Age-Related Changes in Predictors of BMI in 6, 9 and 12-Year-Old Boys and Girls: The NW-CHILD Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Design
2.2. Investigating Group and Procedures
2.3. Measurement Instruments and Apparatus
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Description | Abbreviation | Description |
BIA | Bioelectrical impedance analysis | Kg | Kilogram |
BMI | Body mass index | LMIC | Low- to middle-income country |
BMIz | Body mass index z-score | NWP | North-West Province |
CIRC | Circumference | MM | Millimeter |
CM | Centimeter | MUAC | Mid-upper arm circumference |
DBE | Department of Basic Education | NW-CHILD | North-West Child Study |
FM | Fat Weight | SF | Skinfolds |
FFM | Fat-free Weight | SES | Socio-economic status |
HREC | Health research ethics committee | WHO | Worl health organization |
ISAK | International society for the advancement of Kinanthropometry |
References
- WHO. Obesity and Overweight. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 1 March 2024).
- Lobstein, T.; Brinsden, H. Atlas of Childhood Obesity; World Obesity Federation: London, UK, 2019; Volume 211, p. 486. [Google Scholar]
- Pulgarón, E.R. Childhood obesity: A review of increased risk for physical and psychological comorbidities. Clin. Ther. 2013, 35, A18–A32. [Google Scholar] [CrossRef] [PubMed]
- Horesh, A.; Tsur, A.M.; Bardugo, A.; Twig, G. Adolescent and childhood obesity and excess morbidity and mortality in young adulthood—A systematic review. Curr. Obes. Rep. 2021, 10, 301–310. [Google Scholar] [CrossRef]
- Jebeile, H.; Cardel, M.I.; Kyle, T.K.; Jastreboff, A.M. Addressing psychosocial health in the treatment and care of adolescents with obesity. Obesity 2021, 29, 1413–1422. [Google Scholar] [CrossRef]
- Jebeile, H.; Kelly, A.S.; O’Malley, G.; Baur, L.A. Obesity in children and adolescents: Epidemiology, causes, assessment, and management. Lancet Diabetes Endocrinol. 2022, 10, 351–365. [Google Scholar] [CrossRef]
- Whitney, E.; Rolfes, S.R. Understanding Nutrition, 13th ed.; Wadsworth (W+R): Belmont, CA, USA, 2012; Volume 13, p. 424. [Google Scholar]
- McArdle, W.D.; Katch, F.I.; Katch, V.L. Exercise Physiology, Nutrition, Energy, and Human Performance, 7th ed.; Williams & Wilkins: Baltimore, MD, USA, 2010; p. 726. [Google Scholar]
- Mulasi, U.; Kuchnia, A.J.; Col, A.J.; Earthman, C.P. Bioimpedance at the bedside: Current applications, limitations, and opportunities. Nutr. Clin. Pract. 2015, 30, 180–193. [Google Scholar] [CrossRef] [PubMed]
- Adab, P.; Pallan, M.; Whincup, P.H. Is BMI the best measure of obesity. Br. Med. J. 2018, 360, k1274. [Google Scholar] [CrossRef]
- Aubrey, A. Step Aside BMI, Body Composition Tests Are on the Rise. Here’s What to Know. 2024. Available online: https://www.npr.org/sections/shots-health-news/2024/06/03/nx-s1-4973714/bmi-body-composition-scans-healthy-weight-muscle-fat (accessed on 3 June 2024).
- Wang, Y. Epidemiology of childhood obesity—Methodological aspects and guidelines: What is new? Int. J. Obes. 2004, 28, S21–S28. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.-C.; Pirlich, M.; et al. Bioelectrical impedance analysis-part II: Utilization in clinical practice. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef]
- Sergi, G.; De Rui, M.; Stubbs, B.; Verones, N.; Manzato, E. Measurement of lean body Weight using bioelectrical impedance analysis: A consideration of the pros and cons. Aging Clin. Exp. Res. 2017, 29, 591–597. [Google Scholar] [CrossRef]
- Feng, Q.; Bešević, J.; Conroy, M.; Omiyale, W.; Lacey, B.; Allen, N. Comparison of body composition measures assessed by bioelectrical impedance analysis versus dual-energy X-ray absorptiometry in the United Kingdom Biobank. Clin. Nutr. ESPEN 2024, 63, 214–225. [Google Scholar] [CrossRef]
- Khan, S.; Xanthakos, S.A.; Hornung, L.; Arce-Clachar, C.; Siegel, R.; Kalkwarf, H.J. Relative accuracy of bioelectrical impedance analysis for assessing body composition in children with severe obesity. J. Pediatr. Gastroenterol. Nutr. 2020, 70, e129–e135. [Google Scholar] [CrossRef]
- Rothman, K.J. BMI-related errors in the measurement of obesity. Int. J. Obes. 2008, 32, S56–S59. [Google Scholar] [CrossRef]
- Cole, T.J.; Faith, M.S.; Pietrobelli, A.; Heo, M. What is the best measure of adiposity change in growing children: BMI, BMI%, BMI z-score or BMI centile? Eur. J. Clin. Nutr. 2005, 59, 419–425. [Google Scholar] [CrossRef]
- Berkey, C.S.; Colditz, G.A. Adiposity in adolescents: Change in actual BMI works better than change in BMI z score for longitudinal studies. Ann. Epidemiol. 2007, 17, 44–50. [Google Scholar] [CrossRef]
- Paluch, R.A.; Epstein, L.H.; Roemmich, J.N. Comparison of methods to evaluate changes in relative body Weight index in pediatric weight control. Am. J. Hum. Bio 2007, 19, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Kolotourou, M.; Radley, D.; Chadwick, P.; Smith, L.; Orfanos, S.; Kapetanakis, V.; Singhal, A.; Cole, T.J.; Sacher, P.M. Is BMI alone a sufficient outcome to evaluate interventions for child obesity? Child. Obes. 2013, 9, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Freedman, D.S.; Goodwin Davies, A.J.; Phan, T.L.T.; Cole, F.S.; Pajor, N.; Rao, S.; Eneli, I.; Kompaniyets, L.; Lange, S.J.; Christakis, D.A.; et al. Measuring BMI change among children and adolescents. Pediatr. Obes. 2022, 17, e12889. [Google Scholar] [CrossRef] [PubMed]
- Obeso, A.; Drouard, G.; Palviainen, T.; Wang, X.; Ollikainen, M.; Silventoinen, K.; Kaprio, J. Proteomic associations with fluctuation and long-term changes in BMI: A 40-year follow-up study. Diabetes Obes. Metab. 2025, 27, 4192–4202. [Google Scholar] [CrossRef]
- Sattar, A.; Baig, S.; Rehman, N.; Bashir, B. Factors affecting BMI: Assessment of the effect of sociodemographic factors on BMI In the population of Ghulam Mohammad Abad Faisalabad. Prof. Med. J. 2013, 20, 956–964. [Google Scholar] [CrossRef]
- WHO. Child Growth Standards. 2009. Available online: https://www.who.int/tools/child-growth-standards/standards/triceps-skinfold-for-age (accessed on 15 July 2025).
- Werneck, A.O.; Silva, D.R.; Oyeyemi, A.L.; Fernandes, R.A.; Romanzini, M.; Cyrino, E.S.; de Arruda, M.; Ronque, E.R. Tracking of physical fitness in elementary school children: The role of changes in body fat. Am. J. Hum. Biol. 2019, 31, e23221. [Google Scholar] [CrossRef]
- Cossio-Bolaños, M.; Gómez-Campos, R.; Campos, L.F.C.C.; Sulla-Torres, J.; Urra-Albornoz, C.; Lopes, V.P. Muscle strength and body fat percentage in children and adolescents from the Maule region, Chile. Arch. Argent. Pediatr. 2020, 118, 320–326. [Google Scholar]
- Lalucci, M.P.D.P.S.; de Souza Marques, D.C.; Santos, I.C.; Caitano, J.Z.; Silva, B.F.; Valdés-Badilla, P.; Branco, B.H.M. Interrelationship among body Weight index, body composition, and biochemical profiles of overweight adolescents in south of Brazil: A cross-sectional study. Nutr. Clínica Y Dietética Hosp. 2023, 43, 31–38. [Google Scholar]
- Mast, M.; Körtzinger, I.; König, E.; Müller, M.J. Gender differences in fat Weight of 5–7-year-old children. Int. J. Obes. 1998, 22, 878–884. [Google Scholar] [CrossRef]
- Haywood, X.; Pienaar, A.E. Long-Term Influences of Stunting, Being Underweight, and Thinness on the Academic Performance of Primary School Girls: The NW-CHILD Study. Int. J. Environ. Res. Public Health 2001, 18, 8973. [Google Scholar] [CrossRef]
- Pienaar, A.E. Prevalence of overweight and obesity among primary school children in a developing country: NW-CHILD longitudinal data of 6–9-yr-old children in South Africa. BMC Obes. 2015, 2, 2. [Google Scholar] [CrossRef]
- Lohman, T.G. Advances in Body Composition Assessment; Human Kinetics: Champaign, IL, USA, 1992. [Google Scholar]
- Steward, A.D.; Marfell-Jones, M.; Olds, T.; de Ridder, H. International Standards for Anthropometric Assessment; International Society for Advancement of Kinanthropometry: Glasgow, Scotland; National Library of Australia: Canberra, Australia, 2011; 137p. [Google Scholar]
- Omron. Available online: https://www.omron-healthcare.com/en/products/weightmanagement (accessed on 28 May 2025).
- Statsoft. Statistica for Windows: General Convention and Statistics; Statsoft: Tilsa, OK, USA, 2024. [Google Scholar]
- IBM Corp. IBM SPSS Statistics for Windows; IBM Co.: Armonk, NY, USA, 2022. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Brtková, M.; Bakalár, P.; Matúš, I.; Hančová, M.; Rimárová, K. Body composition of undergraduates—comparison of four different measurement methods. Phys. Act. Rev. 2014, 2, 42–52. [Google Scholar]
- Cochrane, T.; Davey, R.C.; de Castella, F.R. Anthropometric standards for Australian primary school children: Towards a system for monitoring and supporting children’s development. J. Sci. Med. Sport 2017, 20, 284–289. [Google Scholar] [CrossRef]
- Pretorius, S.S.; Neophytou, N.; Watson, E.D. Anthropometric profiles of 8–11-year-old children from a low-income setting in South Africa. BMC Public Health 2019, 19, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Pelemiš, V.; Macura, M.; Branković, P. Sex differences in morphological characteristics of preschool children. Anthropol. 2017, 30, 153–160. [Google Scholar]
- Loomba-Albrecht, L.A.; Styne, D.M. Effect of puberty on body composition. Curr. Opin. Endocrinol. Diabetes Obes. 2009, 16, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.C.K. Body composition and susceptibility to type 2 diabetes: An evolutionary perspective. Nat. Rev. Endocrinol. 2014, 10, 637–643. [Google Scholar] [CrossRef]
- Rusek, W.; Baran, J.; Leszczak, J.; Adamczyk, M.; Baran, R.; Weres, A.; Inglot, G.; Czenczek-Lewandowska, E.; Pop, T. Changes in children’s body composition and posture during puberty growth. Children 2021, 8, 288. [Google Scholar] [CrossRef]
- Malina, R.M.; Bouchard, C.; Bar-Or, O. Growth, Maturation, and Physical Activity, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2004. [Google Scholar]
- Taylor, R.W.; Grant, A.M.; Williams, S.M.; Goulding, A. Sex differences in regional body fat distribution from pre- to post-puberty. Obesity 2010, 18, 1410–1416. [Google Scholar] [CrossRef]
- Alves Junior, C.A.; Mocellin, M.C.; Gonçalves, E.C.A.; Silva, D.A.; Trindade, E.B. Anthropometric Indicators as Body Fat Discriminators in Children and Adolescents: A Systematic Review and Meta-Analysis. Adv. Nutr. 2017, 8, 718–727. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kobylińska, M.; Antosik, K.; Decyk, A.; Kurowska, K.; Skiba, D. Body Composition and Anthropometric Indicators in Children and Adolescents 6–15 Years Old. Int. J. Environ. Res. Public Health 2022, 19, 11591. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.C.K. The intricacy of childhood body composition: Implications for obesity risk. Proc. Nutr. Soc. 2017, 76, 253–264. [Google Scholar]
- Freedman, D.S.; Wang, J.; Maynard, L.M.; Thornton, J.C.; Mei, Z.; Pierson, R.N., Jr.; Dietz, W.H.; Horlick, M. Relation of BMI to fat and fat-free Weight among children and adolescents. Int. J. Obes. 2005, 29, 1–8. [Google Scholar] [CrossRef]
- Boeke, C.E.; Kleinman, K.P.; Gillman, M.W.; Rifas-Shiman, S.L.; Taveras, E.M. Predicting childhood obesity using maternal and early life risk factors: Results from a prospective cohort study. BMC Pediatr. 2013, 13, 133. [Google Scholar]
- Nazare, J.A.; Smith, J.; Borel, A.L.; Aschner, P.; Barter, P.; Van Gaal, L.; Tan, C.E.; Wittchen, H.U.; Matsuzawa, Y.; Kadowaki, T.; et al. Usefulness of measuring both body Weight index and waist circumference for the estimation of visceral adiposity and related cardiometabolic risk profile (from the INSPIRE ME IAA study). Am. J. Cardiol. 2015, 115, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Neuhauser, H.; Schienkiewitz, A.; Rosario, A.S.; Dortschy, R.; Kurth, B.M. Reference Percentiles for Anthropometric Measures and Blood Pressure from the German Health Interview and Examination Survey for Children and Adolescents (KiGGS); Sarganas, G., Neuhauser, H., Eds.; Robert Koch Institute Nordufer 20 13353 Berlin, Germany, 2013; ISBN 978-3-89606-231-4 . [Google Scholar] [CrossRef]
- Barreira, T.V.; Broyles, S.T.; Gupta, A.K.; Katzmarzyk, P.T. Relationship of anthropometric indices to abdominal and total body fat in youth: Sex and race differences. Obesity 2014, 22, 1345–1350. [Google Scholar] [CrossRef]
- Bredella, M.A. Sex differences in body composition. In Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity; Springer: New York, NY, USA, 2017; pp. 9–27. [Google Scholar]
- Rönnecke, E.; Vogel, M.; Bussler, S.; Grafe, N.; Jurkutat, A.; Schlingmann, M.; Koerner, A.; Kiess, W. Age-and sex-related percentiles of skinfold thickness, waist and hip circumference, waist-to-hip ratio and waist-to-height ratio: Results from a population-based pediatric cohort in Germany (LIFE Child). Obes. Facts 2019, 12, 25–39. [Google Scholar] [CrossRef]
- Frisancho, A.R. Anthropometric standards: An interactive nutritional reference of body size and body composition for children and adults. Am. J. Hum. Biol. 2008, 20, 456–457. [Google Scholar]
- Maynard, L.M.; Wisemandle, W.; Roche, A.F.; Chumlea, W.C.; Guo, S.S.; Siervogel, R.M. Childhood body composition in relation to body Weight index. Pediatrics 2001, 107, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Moreno, L.A.; Rodríguez, G.; Fleta, J.; Bueno-Lozano, M.; Lázaro, A.; Bueno, G. Trends of dietary habits in adolescents. Crit. Rev. Food Sci. Nutr. 2013, 50, 106–112. [Google Scholar] [CrossRef] [PubMed]
BMI (Equations) | |||
T1 | T2 | T3 | |
BMI(BIA) T1 | 0.93 *** | - | - |
BMI(BIA) T2 | - | 0.97 *** | - |
BMI(BIA) T3 | - | - | 0.99 *** |
Sum of Skinfolds | |||
T1 | T2 | T3 | |
Fat % (BIA) T1 | 0.68 *** | - | - |
Fat% % (BIA) T2 | - | 0.89 *** | - |
Fat% % (BIA) T3 | - | - | 0.86 *** |
Boys (N = 160) | ||||||
Variables | T1 | T2 | T3 | T1-T2 | T2-T3 | T1-T3 |
Age (years) | 6.93 ± 0.51 | 9.93 ± 0.36 | 12.93 ± 0.38 | 3 * | 3 * | 6 * |
BMI | 15.95 ± 2.25 | 17.76 ± 3.49 | 19.61 ± 4.34 | 1.81 * | 1.85 * | 3.66 * |
Stature (cm) | 120.85 ± 6.49 | 136.18 ± 6.89 | 152.60 ± 9.03 | 15.33 * | 16.42 * | 31.75 * |
Weight (kg) | 23.41 ± 5.14 | 33.25 ± 9.06 | 46.01 ± 13.87 | 9.84 * | 12.76 * | 22.6 * |
Sub-scapular sf (mm) | 6.29 ± 2.92 | 7.49 ± 4.92 | 9.15 ± 7.70 | 1.2 * | 1.66 * | 2.86 * |
Triceps sf (mm) | 8.28 ± 3.64 | 10.36 ± 5.54 | 11.05 ± 7.27 | 2.08 * | 0.69 | 2.77 * |
Calf sf (mm) | 7.91 ± 3.74 | 11.81 ± 6.26 | 13.87 ± 8.53 | 3.9 * | 2.06 * | 5.96 * |
Waist-circ (cm) | 55.13 ± 6.01 | 61.19 ± 8.16 | 66.40 ± 10.03 | 6.06 * | 5.21 * | 11.27 * |
Mid-upper arm circ (cm) | - | 20.65 ± 3.70 | 23.01 ± 4.76 | - | 2.36 * | - |
% Fat Weight | 19.09 ± 6.89 | 20.95 ± 7.84 | 19.89 ± 8.36 | 1.86 * | −1.06 | 0.8 |
% Muscle Weight | 25.23 ± 4.47 | 31.21 ± 3.03 | 35.83 ± 4.33 | 5.98 * | 4.62 * | 10.6 * |
Girls (N = 172) | ||||||
Age (years) | 6.87 ± 0.48 | 9.87 ± 0.38 | 12.87 ± 0.37 | 3 * | 3 * | 6 * |
BMI | 15.69 ± 2.02 | 17.75 ± 3.41 | 20.28 ± 4.11 | 2.06 * | 2.53 * | 4.59 * |
Stature (cm) | 119.44 ± 5.93 | 136.35 ± 7.22 | 154.46 ± 7.08 | 16.19 * | 18.11 * | 35.02 * |
Weight (kg) | 22.51 ± 4.26 | 33.11 ± 8.16 | 48.60 ± 11.74 | 10.6 * | 15.49 * | 26.09 * |
Sub-scapular sf (mm) | 7.32 ± 3.14 | 8.79 ± 5.14 | 10.73 ± 5.73 | 1.47 * | 1.94 * | 3.41 * |
Triceps sf (mm) | 9.50 ± 3.43 | 12.48 ± 5.24 | 14.47 ± 6.92 | 2.98 * | 1.99 * | 4.97 * |
Calf sf (mm) | 9.59 ± 3.65 | 14.25 ± 5.97 | 18.67 ± 8.93 | 4.66 * | 4.42 * | 9.08 * |
Waist-circ (cm) | 54.03 ± 4.90 | 59.51 ± 7.25 | 66.21 ± 8.85 | 5.48 * | 6.7 * | 12.18 * |
Mid-upper arm circ (cm) | - | 20.81 ± 3.43 | 23.88 ± 4.70 | - | 3.07 * | - |
% Fat mass | 16.41 ± 6.93 | 21.80 ± 8.23 | 25.45 ± 7.99 | 5.39 * | 3.65 * | 9.04 * |
% Muscle mass | 26.62 ± 3.05 | 30.55 ± 2.60 | 32.71 ± 3.75 | 3.93 * | 2.16 * | 6.09 * |
Variable | T1 | T2 | T3 | |||
---|---|---|---|---|---|---|
Weight | BMI | Weight | BMI | Weight | BMI | |
Boys | ||||||
Stature (cm) | 0.78 *** | 0.39 ** | 0.74 *** | 0.49 ** | 0.70 *** | 0.41 ** |
Weight (kg) | - | 0.84 *** | - | 0.93 *** | - | 0.90 *** |
Sub-scapular skinfold (mm) | 0.70 *** | 0.76 *** | 0.88 *** | 0.91 *** | 0.72 *** | 0.82 *** |
Triceps skinfold (mm) | 0.84 *** | 0.79 *** | 0.89 *** | 0.91 *** | 0.75 *** | 0.87 *** |
Calf skinfold (mm) | 0.82 *** | 0.77 *** | 0.78 *** | 0.81 *** | 0.75 *** | 0.85 *** |
Waist-circumference (cm) | 0.85 ** | 0.76 *** | 0.94 *** | 0.94 *** | 0.89 *** | 0.94 *** |
Mid-upper-arm circumference (cm) | - | - | 0.94 *** | 0.94 *** | 0.87 *** | 0.91 *** |
% fat mass | 0.61 *** | 0.77 *** | 0.83 *** | 0.94 ** | 0.65 *** | 0.85 *** |
% muscle mass | 0.66 *** | 0.34 ** | 0.20 * | 0.00 | −0.11 * | −0.29 * |
Girls | ||||||
Stature (cm) | 0.73 *** | 0.27 * | 0.62 *** | 0.29 ** | 0.55 *** | 0.24 * |
Weight (kg) | - | 0.85 *** | - | 0.88 *** | - | 0.93 *** |
Sub-scapular skinfold (mm) | 0.62 *** | 0.76 *** | 0.84 *** | 0.89 **** | 0.78 *** | 0.85 *** |
Triceps skinfold (mm) | 0.75 *** | 0.77 *** | 0.83 *** | 0.83 *** | 0.74 *** | 0.82 *** |
Calf skinfold (mm) | 0.70 *** | 0.72 *** | 0.76 *** | 0.79 *** | 0.71 *** | 0.77 *** |
Waist-circumference (cm) | 0.81 *** | 0.81 *** | 0.91 *** | 0.90 *** | 0.91 *** | 0.94 *** |
Mid-upper-arm circumference (cm) | - | - | 0.91 *** | 0.90 *** | 0.88 *** | 0.89 *** |
% fat mass | 0.71 *** | 0.95 *** | 0.82 *** | 0.91 *** | 0.78 *** | 0.88 *** |
% muscle mass | 0.53 *** | 0.11 * | −0.10 * | −0.35 ** | −0.33 ** | −0.46 ** |
T1 (6 years) R = 0.945, R2 = 0.894 Adjusted R2 = 0.889, F(8,151) = 160.32 p < 0.000 * Std. error of estimate: 0.748 | |||
Intercept | b = 32.554 Std. error of b = 3.158, p-value = 0.000 * | ||
Variables | b* | Std. error | p |
Weight (kg) | 1.398 * | 0.110 | <0.01 * |
Stature (M) | −0.772 * | 0.098 | <0.01 * |
Waist circumference (cm) | 0.052 | 0.052 | 0.445 |
Muscle % | 0.044 | 0.060 | 0.560 |
Calf sf (mm) | 0.044 | 0.057 | 0.726 |
Fat % | −0.034 | 0.059 | 0.322 |
Sub-scap sf (mm) | −0.030 | 0.054 | 0.568 |
Triceps sf (mm) | −0.024 | 0.068 | 0.726 |
Mid-upper arm circumference (cm) | - | - | - |
T2 (9 years) R = 0.987, R2 = 0.975 Adjusted R2 = 0.974, F (9,150) = 664.95 p < 0.000 * Std. error of estimate: 0.562 | |||
b = 18.969 Std. error of b = 2.003, p-value = 0.000 * | |||
Weight (kg) | 0.625 * | 0.068 | <0.01 * |
Stature (cm) | −0.285 * | 0.036 | <0.01 * |
Waist circumference (cm) | 0.211 * | 0.049 | <0.01 * |
Fat % | 0.185 * | 0.039 | <0.01 * |
Mid-upper arm circumference (cm) | 0.105 * | 0.053 | <0.01 * |
Calf sf (mm) | 0.084 | 0.025 | <0.01 * |
Sub-scap sf (mm) | −0.031 | 0.039 | 0.42 |
Triceps sf (mm) | 0.024 | 0.044 | 0.57 |
Muscle % | 0.016 | 0.020 | 0.41 |
T3 (12 years) R = 0.981, R2 = 0.964 Adjusted R2 = 0.961, F (9,150) = 446.74 p < 0.000 * Std. error of estimate: 0.848 | |||
B = 12.520 Std. error of b = 2.105, p-value = 0.000 * | |||
Weight (kg) | 0.469 * | 0.051 | <0.01 * |
Waist circumference (cm) | 0.323 * | 0.046 | <0.01 * |
Stature (cm) | −0.210 * | 0.031 | <0.01 * |
Fat % | 0.171 * | 0.042 | <0.01 * |
Mid-upper arm circumference (cm) | 0.154 * | 0.040 | <0.01 * |
Sub-scap sf (mm) | 0.066 * | 0.030 | <0.09 * |
Triceps sf (mm) | −0.049 | 0.047 | 0.29 |
Calf sf (mm) | 0.039 | 0.041 | 0.34 |
Muscle % | 0.031 | 0.020 | 0.13 |
T1 (6 years) R = 0.996 R2 = 0.992, Adjusted R2 = 0.991, F(8,163) = 263.45 p < 0.0000 * Std. error of estimate: 0.18146 | |||
Intercept | b = 25.995 Std. error of b = 0.737, p-value = 0.000 * | ||
Variables | b* | Std. error | p |
Weight (kg) | 1.061 * | 0.030 | <0.01 * |
Stature (cm) | −0.585 * | 0.024 | <0.01 * |
Fat % | 0.219 * | 0.020 | <0.01 * |
Muscle % | 0.053 * | 0.014 | <0.01 |
Sub-scapular (mm) | 0.044 * | 0.014 | <0.01 * |
Calf sf (mm) | 0.022 | 0.014 | 0.11 |
Triceps sf (mm) | −0.020 | 0.015 | 0.17 |
Waist circ (cm) | −0.000 | 0.015 | 0.97 |
Mid-upper arm circ (cm) | - | - | - |
T2 (9 years) R = 0.959 R2 = 0.919 Adjusted R2 = 0.915, F (9,162) = 206.81 p < 0.000 * Std. error of estimate: 0.993 | |||
B = 12.070 Std. error of b = 2.467, p-value = 0.000 * | |||
Weight (kg) | 0.412 * | 0.084 | <0.01 * |
Fat % | 0.355 * | 0.068 | <0.01 * |
Mid-upper arm circ (cm) | 0.231 * | 0.072 | <0.01 * |
Stature (cm) | −0.178 * | 0.041 | <0.01 * |
Triceps sf (mm) | −0.173 * | 0.061 | <0.01 * |
Waist circ (cm) | 0.151 * | 0.070 | <0.01 * |
Sub-scapular sf (mm) | 0.092 | 0.062 | 0.14 |
Calf sf (mm) | 0.003 | 0.045 | 0.94 |
Muscle % | 0.000 | 0.036 | 0.98 |
T3 (12 years) R = 0.988 R2 = 0.976 Adjusted R2 = 0.975, F (9,162) = 744.33 p < 0.000 * Std. error of estimate: 0.649 | |||
B = 20.688 Std. error of b = 2.049, p-value = 0.000 * | |||
Weight (kg) | 0.656 * | 0.054 | <0.01 * |
Stature (cm) | −0.243 * | 0.021 | <0.01 * |
Waist circ (cm) | 0.171 * | 0.036 | <0.01 * |
Fat % | 0.139 * | 0.033 | <0.01 * |
Mid-upper arm circ (cm) | 0.114 * | 0.030 | <0.01 * |
Sub-scapular sf (mm) | 0.037 | 0.026 | 0.16 |
Calf sf (mm) | 0.014 | 0.027 | 0.59 |
Muscle % | 0.009 | 0.015 | 0.51 |
Triceps sf (mm) | 0.002 | 0.032 | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerber, B.; Pienaar, A.E. Age-Related Changes in Predictors of BMI in 6, 9 and 12-Year-Old Boys and Girls: The NW-CHILD Study. J. Funct. Morphol. Kinesiol. 2025, 10, 320. https://doi.org/10.3390/jfmk10030320
Gerber B, Pienaar AE. Age-Related Changes in Predictors of BMI in 6, 9 and 12-Year-Old Boys and Girls: The NW-CHILD Study. Journal of Functional Morphology and Kinesiology. 2025; 10(3):320. https://doi.org/10.3390/jfmk10030320
Chicago/Turabian StyleGerber, Barry, and Anita Elizabeth Pienaar. 2025. "Age-Related Changes in Predictors of BMI in 6, 9 and 12-Year-Old Boys and Girls: The NW-CHILD Study" Journal of Functional Morphology and Kinesiology 10, no. 3: 320. https://doi.org/10.3390/jfmk10030320
APA StyleGerber, B., & Pienaar, A. E. (2025). Age-Related Changes in Predictors of BMI in 6, 9 and 12-Year-Old Boys and Girls: The NW-CHILD Study. Journal of Functional Morphology and Kinesiology, 10(3), 320. https://doi.org/10.3390/jfmk10030320