lax, P.; Cuenca, N. Inherited Retinal Dystrophies: Role of Oxidative Stress and Inflammation in Their Physiopathology and Therapeutic Implications. Antioxidants 2022, 11, 1086. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, L.; Hou, C.; Yan, N. Neuroinflammation in retinitis pigmentosa: Therapies targeting the innate immune system. Front. Immunol. 2022, 13, 1059947. [Google Scholar] [CrossRef]
- Yang, P.; Mustafi, D.; Pepple, K.L. Immunology of Retinitis Pigmentosa and Gene Therapy-Associated Uveitis. Cold Spring Harb. Perspect. Med. 2024, 14, a041305. [Google Scholar] [CrossRef]
- Mori, T.; Nagaraj, N.R.; Surico, P.L.; Zhou, W.; Parmar, U.P.S.; D’Esposito, F.; Gagliano, C.; Musa, M.; Zeppieri, M. The therapeutic potential of targeting Oncostatin M and the interleukin-6 family in retinal diseases: A comprehensive review. Open Life Sci. 2024, 19, 20221023. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, J.; Fan, W.; Liu, B.; Pu, N.; Wu, H.; Xue, R.; Li, S.; Song, Z.; Tao, Y. Encapsulated cell technology: Delivering cytokines to treat posterior ocular diseases. Pharmacol. Res. 2024, 203, 107159. [Google Scholar] [CrossRef] [PubMed]
- Zur Bonsen, L.S.; Schulze, D.; Künzel, S.E.; Rübsam, A.; Pleyer, U.; Pohlmann, D. Long-term effects of tocilizumab on retinal and choroidal inflammation in Birdshot uveitis. J. Ophthalmic Inflamm. Infect. 2024, 14, 61. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, J.; Kamoi, K.; Zong, Y.; Yang, M.; Zou, Y.; Ohno-Matsui, K. Evaluating tocilizumab safety and immunomodulatory effects under ocular HTLV-1 infection in vitro. Int. Immunopharmacol. 2024, 137, 112460. [Google Scholar] [CrossRef] [PubMed]
- Picard, E.; Youale, J.; Hyman, M.J.; Xie, E.; Achiedo, S.; Kaufmann, G.T.; Moir, J.; Daruich, A.; Crisanti, P.; Torriglia, A.; et al. Glyburide confers neuroprotection against age-related macular degeneration (AMD). Transl. Res. 2024, 272, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Ji, J.; Yao, K.; Fu, Q. Regenerative treatment of ophthalmic diseases with stem cells: Principles, progress, and challenges. Adv. Ophthalmol. Pract. Res. 2024, 4, 52–64. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Confalonieri, F.; La Rosa, A.; Ottonelli, G.; Barone, G.; Ferraro, V.; Di Maria, A.; Romano, M.; Randazzo, A.; Vallejo-Garcia, J.L.; Vinciguerra, P.; et al. Retinitis Pigmentosa and Therapeutic Approaches: A Systematic Review. J. Clin. Med. 2024, 13, 4680. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rosenfeld, P.J.; Brown, D.M.; Heier, J.S.; Boyer, D.S.; Kaiser, P.K.; Chung, C.Y.; Kim, R.Y. Ranibizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 2006, 355, 1419–1431. [Google Scholar] [CrossRef]
- Mirshahi, A.; Hoehn, R.; Lorenz, K.; Kramann, C.; Baatz, H. Anti-tumor necrosis factor alpha for retinal diseases: Current knowledge and future concepts. J. Ophthalmic. Vis. Res. 2012, 7, 39–44. [Google Scholar]
- Rana, T.; Kotla, P.; Fullard, R.; Gorbatyuk, M. TNFa knockdown in the retina promotes cone survival in a mouse model of autosomal dominant retinitis pigmentosa. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 92–102. [Google Scholar] [CrossRef]
- Di Pierdomenico, J.; García-Ayuso, D.; Agudo-Barriuso, M.; Vidal-Sanz, M.; Villegas-Pérez, M.P. Role of microglial cells in photoreceptor degeneration. Neural Regen. Res. 2019, 14, 1186–1190. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Drag, S.; Dotiwala, F.; Upadhyay, A.K. Gene Therapy for Retinal Degenerative Diseases: Progress, Challenges, and Future Directions. Invest. Ophthalmol. Vis. Sci. 2023, 64, 39. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Therapeutic Strategy | Target Cytokine(s) | Disease(s) | Mechanism of Action | Potential Treatment Example |
---|---|---|---|---|
Cytokine Inhibitors | Directly blocks pro-inflammatory cytokines | |||
TNF-α Inhibitors | TNF-α | AMD, DR, RP | Neutralizes TNF-α, reducing inflammation | Adalimumab, Infliximab, Etanercept |
IL-6 Inhibitors | IL-6 | AMD, DR | Blocks IL-6, reducing inflammation and vascular leakage | Tocilizumab, Siltuximab |
IL-1β Inhibitors | IL-1β | AMD, DR | Blocks IL-1β, reducing inflammasome activation and apoptosis | Canakinumab, Anakinra |
Microglial/Immune Cell Modulation | Modulates microglial and immune cell activity to shift towards a neuroprotective phenotype | |||
CSF1R Inhibitors | Indirect (via microglia) | RP | Inhibits CSF1R, reducing microglial overactivation | Pexidartinib, PLX5622 |
Macrophage Polarization Therapy | Indirect (via macrophages) | AMD, RP | Promotes M2 macrophage polarization, reducing inflammation and promoting tissue repair | IL-4, IL-13 |
Gene Therapy | Varies | AMD, DR, RP | Alters cytokine expression at a genetic level | AAV-mediated IL-10, TGF-β gene therapy, CRISPR/Cas9-based TNF-α silencing |
Anti-VEGF Therapy | VEGF | AMD, DR | Blocks VEGF, reducing neovascularization | Ranibizumab, Aflibercept, Bevacizumab, Faricimab |
Corticosteroids | Multiple | DR | Reduces inflammation | Dexamethasone, Triamcinolone |
Combination Therapies | Multiple | AMD, DR, RP | Combines multiple approaches for enhanced efficacy | Anti-VEGF + cytokine inhibitors, IL-10 therapy + CSF1R inhibitors |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siqueira, R.C.; Brandão, C.C. The Role of Cytokines in Degenerative Retinal Diseases: A Comprehensive Review. Biomedicines 2025, 13, 1724. https://doi.org/10.3390/biomedicines13071724
Siqueira RC, Brandão CC. The Role of Cytokines in Degenerative Retinal Diseases: A Comprehensive Review. Biomedicines. 2025; 13(7):1724. https://doi.org/10.3390/biomedicines13071724
Chicago/Turabian StyleSiqueira, Rubens Camargo, and Cinara Cássia Brandão. 2025. "The Role of Cytokines in Degenerative Retinal Diseases: A Comprehensive Review" Biomedicines 13, no. 7: 1724. https://doi.org/10.3390/biomedicines13071724
APA StyleSiqueira, R. C., & Brandão, C. C. (2025). The Role of Cytokines in Degenerative Retinal Diseases: A Comprehensive Review. Biomedicines, 13(7), 1724. https://doi.org/10.3390/biomedicines13071724