Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (515)

Search Parameters:
Keywords = AgNWs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6034 KB  
Article
Zircon U-Pb Age, Geochemical Characteristics and Geological Significance of Diabase in the Yanlinsi Gold Deposit, Northeastern Hunan Province
by Chao Zhou, Ji Sun, Rong Xiao, Wen Lu, Zhengyong Meng, Shimin Tan, Wei Peng and Enbo Tu
Minerals 2025, 15(11), 1190; https://doi.org/10.3390/min15111190 - 13 Nov 2025
Abstract
The Yanlinsi gold deposit, located in the middle section of the Jiangnan Orogenic Belt, is one of the typical gold deposits in northeastern Hunan Province. Diabase dikes are exposed by underground workings and drill holes in the mining area. The dikes strike NW [...] Read more.
The Yanlinsi gold deposit, located in the middle section of the Jiangnan Orogenic Belt, is one of the typical gold deposits in northeastern Hunan Province. Diabase dikes are exposed by underground workings and drill holes in the mining area. The dikes strike NW and cut the NE-trending gold ore body. To investigate the petrogenetic age, characteristics of the magmatic source area, and tectonic setting of the diabase dikes in the Yanlinsi gold mining area, northeastern Hunan, and to determine the mineralization age of the deposit, in this paper, diabase dike LA-ICP-MS zircon U-Pb dating, whole-rock geochemistry, and gold-bearing quartz vein LA-ICP-MS zircon U-Pb dating were studied. The results of LA-ICP-MS zircon U-Pb dating indicate that the diabase was emplaced at an age of 219.5 Ma, belonging to the late Indosinian. The investigated diabase dikes are characterized by low SiO2 (43.68%–46.55%), high MgO (7.78%–9.84%), and high Mg# (65.0–68.7) values, belonging to the alkaline basalt series with high potassium. The chondrite-normalized REEs patterns show highly fractionated LREEs and HREEs ((La/Yb)N = 11.21–14.82), and the primitive mantle-normalized spider patterns show enrichment in large ion lithophile elements (e.g., Rb, Ba, K and Sr) and relative depletion in high field strength elements (e.g., Nb, Ta, and P), similar to those of ocean island-like basalt (OIB). Rock geochemical characteristics indicate that the magma of the Yanlinsi diabase was formed by partial melting of the enriched mantle (EM II), with the source region being spinel-garnet lherzolite. The degree of partial melting was approximately 10%–15%, and the assimilation and contamination with continental crustal materials were weak. Meanwhile, weak fractional crystallization of olivine, clinopyroxene, and apatite occurred during the magma evolution process. On the basis of a synthesis of previous research results, it is concluded that the Yanlinsi diabase formed in an extensional tectonic setting after intracontinental collisional orogeny. The LA-ICP-MS U-Pb age of hydrothermal zircons from quartz veins in the main mineralization stage of the Yanlinsi gold deposit is 421.9 ± 1.5 Ma. Combined with the cross-cutting relationships between mafic dikes and gold veins (ore bodies), it is determined that the main mineralization stage of the deposit formed during the Caledonian Period. Full article
(This article belongs to the Special Issue Role of Granitic Magmas in Porphyry, Epithermal, and Skarn Deposits)
Show Figures

Figure 1

12 pages, 239 KB  
Article
Pelvic Organ Prolapse-Health-Preserving Attitudes According to Sociodemographic Factors
by Aleksandra Zaborowska, Katarzyna Tomczyk, Małgorzata Kampioni and Paweł Rzymski
J. Clin. Med. 2025, 14(21), 7863; https://doi.org/10.3390/jcm14217863 - 5 Nov 2025
Viewed by 228
Abstract
Objectives: Pelvic organ prolapse (POP) disorders are a significant problem with a society-wide dimension, affecting the quality of life of many women around the world. The purpose of this study is to assess the influence of sociodemographic factors on health-preserving behaviors in [...] Read more.
Objectives: Pelvic organ prolapse (POP) disorders are a significant problem with a society-wide dimension, affecting the quality of life of many women around the world. The purpose of this study is to assess the influence of sociodemographic factors on health-preserving behaviors in relation to pelvic organ prolapse in women of reproductive age. Method: The survey was conducted using a questionnaire made available electronically and a paper questionnaire distributed to female patients of the Gynecology and Obstetrics Clinical Hospital of the Karol Marcinkowski Medical University in Poznan. In total, 160 women aged 15–49 years voluntarily participated in the study. The distribution of variables was assessed using the Shapiro–Wilk test. The Mann–Whitney U and Kruskal–Wallis ANOVA tests were used for comparisons between groups. Comparisons between assessment scores and self-assessment of knowledge were made using Wilcoxon’s paired rank order test and the Chi2 NW (highest reliability) test. A p-value < 0.05 was considered statistically significant. Results: The level of knowledge about POP prevention and conservative treatment methods is low. The group with a higher level of knowledge was characterized by younger age, higher education, and living in areas with a large population. Conclusions: The results suggest only a partial understanding of the topic of pelvic organ prolapse, while lacking full awareness of prevention. Full article
(This article belongs to the Section Obstetrics & Gynecology)
18 pages, 2072 KB  
Article
An Experimental Program of Adapted Physical Activity in the Form of Nordic Walking in the Recovery Process of People with Schizophrenia (Preliminary Report)
by Anna Zwierzchowska, Barbara Rosołek, Aleksandra Bula-Nagły, Ryszard Grzywocz, Diana Celebańska, Aneta Gutowska and Adam Maszczyk
Brain Sci. 2025, 15(11), 1189; https://doi.org/10.3390/brainsci15111189 - 3 Nov 2025
Viewed by 480
Abstract
Background: Schizophrenia is a complex psychiatric disorder that requires both pharmacological and behavioral treatment and is often accompanied by multimorbidity. Physical activity supports overall health and plays an important role in preventing and managing both somatic and mental disorders. This study aimed to [...] Read more.
Background: Schizophrenia is a complex psychiatric disorder that requires both pharmacological and behavioral treatment and is often accompanied by multimorbidity. Physical activity supports overall health and plays an important role in preventing and managing both somatic and mental disorders. This study aimed to evaluate the impact of an Adapted Physical Activity program using Nordic Walking (AAF-NW) on the quality of life of patients with schizophrenia, depending on the number of steps taken during an eight-week intervention, and to assess its influence on body composition and posture. Methods: A prospective, single-center pilot study was conducted using a pre–post experimental design and direct participatory observation. Eighteen patients from a psychiatric hospital (16 men, 2 women; mean age 43.9 years) completed the intervention. Quality of life (WHOQOL-BREF), musculoskeletal pain (Nordic Musculoskeletal Questionnaire), and subjective exercise intensity (Borg scale, 6–20) were assessed. Measurements were taken before and after the program. All continuous variables (step counts, anthropometric measures, and WHOQOL scores) were tested for normality using the Shapiro–Wilk test and visual inspection of histograms and Q–Q plots. Depending on distribution, parametric or non-parametric tests were applied, with results quantified using appropriate test statistics, effect sizes, and p-values to ensure methodological rigor and transparency. Results: No systematic increase in the number of steps was observed during the training period. A non-significant improvement in quality of life was noted, along with significant reductions in body weight and waist circumference. Conclusions: Regular, structured AAF-NW group activities may potentially support the rehabilitation and treatment process in psychiatric hospitals when implemented on a continuous basis. Although improvements were observed, the findings are exploratory and should be interpreted with caution. Further studies on larger, more homogeneous samples are needed to confirm these preliminary results. Full article
Show Figures

Figure 1

20 pages, 11136 KB  
Article
Genesis and Timing of Low-Sulphide Gold–Quartz Mineralization of the Upryamoye Ore Field, Western Chukotka
by Ludmila Salete Canhimbue, Andrey Tarasenko, Elena Vatrushkina, Irina Latysheva and Afanasii Telnov
Minerals 2025, 15(11), 1130; https://doi.org/10.3390/min15111130 - 29 Oct 2025
Viewed by 235
Abstract
The Upryamoye ore field is located in the Chukotka metallogenic belt in Northeast Russia. The orebodies are hosted within Late Jurassic–Early Cretaceous greenschist-facies metamorphosed rocks and structurally controlled by NW-trending fold-and-thrust dislocations. Based on geological exploration, petrographic, mineralogical, and geochronological studies, new data [...] Read more.
The Upryamoye ore field is located in the Chukotka metallogenic belt in Northeast Russia. The orebodies are hosted within Late Jurassic–Early Cretaceous greenschist-facies metamorphosed rocks and structurally controlled by NW-trending fold-and-thrust dislocations. Based on geological exploration, petrographic, mineralogical, and geochronological studies, new data on the geological structure and composition of gold–quartz mineralization of the Upryamoye ore field are presented. Optical and scanning microscopy were used to study the lithological features of the host rocks and determine the ore textures and the morphology and internal structure of native gold, auriferous pyrite, and arsenopyrite. Qualitative and quantitative characterization of the ore minerals was carried out using SEM-EDS and EPMA. To determine the age of the gold mineralization, Re-Os dating of arsenopyrite and U-Th/He dating of pyrite were performed. The results show that the orebodies comprise carbonate–quartz and sulphide–carbonate–quartz saddle reef veins in both the fold hinge and limbs, as well as mineralized shatter zones and mylonite zones that trace thrust faults. The main ore minerals are arsenopyrite and pyrite, associated with minor amounts of galena, sphalerite, chalcopyrite, tetrahedrite, and bournonite. Native gold is distributed extremely unevenly, forming thin and finely dispersed inclusions in pyrite and arsenopyrite. U-Th/He isotopic analyses of auriferous pyrites suggest that gold mineralization in the Upryamoye ore field occurred at 123 ± 4 Ma. The data obtained by Re–Os dating of auriferous arsenopyrite are inconsistent with direct geological observations but indicate that Os in the arsenopyrite was derived from the crustal source. According to a number of characteristic features of mineralization, the Upryamoye ore field is attributed to a metamorphic genetic type of orogenic low-sulphide gold–quartz deposits. The ore-forming process was long and multi-stage, occurring during the final collisional phase and the beginning of the extensional phase of the Chukotka orogen. Full article
Show Figures

Figure 1

18 pages, 10644 KB  
Article
Synergistic Integration of Polypyrrole, Graphene Oxide, and Silver Nanowires into Flexible Polymeric Films for EMI Shielding Applications
by Brankica Gajić, Marija Radoičić, Muhammad Yasir, Warda Saeed, Silvester Bolka, Blaž Nardin, Jelena Potočnik, Danica Bajuk-Bogdanović, Gordana Ćirić-Marjanović, Zoran Šaponjić and Svetlana Jovanović
Molecules 2025, 30(21), 4221; https://doi.org/10.3390/molecules30214221 - 29 Oct 2025
Viewed by 410
Abstract
The remarkable growth of high-frequency electronic systems has raised concerns about electromagnetic interference (EMI), emphasizing the need for lightweight and efficient shielding materials. In this study, ternary composites based on polypyrrole (PPy), graphene oxide (GO), and silver nanowires (AgNWs) were synthesized through chemical [...] Read more.
The remarkable growth of high-frequency electronic systems has raised concerns about electromagnetic interference (EMI), emphasizing the need for lightweight and efficient shielding materials. In this study, ternary composites based on polypyrrole (PPy), graphene oxide (GO), and silver nanowires (AgNWs) were synthesized through chemical oxidative polymerization of pyrrole monomer and embedded into polycaprolactone (PCL) matrices to create flexible films. Structural and morphological analyses confirmed the successful incorporation of all components, with scanning electron microscopy showing granular PPy, sheet-like GO, and fibrous AgNWs, while spectroscopic studies indicated strong interfacial interactions without damaging the PPy backbone. Thermomechanical analysis revealed that GO increased stiffness and defined the glass transition, whereas AgNWs improved toughness and energy dissipation; their combined use resulted in balanced properties. EMI shielding effectiveness (SE) was tested in the X-band (8–12 GHz). Pure PPy exhibited poor shielding ability, while the addition of GO and AgNWs significantly enhanced performance. The highest EMI SE values were observed in PPy/GO–AgNWs composites, with an average SE of 16.05 dB at 20 wt% of the composite in the PCL matrix, equivalent to about 84.4% attenuation of incident waves. These results demonstrate that the synergistic integration of GO and AgNWs into PPy matrices enables the creation of lightweight, flexible films with advanced EMI shielding properties, showing great potential for next-generation electronic and aerospace applications. Full article
(This article belongs to the Special Issue Nanoparticles for Environmental Applications)
Show Figures

Figure 1

25 pages, 8162 KB  
Article
Genesis of the Laoliwan Ag-Pb-Zn Deposit, Southern Margin of the North China Craton, China: Constrained by C-H-O-S-Pb Isotopes and Sulfide Rb-Sr Geochronology
by Jianling Xue, Zhenshan Pang, Hui Chen, Peichao Ding, Ruya Jia, Wen Tao, Ruifeng Shen, Banglu Zhang, Nini Mou and Yan Yang
Minerals 2025, 15(11), 1122; https://doi.org/10.3390/min15111122 - 28 Oct 2025
Viewed by 300
Abstract
The Laoliwan Ag-Pb-Zn deposit is situated in the southern margin of the North China Craton and represents the first large-scale Ag-Pb-Zn ore deposit discovered in the Xiaoshan District. Ag-Pb-Zn orebodies are structurally controlled by NW- and NNW-trending faults and primarily hosted within early [...] Read more.
The Laoliwan Ag-Pb-Zn deposit is situated in the southern margin of the North China Craton and represents the first large-scale Ag-Pb-Zn ore deposit discovered in the Xiaoshan District. Ag-Pb-Zn orebodies are structurally controlled by NW- and NNW-trending faults and primarily hosted within early Cretaceous granite porphyry intrusions. In this study, sulfide Rb-Sr isotope dating and C-H-O-S-Pb multiple isotope compositions were conducted to constrain the ore genesis of this deposit. The Rb-Sr isotopic data of sulfides yield a weighted mean isochron age of 132.8 ± 9.5 Ma and an initial 87Sr/86Sr ratio of 0.7115 ± 0.00016, indicating that mineralization occurred during the early Cretaceous and the ore-forming materials were derived from a crust–mantle mixed reservoir. The δ13 C (−1.3‰ to 0.7‰), δD (−96.3‰ to −86.7‰) and δ18OH2O (0.3‰ to 5.6‰) values suggest that the ore-forming fluids were mainly derived from magmatic water with a contribution of meteoric water during mineralization. The δ34S values of sulfides (+2.0‰ to +5.8‰) indicate a magmatic source. The Pb isotope data (206Pb/204Pb = 17.301–17.892, 207Pb/204Pb = 15.498–15.560, 208Pb/204Pb = 37.873–38.029) also reveal that the ore-forming materials originated from the lower crust with a small amount from the mantle source. By integrating geochronological and geochemical data, this study proposes that the Laoliwan Ag-Pb-Zn deposit is characterized as an epithermal deposit, with potential for the discovery of concealed porphyry Cu-Mo mineralization at depth. It is inferred to be related to tectonic–magmatic–fluid activities in the context of early Cretaceous lithospheric thinning along the southern margin of the North China Craton. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

21 pages, 1895 KB  
Article
Aerobic Training-Induced Changes in Sedentary Time, Non-Exercise Physical Activity, and Sleep Among Breast Cancer Survivors and Postmenopausal Women Without Cancer
by Francesco Sartor, Leandro Ditali, Giacomo Sirtori, Teresa Morano, Federica Lancia, Alessandra Di Marco, Pascal Izzicupo, Angela Di Baldassarre, Sabina Gallina, Mirko Pesce, Simona Grossi, Antonino Grassadonia, Anastasios Vamvakis, Ines Bucci, Giorgio Napolitano and Andrea Di Blasio
Healthcare 2025, 13(19), 2471; https://doi.org/10.3390/healthcare13192471 - 29 Sep 2025
Viewed by 609
Abstract
Background/Objectives: The 24 h activity cycle highlights the need to consider sedentary behavior (SED), non-exercise physical activity (NEPA), and sleep when introducing aerobic exercise. This study assessed changes in these components among breast cancer survivors (BCS) and non-oncologic menopausal women after a 3-month [...] Read more.
Background/Objectives: The 24 h activity cycle highlights the need to consider sedentary behavior (SED), non-exercise physical activity (NEPA), and sleep when introducing aerobic exercise. This study assessed changes in these components among breast cancer survivors (BCS) and non-oncologic menopausal women after a 3-month walking (W) or Nordic walking (NW) program. Methods: A total of 324 menopausal women participated: 156 non-oncologic (Meno), 102 BCS with natural menopause (BCS_Meno), and 66 BCS with medically induced menopause (BCS_Ind_Meno). Linear Mixed Effects (LME) modeling was applied. Age, BMI, hormonal therapy, cancer treatments, hypertension, sleep, and METs were included as covariates. Results: BCS_Meno and BCS_Ind_Meno had longer sleep durations at baseline (adj. diff.: +26.5 min/day, 95% CI 10.1 to 43.0; p = 0.002 and +25.7, 95% CI 6.7 to 44.6; p = 0.008). Sleep improved across all groups post-intervention (overall adj. effect = +17.4 min/day, 95% CI 4.8 to 30.0; p = 0.007). Higher sleep and METs were associated with reduced SED (sleep: β = −43.7 min/day per unit increase, −52.6 to −34.8; METs: β = −115.4, −126.4 to −104.4; both p < 0.001). A significant group × time interaction showed a decrease in SED in the BCS_Ind_Meno group (adj. diff. = −65.1 min/day, −102.8 to −27.4; p = 0.001). NEPA was negatively influenced by sleep (β = −8.7 min/day, −16.2 to −1.1, p = 0.024) and positively by METs (β = +121.1, 111.8 to 130.3; p < 0.001). NEPA increased only in BCS_Ind_Meno (adj. diff.: +70.6 min/day, 38.4 to 102.7; p < 0.001), not in BCS_Meno (+9.87, −18.7 to 38.4; p = 0.497). Conclusions: BCS_Ind_Meno showed the greatest benefits, with reduced SED, increased NEPA, and improved sleep. Sleep improved across all groups following aerobic interventions. Full article
Show Figures

Figure 1

12 pages, 286 KB  
Article
Differences in Physical Fitness According to Nutritional Status Among Rural Schoolchildren
by Miguel Alarcón-Rivera, María Gracia Jélvez Correa, Nayareth González Parada, Sebastián Aldana Rosales, Felipe Montecino-Rojas, Pablo Luna-Villouta, Exal Garcia-Carrillo, Héctor Fuentes-Barría, Raúl Aguilera-Eguía and Lissé Angarita-Davila
J. Funct. Morphol. Kinesiol. 2025, 10(4), 364; https://doi.org/10.3390/jfmk10040364 - 24 Sep 2025
Viewed by 565
Abstract
Background: Childhood overweight and obesity are increasing public health concerns globally, with a high prevalence in Chile, particularly in rural areas. Excess weight may impair physical fitness, affecting children’s overall health and development. Objectives: This study aimed to compare the physical fitness of [...] Read more.
Background: Childhood overweight and obesity are increasing public health concerns globally, with a high prevalence in Chile, particularly in rural areas. Excess weight may impair physical fitness, affecting children’s overall health and development. Objectives: This study aimed to compare the physical fitness of schoolchildren with normal weight (NW) and overweight/obesity (OW/OB) from a rural school in Maule, Chile. Methods: A total of 87 students (boys and girls, aged 9–14 years) were evaluated and classified into NW and OW/OB groups based on their body mass index. Physical fitness was assessed using the 6 min walk test (6MWT) for cardiovascular endurance, handgrip strength (HGS) and squat jump (SJ) for muscular strength, 20 m sprint for speed, and 4 × 10 m shuttle run for agility. Results: Significant differences were found between groups in most physical fitness components. The NW group covered 11.13% more distance in the 6MWT than the OW/OB group (p < 0.001; d = 1.28). NW children also performed better in the 20 m sprint (p = 0.023; d = 1.02) and the 4 × 10 m shuttle run (p < 0.001; d = 0.72). SJ was higher in the NW group (p = 0.004; d = 0.45). No significant differences were found in HGS (p = 0.893; d = 0.01). Conclusions: Children with normal weight demonstrated better physical fitness compared to their overweight or obese peers. These findings support the need for targeted strategies to prevent overweight and obesity in rural schoolchildren to improve physical health and functional capacities. Full article
(This article belongs to the Section Sports Medicine and Nutrition)
17 pages, 5184 KB  
Article
Preparation and Applications of Silver Nanowire-Polyurethane Flexible Sensor
by Jiangyin Shan, Jianhua Qian, Ling Lin, Mengrong Wei, Jingyue Xia and Lin Fu
Sensors 2025, 25(16), 5191; https://doi.org/10.3390/s25165191 - 21 Aug 2025
Cited by 1 | Viewed by 1143
Abstract
To expand the application of silver nanowires (AgNWs) in the field of flexible sensors, this study developed a stretchable flexible sensor based on thermoplastic polyurethane (TPU). Initially, the TPU nanofiber membrane was prepared by electrospinning. Subsequently, high-aspect-ratio AgNWs were synthesized via a one-step [...] Read more.
To expand the application of silver nanowires (AgNWs) in the field of flexible sensors, this study developed a stretchable flexible sensor based on thermoplastic polyurethane (TPU). Initially, the TPU nanofiber membrane was prepared by electrospinning. Subsequently, high-aspect-ratio AgNWs were synthesized via a one-step polyol reduction method. The AgNWs with the optimal aspect ratio were selected for the conductive layer and spray-coated onto the surface of the TPU nanofiber membrane. Another layer of TPU nanofiber membrane was then laminated on top, resulting in a flexible thin-film sensor with a “sandwich” structure. Through morphological, chemical structure, and crystallinity analyses, the primary factors influencing AgNWs’ growth were investigated. Performance tests revealed that the prepared AgNWs had an average length of approximately 130 μm, a diameter of about 80 nm, and an average aspect ratio exceeding 1500, with the highest being 1921. The obtained sensor exhibited a low initial resistance (26.7 Ω), high strain range (sensing, ε = 0–150%), high sensitivity (GF, over 19.21), fast response and recovery time (112 ms), and excellent conductivity (428 S/cm). Additionally, the sensor maintained stable resistance after 3000 stretching cycles at a strain range of 0–10%. The sensor could output stable and recognizable electrical signals, demonstrating significant potential for applications in motion monitoring, human–computer interaction, and healthcare fields. Full article
Show Figures

Graphical abstract

22 pages, 1833 KB  
Article
Age-Related Changes in Predictors of BMI in 6, 9 and 12-Year-Old Boys and Girls: The NW-CHILD Study
by Barry Gerber and Anita Elizabeth Pienaar
J. Funct. Morphol. Kinesiol. 2025, 10(3), 320; https://doi.org/10.3390/jfmk10030320 - 18 Aug 2025
Viewed by 985
Abstract
Background: Information on childhood body composition is critical to understanding children’s growth, development, and long-term health outcomes. BMI metrics, however, have several limitations for assessing and understanding changes in BMI. Therefore, understanding the influence of various body composition factors (covariates) that are [...] Read more.
Background: Information on childhood body composition is critical to understanding children’s growth, development, and long-term health outcomes. BMI metrics, however, have several limitations for assessing and understanding changes in BMI. Therefore, understanding the influence of various body composition factors (covariates) that are linked to, and influence, BMI over time in growing children is important. This study aims to determine sex differences in longitudinal changes in covariates of BMI from 6 to 13 years. Methods: Participants (N = 332, 160 boys 172 girls) from North West Province in South Africa were assessed longitudinally at the following three time-points during their primary years of schooling: Grade 1 (6–7 years); Grade 4 (9–10 years); and Grade 7 (12–13 years). Covariates included: stature (cm); body weight (kg); sub-scapular-, calf-, and triceps skinfolds (mm); body fat percentage (%), relaxed forearm, waist and mid-upper arm circumferences; percentage fat weight; and percentage muscle weight. Correlational analysis and multiple stepwise regression analysis in SPSS analyzed the significance of the contributions of the different covariates to changes in BMI from 6 to 12 years. Results: Different covariates influence BMI in boys and girls at different ages and the covariates also change over time in boys and girls. Weight had the strongest influence on the BMI of boys and girls, although the prediction value decreased over time. Weight and stature were consistently the strongest BMI predictors across all ages in boys. In girls, a broader range of variables influences BMI from a younger age, where slightly higher BMI correlations with fat-related variables emerged, and the percentage of fat weight distribution was a strong influential factor. These findings indicate a more in-depth analysis of BMI to determine sound intervention strategies. Full article
Show Figures

Figure 1

23 pages, 884 KB  
Article
Maternal BMI and Diet Quality Modulate Pregnancy Oxidative and Inflammatory Homeostasis
by Chiara Mandò, Chiara Novielli, Anna Maria Nuzzo, Francesca Parisi, Laura Moretti, Fabrizia Lisso, Alberto Revelli, Valeria M. Savasi, Arianna Laoreti, Gaia M. Anelli, Alessandro Rolfo and Irene Cetin
Nutrients 2025, 17(16), 2590; https://doi.org/10.3390/nu17162590 - 9 Aug 2025
Viewed by 1105
Abstract
Background/Objectives: Maternal nutrition and pregestational BMI are critical determinants of pregnancy outcomes. This prospective multicenter observational study investigated the interplay between prepregnancy BMI, dietary patterns, and oxidative/inflammatory status in 153 Italian healthy pregnant women with normal weight (NW), overweight (OW), or obesity (OB). [...] Read more.
Background/Objectives: Maternal nutrition and pregestational BMI are critical determinants of pregnancy outcomes. This prospective multicenter observational study investigated the interplay between prepregnancy BMI, dietary patterns, and oxidative/inflammatory status in 153 Italian healthy pregnant women with normal weight (NW), overweight (OW), or obesity (OB). Methods: Detailed clinical, biochemical, placental, and neonatal data were measured at third trimester and delivery. Dietary intake was assessed via a validated questionnaire, and dietary patterns were derived using principal component analysis. Results: OW and OB women had significantly higher levels of inflammatory (CRP, hepcidin) and oxidative stress biomarkers (DNA/RNA damage, catalase activity) than NW. Multivariate models confirmed independent associations between BMI and these biomarkers (CRP: β = 0.297, p = 0.000; hepcidin: β = 1.419, p = 0.006; DNA/RNA damage: β = 409.9, p = 0.000; catalase activity: β = 1.536, p = 0.000). Superoxide dismutase activity and total antioxidant capacity were not associated with BMI. Nutritional intake across BMI groups was largely suboptimal relative to national recommendations, with insufficient levels of polyunsaturated fats and key micronutrients. Four dietary patterns were identified, with adherence varying by BMI. A “prudent-style” pattern (high plant, low animal) was positively associated with gestational age (β = 0.243, p = 0.033) and inversely with neonatal head circumference (β = −0.414, p = 0.050). A “Western-like” pattern (high sugars, snacks, animal fats) was linked to reduced maternal ferritin (β = −2.093, p = 0.036) and increased neonatal head circumference (β = 0.403, p = 0.036). However, not all deviations from the “prudent-style” pattern were metabolically equivalent: while Pattern 3 (high-protein, carbohydrate) may offer partial protective effects, Pattern 4 (moderate protein/plant/sugar) displayed elements of nutritional imbalance with signs of placental inefficiency (β = −0.384, p = 0.023). Conclusions: These findings underscore the dual impact of maternal BMI and diet quality on oxidative-inflammatory balance and perinatal outcomes, supporting the need for early, individualized nutritional strategies in pregnancy. This is further emphasized by the variability in dietary adherence across BMI categories. Full article
Show Figures

Graphical abstract

29 pages, 9860 KB  
Article
The Source and Evolution of Ore-Forming Fluids in the Xiaobaihegou Fluorite Deposit, Altyn-Tagh Orogen, NW China: Constraints from Trace Element, Fluid Inclusion, and Isotope Studies
by Kang Chen, Wenlei Song, Yuanwei Wang, Long Zhang, Yongkang Jing, Yi Zhang, Yongbao Gao, Ming Liu, Nan Deng and Junwei Wu
Minerals 2025, 15(8), 840; https://doi.org/10.3390/min15080840 - 8 Aug 2025
Viewed by 702
Abstract
The Xiaobaihegou fluorite deposit is located in the southwest of the Altyn-Tagh Orogen, NW China. However, the provenance, thermodynamic properties, and enrichment mechanisms of the ore-forming fluids in this deposit remain unclear. Fluorite mineralization primarily occurs in the vicinity of the contact zone [...] Read more.
The Xiaobaihegou fluorite deposit is located in the southwest of the Altyn-Tagh Orogen, NW China. However, the provenance, thermodynamic properties, and enrichment mechanisms of the ore-forming fluids in this deposit remain unclear. Fluorite mineralization primarily occurs in the vicinity of the contact zone between the granite and the wall rocks. The zircon U-Pb age of the alkali-feldspar granite in the Xiaobaihegou fluorite deposit is 482.3 ± 4.1 Ma. The ore-hosting lithologies are mainly calcareous rock series of the Altyn Group. The ore bodies are controlled by NE-trending faults and consist primarily of veined, brecciated, massive, and banded ores. The ore mineral assemblage is primarily composed of calcite and fluorite. The rare earth element (REE) patterns of fluorite and calcite in the Xiaobaihegou deposit exhibit right-dipping LREE enrichment with distinct negative Eu anomalies, which closely resemble those of the alkali-feldspar granite. This similarity suggests that the REE distribution patterns of fluorite and calcite were likely inherited from the pluton. The ore-forming process can be divided into an early stage and a late stage. The massive ores formed in the early stage contain mainly gas-rich two-phase fluid inclusions and CO2-bearing three-phase inclusions, with homogenization temperatures ranging from 235 °C to 426 °C and salinities from 28.59% to 42.40% NaCl equivalent. In the late stage, brecciated and stockwork ores were formed. They host liquid-rich two-phase and gas-rich two-phase fluid inclusions, with homogenization temperatures ranging from 129 °C to 350 °C and salinities from 0.88% to 21.61% NaCl equivalent. The results of hydrogen and oxygen isotope studies indicate that the ore-forming fluids were derived from a mixture of magmatic–hydrothermal and meteoric water. Fluorite precipitation in the early stage was mainly due to the mixing of magmatic–hydrothermal solution and meteoric water, as well as a water–rock reaction. In the late stage, fluid mixing further occurred, resulting in a decrease in temperature and the formation of brecciated and stockwork ores. The 87Sr/86Sr and 143Nd/144Nd ratios of fluorite from the deposit range from 0.71033 to 0.71272 and 0.511946 to 0.512073, respectively, indicating that the ore-forming material originates from the crust. Based on the ore-forming characteristics, it is proposed that Ca may be primarily leached from the strata formation, while F may predominantly originate from magmatic–hydrothermal solutions. The formation of fluorite deposits is closely related to the transition of the Central Altyn-Tagh Block and Qaidam Block from a compressional orogenic environment to an extensional tectonic environment. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

39 pages, 8119 KB  
Article
Magmatic Redox Evolution and Porphyry–Skarn Transition in Multiphase Cu-Mo-W-Au Systems of the Eocene Tavşanlı Belt, NW Türkiye
by Hüseyin Kocatürk, Mustafa Kumral, Hüseyin Sendir, Mustafa Kaya, Robert A. Creaser and Amr Abdelnasser
Minerals 2025, 15(8), 792; https://doi.org/10.3390/min15080792 - 28 Jul 2025
Viewed by 991
Abstract
This study explores the magmatic and hydrothermal evolution of porphyry–skarn–transitional Cu-Mo-W-Au systems within the Nilüfer Mineralization Complex (NMC), located in the westernmost segment of the Eocene Tavşanlı Metallogenic Belt, NW Türkiye. Through integration of field data, whole-rock geochemistry, Re–Os molybdenite dating, and amphibole–biotite [...] Read more.
This study explores the magmatic and hydrothermal evolution of porphyry–skarn–transitional Cu-Mo-W-Au systems within the Nilüfer Mineralization Complex (NMC), located in the westernmost segment of the Eocene Tavşanlı Metallogenic Belt, NW Türkiye. Through integration of field data, whole-rock geochemistry, Re–Os molybdenite dating, and amphibole–biotite mineral chemistry, the petrogenetic controls on mineralization across four spatially associated mineralized regions (Kirazgedik, Güneybudaklar, Kozbudaklar, and Delice) were examined. The earliest and thermally most distinct phase is represented by the Kirazgedik porphyry system, characterized by high temperature (~930 °C), oxidized quartz monzodioritic intrusions emplaced at ~2.7 kbar. Rising fO2 and volatile enrichment during magma ascent facilitated structurally focused Cu-Mo mineralization. At Güneybudaklar, Re–Os geochronology yields an age of ~49.9 Ma, linking Mo- and W-rich mineralization to a transitional porphyry–skarn environment developed under moderately oxidized (ΔFMQ + 1.8 to +0.5) and hydrous (up to 7 wt.% H2O) magmatic conditions. Kozbudaklar represents a more reduced, volatile-poor skarn system, leading to Mo-enriched scheelite mineralization typical of late-stage W-skarns. The Delice system, developed at the contact of felsic cupolas and carbonates, records the broadest range of redox and fluid compositions. Mixed oxidized–reduced fluid signatures and intense fluid–rock interaction reflect complex, multistage fluid evolution involving both magmatic and external inputs. Geochemical and mineralogical trends—from increasing silica and Rb to decreasing Sr and V—trace a systematic evolution from mantle-derived to felsic, volatile-rich magmas. Structurally, mineralization is controlled by oblique fault zones that localize magma emplacement and hydrothermal flow. These findings support a unified genetic model in which porphyry and skarn mineralization styles evolved continuously from multiphase magmatic systems during syn-to-post-subduction processes, offering implications for exploration models in the Western Tethyan domain. Full article
Show Figures

Figure 1

37 pages, 22971 KB  
Article
Sedimentary Facies and Geochemical Signatures of the Khewra Sandstone: Reconstructing Cambrian Paleoclimates and Paleoweathering in the Salt Range, Pakistan
by Abdul Bari Qanit, Shahid Iqbal, Azharul Haq Kamran, Muhammad Idrees, Benjamin Sames and Michael Wagreich
Minerals 2025, 15(8), 789; https://doi.org/10.3390/min15080789 - 28 Jul 2025
Viewed by 3246
Abstract
Red sandstones of the Cambrian age are globally distributed and represent an important sedimentation phase during this critical time interval. Their sedimentology and geochemistry can provide key information about the sedimentation style, paleoclimatic conditions, and weathering trends during the Cambrian. In the Salt [...] Read more.
Red sandstones of the Cambrian age are globally distributed and represent an important sedimentation phase during this critical time interval. Their sedimentology and geochemistry can provide key information about the sedimentation style, paleoclimatic conditions, and weathering trends during the Cambrian. In the Salt Range of Pakistan, the Khewra Sandstone constitutes the Lower Cambrian strata and consists of red–maroon sandstones with minor siltstone and shale in the basal part. Cross-bedding, graded bedding, ripple marks, parallel laminations, load casts, ball and pillows, desiccation cracks, and bioturbation are the common sedimentary features of the formation. The sandstones are fine to medium to coarse-grained with subangular to subrounded morphology and display an overall coarsening upward trend. Petrographic analysis indicates that the sandstones are sub-arkose and sub-lithic arenites, and dolomite and calcite are common cementing materials. X-ray Diffraction (XRD) analysis indicates that the main minerals in the formation are quartz, feldspars, kaolinite, illite, mica, hematite, dolomite, and calcite. Geochemical analysis indicates that SiO2 is the major component at a range of 53.3 to 88% (averaging 70.4%), Al2O3 ranges from 3.1 to 19.2% (averaging 9.2%), CaO ranges from 0.4 to 25.3% (averaging 7.4%), K2O ranges from 1.2 to 7.4% (averaging 4.8%), MgO ranges from 0.2 to 7.4% (averaging 3.5%), and Na2O ranges from 0.1 to 0.9% (averaging 0.4%), respectively. The results of the combined proxies indicate that the sedimentation occurred in fluvial–deltaic settings under overall arid to semi-arid paleoclimatic conditions with poor to moderate chemical weathering. The Khewra Sandstone represents the red Cambrian sandstones on the NW Indian Plate margin of Gondwana and can be correlated with contemporaneous red sandstones in the USA, Europe, Africa, Iran, and Turkey (Türkiye). Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Graphical abstract

29 pages, 1609 KB  
Review
Recent Advances in Silver Nanowire-Based Transparent Conductive Films: From Synthesis to Applications
by Ji Li, Jun Luo and Yang Liu
Coatings 2025, 15(7), 858; https://doi.org/10.3390/coatings15070858 - 21 Jul 2025
Cited by 4 | Viewed by 4587
Abstract
Silver nanowire (AgNW)-based transparent conductive films are essential for flexible electronics due to their superior optoelectronic properties and mechanical flexibility. This review examines the characteristics and fabrication methods of AgNW thin films in detail. Among various fabrication techniques, the AgNW thin film produced [...] Read more.
Silver nanowire (AgNW)-based transparent conductive films are essential for flexible electronics due to their superior optoelectronic properties and mechanical flexibility. This review examines the characteristics and fabrication methods of AgNW thin films in detail. Among various fabrication techniques, the AgNW thin film produced by silk-screen printing exhibits the highest quality factor of 568.47, achieving 95.3% visible light transmittance of 95.3% and 13.6 Ω/sq sheet resistance. Ensuring the stability of AgNW films requires the deposition of protective layers through physical or chemical approaches. This review also systematically evaluates the different methods for preparing these protective layers, including their respective advantages and limitations. Furthermore, the review proposes strategies to enhance the conductivity, transparency, and flexibility of AgNW films. Finally, it discusses potential future applications and challenges, offering valuable insights for the development of next-generation flexible transparent electrodes. Full article
(This article belongs to the Special Issue Advanced Thin Films Technologies for Optics, Electronics, and Sensing)
Show Figures

Figure 1

Back to TopTop