Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (353)

Search Parameters:
Keywords = Ag(I) ion detection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2238 KB  
Article
Functional Biopolymer-Stabilized Silver Nanoparticles on Glassy Carbon: A Voltammetric Sensor for Trace Thallium(I) Detection
by Bożena Karbowska, Maja Giera, Anna Modrzejewska-Sikorska and Emilia Konował
Int. J. Mol. Sci. 2025, 26(19), 9658; https://doi.org/10.3390/ijms26199658 - 3 Oct 2025
Viewed by 201
Abstract
Thallium is a soft metal with a grey or silvery hue. It commonly occurs in two oxidation states in chemical compounds: Tl+ and Tl3+. Thermodynamically, Tl+ is significantly more stable and typically represents the dominant form of thallium in [...] Read more.
Thallium is a soft metal with a grey or silvery hue. It commonly occurs in two oxidation states in chemical compounds: Tl+ and Tl3+. Thermodynamically, Tl+ is significantly more stable and typically represents the dominant form of thallium in environmental systems. However, in this chemical form, thallium remains highly toxic. This study focuses on the modification of a glassy carbon electrode (GCE) with silver nanostructures stabilised by potato starch derivatives. The modified electrode (GCE/AgNPs-E1451) was used for the determination of trace amounts of thallium ions using anodic stripping voltammetry. Emphasis was placed on assessing the effect of surface modification on key electrochemical performance parameters of the electrode. Measurements were carried out in a base electrolyte (EDTA) and in a real soil sample collected from Bali. The stripping peak current of thallium exhibited linearity over the concentration range from 19 to 410 ppb (9.31 × 10−8 to 2.009 × 10−6 mol/dm3). The calculated limit of detection (LOD) was 18.8 ppb (9.21 × 10−8 mol/dm3), while the limit of quantification (LOQ), corresponded to 56.4 ppb (2.76 × 10−7 mol/dm3). The GCE/AgNPs-E1451 electrode demonstrates several significant advantages, including a wide detection range, reduced analysis time due to the elimination of time-consuming pre-concentration steps, and non-toxic operation compared to mercury-based electrodes. Full article
(This article belongs to the Special Issue New Advances in Metal Nanoparticles)
Show Figures

Figure 1

15 pages, 6693 KB  
Article
Double-Network Hydrogels via Hybrid Strategies: Potential in Large-Scale Manufacturing for Colorimetric Indicator
by Ningli An, Jiwen Liu, Wentao Zhou, Qing He, Jianan Li and Yali Xiong
Gels 2025, 11(9), 697; https://doi.org/10.3390/gels11090697 - 2 Sep 2025
Viewed by 528
Abstract
Biological hydrogels are widely available in terms of raw material sources and can be processed and molded using relatively simple techniques. Hydrogels can offer abundant three-dimensional, water-containing channels that facilitate the reaction between gases and dye, making them the preferred choice for the [...] Read more.
Biological hydrogels are widely available in terms of raw material sources and can be processed and molded using relatively simple techniques. Hydrogels can offer abundant three-dimensional, water-containing channels that facilitate the reaction between gases and dye, making them the preferred choice for the solid support layer in colorimetric indicators. However, biomass hydrogels exhibit inferior mechanical properties, making them unsuitable for large-scale manufacturing processes. In this study, four dual-network composite hydrogels Agar/Gelatin, Sodium Alginate/Agar, Sodium Alginate/Poly (vinyl alcohol), Sodium Alginate/Gelatin (AG/Gel, SA/AG, SA/PVA and SA/Gel) prepared through hybrid strategies. Furthermore, the influence of the dual-network structure on the mechanical properties and ammonia response was systematically investigated, using microscopy and Fourier transform infrared spectroscopy (FTIR) characterization method. The experimental results demonstrate that the incorporation of SA into original hydrogel matrices can significantly enhance both the mechanical and ammonia response performance due to the secondary topological network structure. The interpenetrating double network structure was effectively regulated through the calcium ion cross-linking process. The color difference threshold of SA/PVA’s response to ammonia gas is 10, it holds promise for rapid detection applications. The SA/Gel composite hydrogel exhibits excellent mechanical robustness and toughness. The tensile strength of the SA/Gel sample is 11 times that of a single gel, and the toughness is 80 times greater, suggesting its suitability for large-scale manufacturing of colorimetric indicator. Full article
(This article belongs to the Section Gel Processing and Engineering)
Show Figures

Figure 1

16 pages, 1548 KB  
Article
Polymeric Membrane Electrodes for a Fast End Cost-Effective Potentiometric Determination of Octenidine Dihydrochloride in Pharmaceutical Samples
by Joanna Lenik
Materials 2025, 18(17), 4100; https://doi.org/10.3390/ma18174100 - 1 Sep 2025
Viewed by 689
Abstract
Determining the active substance content in the tested product is an essential part of research for overall assessment of the quality of a medicinal substance. This role can be successfully performed by membrane electrodes that are selective for a specific drug. The novelty [...] Read more.
Determining the active substance content in the tested product is an essential part of research for overall assessment of the quality of a medicinal substance. This role can be successfully performed by membrane electrodes that are selective for a specific drug. The novelty of the presented research is the development of the first ion-selective electrode with a polymer membrane phase with the octenidine (OCT) function. Classical ion-selective electrodes (ISE), polymer electrodes with an internal Ag/AgCl electrode, and electrode bodies with glassy carbon were used for the research. The membranes were prepared based on cation exchangers from the borate group and neutral cyclodextrin. All sensors have good parameters, e.g., the polymer electrode with KtpClPB is characterised by a wide linear range of −logc 6−3, a low limit of detection 5 × 10−7 M, and a near-Nernstian, reproducible slope of characteristics of 31.41 ± 1.14 mV/decade. It can be seen that a stable, reversible potential and a short response time were achieved for this sensor. The obtained favourable selectivity coefficients of the electrode determined in relation to excipients allowed direct determination of octenidine, e.g., in lozenges. The results obtained with the calibration curve method show a recovery of 97% and a precision of SD 2.3 mg/L, which indicates that the data are consistent with the pharmacopoeia requirements. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

15 pages, 2208 KB  
Article
The Significant Impact of Biomass Burning Emitted Particles on Typical Haze Pollution in Changsha, China
by Qu Xiao, Hui Guo, Jie Tan, Zaihua Wang, Yuzhu Xie, Honghong Jin, Mengrong Yang, Xinning Wang, Chunlei Cheng, Bo Huang and Mei Li
Toxics 2025, 13(8), 691; https://doi.org/10.3390/toxics13080691 - 20 Aug 2025
Viewed by 582
Abstract
In this study, typical haze pollution influenced by biomass burning (BB) activities in Changsha in the autumn of 2024 was investigated through the mixing state and evolution process of BB particles via the real-time measurement of single-particle aerosol mass spectrometry (SPAMS). From the [...] Read more.
In this study, typical haze pollution influenced by biomass burning (BB) activities in Changsha in the autumn of 2024 was investigated through the mixing state and evolution process of BB particles via the real-time measurement of single-particle aerosol mass spectrometry (SPAMS). From the clean period to the haze period, the PM2.5 concentration increased from 25 μg·m−3 at 12:00 to 273 μg·m−3 at 21:00 on 12 October, and the proportion of total BB single particles in the total detected particles increased from 17.2% to 54%. This indicates that the rapid increase in PM2.5 concentration was accompanied by a concurrent increase in the contribution of particles originating from BB sources. The detected BB particles were classified into two types based on their mixing states and temporal variations: BB1 and BB2, which accounted for 71.7% and 28.3% of the total BB particles, respectively. The analysis of backward trajectories and fire spots suggested that BB1 particles originated from straw burning emissions at northern Changsha, while BB2 particles were primarily related to local nighttime cooking emissions in Changsha. In addition, a special type of K-containing single particles without K cluster ions was found closely associated with BB1 type particles, which were designated as secondarily processed BB particles (BB-sec). The BB-sec particles contained abundant sulfate and ammonium signals and showed lagged appearance after the peak of BB1-type particles, which was possibly due to the aging and formation of ammonium sulfate on the freshly emitted particles. In all, this study provides insights into understanding the substantial impact of BB sources on regional air quality during the crop harvest season and the appropriate disposal of crop straw, including conversion into high-efficiency fuel through secondary processing or clean energy via biological fermentation, which is of great significance for the mitigation of local haze pollution. Full article
Show Figures

Graphical abstract

25 pages, 5457 KB  
Article
Determining the Sulfate Content in Phosphogypsum and Cement-Based Materials Based on Conductivity Titration
by Dafu Wang, Jieming Zhang, Jingting Zhou, Yudong Sun, Jun Ren, Xincheng Li and Zhiyong Liu
Materials 2025, 18(16), 3758; https://doi.org/10.3390/ma18163758 - 11 Aug 2025
Viewed by 633
Abstract
Accurate determination of sulfate content in phosphogypsum (PG) and cement-based materials is crucial for understanding the corrosion mechanisms of cement-based materials, developing corrosion models, establishing durability design methods, and implementing maintenance strategies. To overcome the limitations of traditional gravimetric and EDTA titration methods [...] Read more.
Accurate determination of sulfate content in phosphogypsum (PG) and cement-based materials is crucial for understanding the corrosion mechanisms of cement-based materials, developing corrosion models, establishing durability design methods, and implementing maintenance strategies. To overcome the limitations of traditional gravimetric and EDTA titration methods in accurately quantifying low-concentration SO42− in PG and cement-based materials, an IoT-enabled conductometric titration system was developed to improve precision and automation. First, the principle of conductivity titration is introduced, in which Ba(NO3)2 is used as the titrant. Second, a method for eliminating the effects of H+, Cl, and Ca2+ ions is proposed. The impact of the titration rate, volume of liquid to be measured, titrant concentration, and other interfering ions on the results is discussed. Finally, the conductivity titration method was successfully applied to determine sulfate content in PG and cement-based materials. The results demonstrate that the self-developed conductivity titrator exhibits high testing accuracy, with a standard deviation of 0.013 for 15 repeated titrations, a coefficient of variation of 0.52%, and a recovery rate between 103.2% and 103.9%. The optimal solution volume to be determined was 5 mL. Ba(NO3)2, at approximately twice the sulfate concentration, enhances endpoint sensitivity and minimizes precipitation interference. Ag2O and CO2 significantly reduce the interference from H+, Cl, and Ca2+ ions by generating weakly conductive substances, such as H2O, AgCl, Ag3PO4, CaF2, and CaCO3. Conductometric titration demonstrated accurate SO42− quantification in PG and cement-based materials, enabling standardized protocols. This approach provides both theoretical and technical support for rapid sulfate detection in complex systems, with significant implications for both industry and academia. For the industry, it offers a reliable and standardized method for sulfate detection, enhancing quality control and process efficiency. For academia, it establishes a foundation for further research in civil engineering and environmental material analysis, contributing to both practical applications and theoretical advancements. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 3360 KB  
Article
Efficient and Selective Multiple Ion Chemosensor by Novel Near-Infrared Sensitive Symmetrical Squaraine Dye Probe
by Sushma Thapa, Kshitij RB Singh and Shyam S. Pandey
Chemosensors 2025, 13(8), 288; https://doi.org/10.3390/chemosensors13080288 - 4 Aug 2025
Viewed by 651
Abstract
A novel near-infrared (NIR) squaraine-based chemosensor, SQ-68, has been designed and synthesized for the sensitive and selective detection of Cu2+ and Ag+ ions, offering a compact solution for multi-analyte sensing. SQ-68 demonstrates high selectivity, with its performance influenced by the [...] Read more.
A novel near-infrared (NIR) squaraine-based chemosensor, SQ-68, has been designed and synthesized for the sensitive and selective detection of Cu2+ and Ag+ ions, offering a compact solution for multi-analyte sensing. SQ-68 demonstrates high selectivity, with its performance influenced by the solvent environment: It selectively detects Cu2+ in acetonitrile and Ag+ in an ethanol–water mixture. Upon binding with either ion, SQ-68 undergoes significant absorption changes in the NIR region, accompanied by visible color changes, enabling naked-eye detection. Spectroscopic studies confirm a 1:1 binding stoichiometry with both Cu2+ and Ag+, accompanied by hypochromism. The detection limits are 0.09 μM for Cu2+ and 0.38 μM for Ag+, supporting highly sensitive quantification. The sensor’s practical applicability was validated in real water samples (sea, lake, and tap water), with recovery rates ranging from 73–95% for Cu2+ to 59–99% for Ag+. These results establish SQ-68 as a reliable and efficient chemosensor for environmental monitoring and water quality assessment. Its dual-analyte capability, solvent-tunable selectivity, and visual detection features make it a promising tool for rapid and accurate detection of heavy metal ions in diverse aqueous environments. Full article
Show Figures

Figure 1

17 pages, 2627 KB  
Article
Cuscohygrine and Hygrine as Biomarkers for Coca Leaf Chewing: Analytical Challenges in GC-MS Detection and Implications for the Differentiation of Cocaine Use in Forensic Toxicology
by Nélida C. Rubio, Iván Alvarez-Freire, Pamela Cabarcos-Fernández, María J. Tabernero-Duque, Inés Sánchez-Sellero, Antonio Moreda-Piñeiro, Pilar Bermejo-Barrera and Ana M. Bermejo-Barrera
Separations 2025, 12(8), 201; https://doi.org/10.3390/separations12080201 - 30 Jul 2025
Viewed by 876
Abstract
Cuscohygrine (CUS) and hygrine (HYG) are pyrrolidine alkaloids proposed as biomarkers of coca leaf consumption, a culturally accepted practice in some Latin American countries. Differentiating legal coca use from illicit cocaine consumption holds forensic importance. While LC-MS/MS is preferred, GC-MS remains widely used [...] Read more.
Cuscohygrine (CUS) and hygrine (HYG) are pyrrolidine alkaloids proposed as biomarkers of coca leaf consumption, a culturally accepted practice in some Latin American countries. Differentiating legal coca use from illicit cocaine consumption holds forensic importance. While LC-MS/MS is preferred, GC-MS remains widely used in Latin American toxicology labs due to accessibility. This study critically evaluates the analytical limitations of GC-MS for detecting CUS and HYG in biological matrices. Key parameters—injector temperature (180–290 °C), injection mode (split/splitless), solvent, liner condition, and matrix—were systematically studied. GC-MS showed significant limitations: low-abundance, non-specific fragments (m/z 42, 84, 98, 140) failed to meet the identification criteria in SIM mode. Thermal degradation of CUS to HYG and CUS-d6 to HYG-d3 was observed, especially with splitless injection and aged liners. Matrix effects produced signal enhancement ranging from +29% to +316%, meaning that analyte responses in biological samples were significantly higher than in neat standards, likely due to reduced degradation or adsorption. Although deuterated internal standards (CUS-d6) partially corrected signal variability and matrix enhancement, these corrections were not sufficient to overcome the fundamental limitations of GC-MS, including poor ion specificity and compound instability. These findings support the need for LC-MS/MS-based approaches for reliable alkaloid detection and question the suitability of GC-MS for CUS analysis in forensic toxicology contexts. Full article
Show Figures

Graphical abstract

25 pages, 1903 KB  
Article
Pesticide Residues in Fruits and Vegetables from Cape Verde: A Multi-Year Monitoring and Dietary Risk Assessment Study
by Andrea Acosta-Dacal, Ricardo Díaz-Díaz, Pablo Alonso-González, María del Mar Bernal-Suárez, Eva Parga-Dans, Lluis Serra-Majem, Adriana Ortiz-Andrellucchi, Manuel Zumbado, Edson Santos, Verena Furtado, Miriam Livramento, Dalila Silva and Octavio P. Luzardo
Foods 2025, 14(15), 2639; https://doi.org/10.3390/foods14152639 - 28 Jul 2025
Viewed by 1027
Abstract
Food safety concerns related to pesticide residues in fruits and vegetables have increased globally, particularly in regions where monitoring programs are scarce or inconsistent. This study provides the first multi-year evaluation of pesticide contamination and associated dietary risks in Cape Verde, an African [...] Read more.
Food safety concerns related to pesticide residues in fruits and vegetables have increased globally, particularly in regions where monitoring programs are scarce or inconsistent. This study provides the first multi-year evaluation of pesticide contamination and associated dietary risks in Cape Verde, an African island nation increasingly reliant on imported produce. A total of 570 samples of fruits and vegetables—both locally produced and imported—were collected from major markets across the country between 2017 and 2020 and analyzed using validated multiresidue methods based on gas chromatography coupled to Ion Trap mass spectrometry (GC-IT-MS/MS), and both gas and liquid chromatography coupled to triple quadrupole tandem mass spectrometry (GC-QqQ-MS/MS and LC-QqQ-MS/MS). Residues were detected in 63.9% of fruits and 13.2% of vegetables, with imported fruits showing the highest contamination levels and diversity of compounds. Although only one sample exceeded the maximum residue limits (MRLs) set by the European Union, 80 different active substances were quantified—many of them not authorized under the current EU pesticide residue legislation. Dietary exposure was estimated using median residue levels and real consumption data from the national nutrition survey (ENCAVE 2019), enabling a refined risk assessment based on actual consumption patterns. The cumulative hazard index for the adult population was 0.416, below the toxicological threshold of concern. However, when adjusted for children aged 6–11 years—taking into account body weight and relative consumption—the cumulative index approached 1.0, suggesting a potential health risk for this vulnerable group. A limited number of compounds, including omethoate, oxamyl, imazalil, and dithiocarbamates, accounted for most of the risk. Many are banned or heavily restricted in the EU, highlighting regulatory asymmetries in global food trade. These findings underscore the urgent need for strengthened residue monitoring in Cape Verde, particularly for imported products, and support the adoption of risk-based food safety policies that consider population-specific vulnerabilities and mixture effects. The methodological framework used here can serve as a model for other low-resource countries seeking to integrate analytical data with dietary exposure in a One Health context. Full article
(This article belongs to the Special Issue Risk Assessment of Hazardous Pollutants in Foods)
Show Figures

Figure 1

13 pages, 1647 KB  
Article
Electrochemical Sensing of Hg2+ Ions Using an SWNTs/Ag@ZnBDC Composite with Ultra-Low Detection Limit
by Gajanan A. Bodkhe, Bhavna Hedau, Mayuri S. More, Myunghee Kim and Mahendra D. Shirsat
Chemosensors 2025, 13(7), 259; https://doi.org/10.3390/chemosensors13070259 - 16 Jul 2025
Viewed by 668
Abstract
A novel single-walled carbon nanotube (SWNT), silver (Ag) nanoparticle, and zinc benzene carboxylate (ZnBDC) metal–organic framework (MOF) composite was synthesised and systematically characterised to develop an efficient platform for mercury ion (Hg2+) detection. X-ray diffraction confirmed the successful incorporation of Ag [...] Read more.
A novel single-walled carbon nanotube (SWNT), silver (Ag) nanoparticle, and zinc benzene carboxylate (ZnBDC) metal–organic framework (MOF) composite was synthesised and systematically characterised to develop an efficient platform for mercury ion (Hg2+) detection. X-ray diffraction confirmed the successful incorporation of Ag nanoparticles and SWNTs without disrupting the crystalline structure of ZnBDC. Meanwhile, field-emission scanning electron microscopy and energy-dispersive spectroscopy mapping revealed a uniform elemental distribution. Thermogravimetric analysis indicated enhanced thermal stability. Electrochemical measurements (cyclic voltammetry and electrochemical impedance spectroscopy) demonstrated improved charge transfer properties. Electrochemical sensing investigations using differential pulse voltammetry revealed that the SWNTs/Ag@ZnBDC-modified glassy carbon electrode exhibited high selectivity toward Hg2+ ions over other metal ions (Cd2+, Co2+, Cr3+, Fe3+, and Zn2+), with optimal performance at pH 4. The sensor displayed a linear response in the concentration range of 0.1–1.0 nM (R2 = 0.9908), with a calculated limit of detection of 0.102 nM, slightly close to the lowest tested point, confirming its high sensitivity for ultra-trace Hg2+ detection. The outstanding sensitivity, selectivity, and reproducibility underscore the potential of SWNTs/Ag@ZnBDC as a promising electrochemical platform for detecting trace levels of Hg2+ in environmental monitoring. Full article
(This article belongs to the Special Issue Green Electrochemical Sensors for Trace Heavy Metal Detection)
Show Figures

Figure 1

14 pages, 935 KB  
Article
Plasmon-Driven Catalytic Inhibition of pATP Oxidation as a Mechanism for Indirect Fe²⁺ Detection on a SERS-Active Platform
by Alexandru-Milentie Hada, Mihail-Mihnea Moruz, Alexandru Holca, Simion Astilean, Marc Lamy de la Chapelle and Monica Focsan
Catalysts 2025, 15(7), 667; https://doi.org/10.3390/catal15070667 - 8 Jul 2025
Viewed by 761
Abstract
The detection of Fe2+ in environmental water sources is critical due to its biological relevance and potential toxicity at elevated levels. Herein, we report a plasmon-driven catalytic sensing nanoplatform based on p-aminothiophenol (pATP)-functionalized silver nanoparticles (AgNPs) for the selective and sensitive detection [...] Read more.
The detection of Fe2+ in environmental water sources is critical due to its biological relevance and potential toxicity at elevated levels. Herein, we report a plasmon-driven catalytic sensing nanoplatform based on p-aminothiophenol (pATP)-functionalized silver nanoparticles (AgNPs) for the selective and sensitive detection of Fe2+. The nanoplatform exploits the inhibition of the plasmon-driven catalytic conversion of pATP to 4,4-dimercaptoazobenzene (DMAB), monitored via surface-enhanced Raman scattering (SERS) spectroscopy. The catalytic efficiency was quantified by the intensity ratio between the formed DMAB-specific Raman band and the common aromatic ring vibration band of pATP and DMAB. This ratio decreased proportionally with increasing Fe2+ concentration over a range of 100 µM to 1.5 mM, with a calculated limit of detection of 39.7 µM. High selectivity was demonstrated against common metal ions, and excellent recovery rates (96.6–99.4%) were obtained in real water samples. Mechanistic insights, supported by chronopotentiometric measurements under light irradiation, revealed a competitive oxidation pathway in which Fe2+ preferentially consumes plasmon-generated hot holes over pATP. This mechanism clarifies the observed catalytic inhibition and supports the design of redox-responsive SERS sensors. The platform offers a rapid, low-cost, and portable solution for Fe2+ monitoring and holds promise for broader applications in detecting other redox-active analytes in complex environmental matrices. Full article
Show Figures

Figure 1

22 pages, 4955 KB  
Review
Research Progress on the Stability and Durability of Ag/AgCl Prepared by Anodic Chlorination Method for Chloride Ion Sensors in Cement-Based Materials
by Yupeng Tian, Dongyi Lei, Penggang Wang, Jiuwen Bao, Yanru Wang, Tiejun Zhao and Weina Guo
Buildings 2025, 15(13), 2290; https://doi.org/10.3390/buildings15132290 - 29 Jun 2025
Viewed by 825
Abstract
A strong application potential for Ag/AgCl ion-selective electrodes (ISEs) used as chloride sensors in cement-based material is widely accepted, but their stability and durability have not been sufficiently addressed. This paper summarizes the research status of the stability and durability of Ag/AgCl ISEs [...] Read more.
A strong application potential for Ag/AgCl ion-selective electrodes (ISEs) used as chloride sensors in cement-based material is widely accepted, but their stability and durability have not been sufficiently addressed. This paper summarizes the research status of the stability and durability of Ag/AgCl ISEs used for the non-destructive detection of chloride in cement-based materials. Four topics including working principle and fabrication methods, the factors that influence stability, research status for stability and durability studies, and the reason for durability failure of Ag/AgCl ISEs in cement-based materials are reviewed. Meanwhile, the improving methods for Ag/AgCl ISEs are proposed based on discussions of various aspects of Ag/AgCl ISEs. Full article
Show Figures

Figure 1

16 pages, 3867 KB  
Article
Ultralow-Resistance High-Voltage Loaded Woven Air Filter for Fine Particle/Bacteria Removal
by Weisi Fan, Sanqiang Wei, Ziyun Zhang, Lulu Shi, Jun Wang, Wenlan Hao, Kun Zhang and Qiuran Jiang
Polymers 2025, 17(13), 1765; https://doi.org/10.3390/polym17131765 - 26 Jun 2025
Viewed by 638
Abstract
Conventional filters for air filtration typically feature compact nonwoven structures, which not only lead to high pressure drop, significant energy consumption, and a decay in filtration efficacy, but are also uncleanable, resulting in substantial pollution upon disposal. In this study, filters with high-voltage [...] Read more.
Conventional filters for air filtration typically feature compact nonwoven structures, which not only lead to high pressure drop, significant energy consumption, and a decay in filtration efficacy, but are also uncleanable, resulting in substantial pollution upon disposal. In this study, filters with high-voltage electrostatic loading capability were developed with a dopamine binding layer to facilitate the establishment of an Ag conductive layer on the surface of ultraloose woven structure fabrics (pore size: 73.7 μm). The high-voltage-loaded woven structure filtration (VLWF) system was constructed with a negative-ion zone, a high-voltage filtration zone, and a grounded filter. The morphological, chemical, and electrical properties of the filters and the filtration performance of the VLWF system were evaluated. The single-pass filtration efficiencies for PM2.5 and E. coli were 67.4% and 97.0%, respectively. Notably, the pressure drop was reduced to 6.2 Pa, and the quality factor reached 0.1810 Pa−1 with no detectable ozone release. After three cycles of ultrasonic cleaning, approximately 58.4% of filtration efficiency was maintained without any increase in air resistance. The removal of PM2.5 and microorganisms by this system was not solely reliant on blocking and electrostatic attraction but may also involve induced repulsion and biostructure inactivation. By integrating the ultraloose woven structure with high-voltage assistance, this VLWF system effectively balanced the requirements for high filtration efficacy and low air resistance. More importantly, this VLWF system provided a cleanable filter model that reduced the pollution associated with conventional disposable filters and lowered costs for customers. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

12 pages, 540 KB  
Article
The Genomic Landscape of Romanian Non-Small Cell Lung Cancer Patients: The Insights from Routine NGS Testing with the Oncomine Dx Target Panel at the PATHOS Molecular Pathology Laboratory
by Orsolya I. Gaal, Andrei Ungureanu, Bogdan Pop, Andreea Tomescu, Andreea Cătană, Milena Man, Ruxandra Mioara Râjnoveanu, Emanuel Palade, Marioara Simon, Stefan Dan Luchian, Milan Paul Kubelac, Annamaria Fulop, Zsolt Fekete, Tudor Eliade Ciuleanu, Ion Jentimir, Bogdan Popovici, Calin Cainap, Alexandra Cristina Preda, Cosmina Magdau, Andrei Lesan and Bogdan Feticaadd Show full author list remove Hide full author list
Cancers 2025, 17(12), 1947; https://doi.org/10.3390/cancers17121947 - 11 Jun 2025
Viewed by 1448
Abstract
Background: Comprehensive molecular profiling is essential for precision oncology in non-small cell lung cancer (NSCLC). However, genomic data from Eastern European populations, including Romania, remain limited. Methods: We analyzed 398 consecutive NSCLC cases tested at the PATHOS Molecular Pathology Laboratory (Cluj-Napoca, Romania) between [...] Read more.
Background: Comprehensive molecular profiling is essential for precision oncology in non-small cell lung cancer (NSCLC). However, genomic data from Eastern European populations, including Romania, remain limited. Methods: We analyzed 398 consecutive NSCLC cases tested at the PATHOS Molecular Pathology Laboratory (Cluj-Napoca, Romania) between April 2024 and February 2025 using the Ion Torrent™ Genexus™ System and the Oncomine™ Dx Target Test, which evaluates SNVs/indels in 46 genes, fusions in 23 genes, and CNVs in 19 genes from FFPE samples. Results: The cohort was predominantly male (66%) with a median age of 67 years. Adenocarcinoma represented 70% of cases with known histology. Genomic profiling revealed a high frequency of actionable alterations. KRAS mutations were the most common (29.1%), with p.G12C detected in 10.3% of all the cases. EGFR mutations were present in 14.3% of patients, mostly exon 19 deletions and L858R substitutions. BRAF alterations (5.3%) included both V600E and non-V600E variants. RET alterations were detected as eight missense mutations, two canonical fusions (KIF5BRET, CCDC6RET), one amplification, and three transcript imbalances. EML4-ALK fusions (1.77%), ERBB2 mutations/amplifications (3.0%), and FGFR1/FGFR3 amplifications were also observed. Conclusions: This study provides the first large-scale molecular snapshot of NSCLC in Romania. While the overall genomic profiles align with Western populations, the higher frequency of KRAS p.G12C and FGFR amplifications highlights the value of region-specific data to support targeted therapies in Eastern Europe. Full article
Show Figures

Figure 1

17 pages, 5139 KB  
Article
Quantification of Degradation Processes in Lithium-Ion Batteries Through Internal Strain Measurement with Fiber Bragg Grating Sensors
by Leonard Kropkowski, Tim Oestreich, Fangqi Li, Alexandra Burger, Antonio Nedjalkov, Andreas Würsig and Wolfgang Schade
Batteries 2025, 11(6), 218; https://doi.org/10.3390/batteries11060218 - 1 Jun 2025
Viewed by 1316
Abstract
An important aspect of lithium-ion batteries related to lifetime and aging is the change in state within the cells, which results from the expansion of the electrode materials and causes internal stress during operation. In this work, fiber optical sensors by means of [...] Read more.
An important aspect of lithium-ion batteries related to lifetime and aging is the change in state within the cells, which results from the expansion of the electrode materials and causes internal stress during operation. In this work, fiber optical sensors by means of Bragg gratings are utilized to determine the internal strain in the anode material. The collected data were employed to approximate aging-related changes in anode strain using a combination of established methods, such as the differential voltage and incremental capacity analysis. Moreover, additional methodologies are proposed and explored, substituting electrical data with optical strain measurements to quantify degradation effects linked to changes in strain. During the cycling of the cell, changes in the strain behavior have been observed and can be partially attributed to changes in the cell’s electrochemical composition. The methods suggested have proven effective in providing additional insights into the current state of the cells and tracking changes over time due to detected degradation effects. Full article
Show Figures

Figure 1

15 pages, 1251 KB  
Article
Benchmarking Nanopore Sequencing for CLN2 (TPP1) Mutation Detection: Integrating Rapid Genomics and Orthogonal Validation for Precision Diagnostics
by Betül Teker, Gökce Akan, Hasan Hüseyin Kazan, Özge Özgen, Suzin Tatonyan, Mehmet Cihan Balci, Meryem Karaca, Fulya Kurekci, Edibe Pembegül Yıldız, Olcay Güngor, Adnan Deniz, Asuman Gedikbasi, Fatmahan Atalar, Gülden Fatma Gokcay and Mehves Poda
Int. J. Mol. Sci. 2025, 26(11), 5037; https://doi.org/10.3390/ijms26115037 - 23 May 2025
Viewed by 953
Abstract
CLN2 disease (neuronal ceroid lipofuscinosis type 2) is an ultra-rare lysosomal storage disorder caused by mutations in the TPP1/CLN2 gene, resulting in impaired tripeptidyl peptidase 1 (TPP1) activity. The timely initiation of enzyme replacement therapy is pivotal for attenuating progressive and irreversible neurodegeneration. [...] Read more.
CLN2 disease (neuronal ceroid lipofuscinosis type 2) is an ultra-rare lysosomal storage disorder caused by mutations in the TPP1/CLN2 gene, resulting in impaired tripeptidyl peptidase 1 (TPP1) activity. The timely initiation of enzyme replacement therapy is pivotal for attenuating progressive and irreversible neurodegeneration. This study aimed to benchmark the performance of Oxford Nanopore long-read sequencing (ONT-LRS) for targeted TPP1 mutation detection in a Turkish CLN2 cohort and to assess its concordance with orthogonal validation methods, including Sanger sequencing and enzymatic activity assays. Using a custom-designed primer panel, the entire TPP1 gene (6846 bp) was sequenced on the Oxford Nanopore (ONT) MinIon platform in seven clinically confirmed CLN2 index patients and sixteen unaffected family members. Detected variants were validated via Sanger sequencing and correlated with TPP1 enzyme activity in leucocytes and dried blood spots. Four pathogenic or likely pathogenic TPP1 variants were identified: c.622C>T (p.Arg208*), c.857A>G (p.Asn286Ser), c.1204G>T (p.Glu402*), and c.225A>G (p.Gln75=), along with fourteen additional benign variants. Variant allele frequencies were 50% for c.622C>T, 28.6% for c.1204G>T, 14.3% for c.857A>G, and 7.1% for c.225A>G. Notably, this is the first report to document the homozygous state of the c.857A>G variant and the compound heterozygous configuration of the c225A>G and c.622C>T variants in CLN2 patients, thereby expanding the known mutational landscape. In contrast, the globally common variant c.509-1G>C was not observed, suggesting regional variation in TPP1 mutation patterns. Consistent with the prior Turkish studies, c.622C>T (p.Arg208*) was the most prevalent variant, followed by c.1204G>T (p.Glu402*). TPP1 enzymatic activity was significantly reduced in all affected individuals (p < 0.0001), supporting the functional relevance of the identified variants. ONT-LRS offers a robust, cost-effective platform for high-resolution analysis of the TPP1 gene. Integrating molecular and biochemical data improves diagnostic precision and supports timely, targeted interventions for CLN2 disease, particularly in regions with high consanguinity and limited diagnostic infrastructure. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop