Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = Aeromonas salmonicida infection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1097 KiB  
Review
Beyond Fish Pathogens: A Comprehensive Overview of Aeromonas salmonicida
by Xiaotong Qin, Zhongduo Li, Jinglan Guo, Feng Bai and Xiaodong Ling
Microbiol. Res. 2025, 16(7), 157; https://doi.org/10.3390/microbiolres16070157 - 8 Jul 2025
Viewed by 395
Abstract
Aeromonas salmonicida is an age-old fish pathogen widely distributed in seawater and freshwater environments that causes significant economic losses to the global aquaculture industry. Genetic mutations and the emergence of thermophilic strains are factors in the continuous expansion of A. salmonicida’s host [...] Read more.
Aeromonas salmonicida is an age-old fish pathogen widely distributed in seawater and freshwater environments that causes significant economic losses to the global aquaculture industry. Genetic mutations and the emergence of thermophilic strains are factors in the continuous expansion of A. salmonicida’s host range. Beyond infecting fish, A. salmonicida poses a potential threat to mammalian and human health. This review synthesizes recent global research advances concerning A. salmonicida, encompassing strain characteristics, genomic features, virulence factors, and pathogenic mechanisms, as well as the clinical manifestations in infected fish and mammals, and discusses prevention and treatment methods. Particular emphasis is placed on evaluating the potential prophylactic roles of Chinese herbs and bacteriophages against A. salmonicida infection. Furthermore, the review provides perspectives on future research directions, diagnostics, and disease management, informed by contemporary domestic and international studies on this pathogen. Full article
Show Figures

Graphical abstract

12 pages, 1364 KiB  
Article
Preliminary Study of the Antimicrobial Capacity of the Cutaneous Mucus and Smear Cytology of the Epidermis in a Population of European eels (Anguilla anguilla, Linnaeus 1758)
by Enrico Volpe, Sara Ciulli, Maria Morini, Laura Gentile, Antonio Casalini, Chiara Gentilezza and Luciana Mandrioli
Animals 2025, 15(12), 1810; https://doi.org/10.3390/ani15121810 - 19 Jun 2025
Viewed by 334
Abstract
The skin and its products, such as the mucus, represent an important defense mechanism against infection by pathogens. Various environmental conditions can alter mucus composition and/or cells embedded in this matrix. The analysis of skin mucus is considered a useful method to evaluate [...] Read more.
The skin and its products, such as the mucus, represent an important defense mechanism against infection by pathogens. Various environmental conditions can alter mucus composition and/or cells embedded in this matrix. The analysis of skin mucus is considered a useful method to evaluate the biological response of fish to stimuli. The mucus and cells can be considered suitable non-invasive biomarkers. With this preliminary study, an antibacterial capacity method was applied to cutaneous mucus samples of a European eel population. This standardized method highlighted the ability of the mucus to significantly counteract the proliferation of two bacteria, the opportunistic pathogen Aeromonas hydrophila and the primary pathogen Aeromonas salmonicida. The cytological method using skin scraping has proven to be a useful non-invasive tool, having allowed the highlighting of the two most represented cellular populations of the cutaneous covering, the epidermal cells and the goblet cells, in combination with mucous strands. Cytological findings did not disclose pathologic elements in the mucus. A broader use of these two non-invasive microbiological and cytological methods can provide useful information on fish health, indirectly contributing to the conservation of the species. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

12 pages, 2531 KiB  
Article
Isolation and Characterization of Aeromonas salmonicida Phage TSW001 and Its Application on Large Yellow Croaker
by Jun Yan, Zhenghao Guo and Jing Xie
Foods 2025, 14(12), 2082; https://doi.org/10.3390/foods14122082 - 12 Jun 2025
Viewed by 611
Abstract
Aeromonas salmonicida is a common spoilage bacterium found in refrigerated fish. In this study, a virulent bacteriophage was isolated from wastewater using A. salmonicida AS08 as the host, and it was designated as TSW001. Based on morphological characterization and whole-genome analysis, bacteriophage TSW001 [...] Read more.
Aeromonas salmonicida is a common spoilage bacterium found in refrigerated fish. In this study, a virulent bacteriophage was isolated from wastewater using A. salmonicida AS08 as the host, and it was designated as TSW001. Based on morphological characterization and whole-genome analysis, bacteriophage TSW001 was classified within the genus Tedavirus. Biological characterization revealed that TSW001 maintained a stable titer within a temperature range of 4~60 °C, a pH range of 4~9, and a salinity range of 50~1000 mM. The optimal multiplicity of infection (MOI) for TSW001 was 0.1, with a short latency period of approximately 10 min and a burst size of approximately 68 PFU/cell. When applied during the cold storage of large yellow croaker, the A. salmonicida count in the fish juice decreased by approximately 2.1~2.3 log10 CFU/mL over the first two days, while the count in the fish fillets decreased by approximately 1.1~1.8 log10 CFU/g. Furthermore, TSW001 demonstrated the ability to inhibit the formation of A. salmonicida biofilms. These results suggest that phage TSW001 is a promising biological antimicrobial agent for controlling A. salmonicida during the cold storage of seafood. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

22 pages, 6051 KiB  
Article
Identification, Expression Profiling, Microbial Binding, and Agglutination Analyses of Two Cathepsin B Genes in Black Rockfish (Sebastes schlegelii)
by Xinghua Zhuang, Xingchun Li, Wenpeng Li, Xuan Xu, Fengjun Lin, Yiying Liu, Chonghui Chen, Xiaoxu Zhang, Pei Zhang, Chao Li and Qiang Fu
Mar. Drugs 2025, 23(5), 213; https://doi.org/10.3390/md23050213 - 18 May 2025
Viewed by 538
Abstract
As a lysosomal cysteine protease of the papain subfamily, cathepsin B (CTSB) is characterized by its innate immune functions and hydrolytic activity. However, the functions of CTSB in the immune responses of teleosts remain to be clarified. In this study, two CTSB genes [...] Read more.
As a lysosomal cysteine protease of the papain subfamily, cathepsin B (CTSB) is characterized by its innate immune functions and hydrolytic activity. However, the functions of CTSB in the immune responses of teleosts remain to be clarified. In this study, two CTSB genes in S. schlegelii, SsCTSBa and SsCTSBb, were identified. Both SsCTSBa and SsCTSBb are composed of a 993 bp ORF encoding 330 amino acids. It was found in a phylogeny analysis that both genes form monophyletic clades with their orthologous counterparts of Honeycomb rockfish (Sebastes umbrosus). A synteny analysis indicated that the CTSB homologues were comparatively conserved during vertebrate evolution. Additionally, quantitative real-time PCR revealed the ubiquitous mRNA expression of SsCTSBa and SsCTSBb in all of the examined tissues, and substantially differential expression patterns could be observed following Aeromonas salmonicida infection. A subcellular localization analysis demonstrated that the distribution of SsCTSBa and SsCTSBb was mainly in the cytoplasm. Moreover, rSsCTSBa and rSsCTSBb showed strong binding to Poly(I:C) and exhibited diverse agglutination effects on different bacteria. Overall, these findings suggest that the CTSB genes in black rockfish might show essential functions in the host defense of teleosts against bacterial infections, providing valuable insights for further investigations into the immune mechanism of teleost CTSB. Full article
(This article belongs to the Section Marine Biotechnology Related to Drug Discovery or Production)
Show Figures

Figure 1

19 pages, 5377 KiB  
Article
Isolation, Identification, and Characteristics of Aeromonas salmonicida subsp. masoucida from Diseased Starry Flounder (Platichthys stellatus)
by Soo-Ji Woo, So-Sun Kim, Ahran Kim, Mi-Young Cho and Jeong-Wan Do
Pathogens 2025, 14(3), 257; https://doi.org/10.3390/pathogens14030257 - 5 Mar 2025
Cited by 2 | Viewed by 1419
Abstract
Aeromonas salmonicida is a predominant pathogen that infects fish. The pathogen A. salmonicida subsp. masoucida (ASM) was isolated for the first time from diseased starry flounders (Platichthys stellatus). Our study aimed to isolate, characterize, and investigate the pathogenicity of ASM. Bacterial [...] Read more.
Aeromonas salmonicida is a predominant pathogen that infects fish. The pathogen A. salmonicida subsp. masoucida (ASM) was isolated for the first time from diseased starry flounders (Platichthys stellatus). Our study aimed to isolate, characterize, and investigate the pathogenicity of ASM. Bacterial species were identified using 16s rRNA, gyrB, dnaJ, and vapA analyses. Phylogenetic tree analysis revealed that the ASM strains were clustered with the ASM ATCC strain and other strains isolated from black rockfish. In the antimicrobial susceptibility test, the three ASM strains were considered non-wild types for enrofloxacin, florfenicol, flumequine, oxolinic acid, and oxytetracycline susceptibility. Histopathological analysis revealed bacterial colonies in the secondary lamella and heart, indicating that ASM strains are highly virulent in fish. Comparative analysis and annotation via genome sequencing revealed that, among the 1156 factors, adherence factors were the most prevalent putative virulence determinants, followed by the effector delivery system and adherence. ASM was found to possess 43 type III secretion systems, 22 type VI secretion systems, 11 antimicrobial resistance genes, 3 stress genes, and prophage regions. These findings provide new insights into the virulence profile of ASM and highlight the risk posed by emerging pathogenic strains to starry flounders. Full article
(This article belongs to the Special Issue Emerging Pathogens in Aquaculture)
Show Figures

Figure 1

17 pages, 7244 KiB  
Article
Study on the Role and Pathological and Immune Responses of Silver Nanoparticles Against Two Aeromonas salmonicida subsp. salmonicida Strains at Different Virulence Levels in Rainbow Trout (Oncorhynchus mykiss)
by Yunqiang Guo, Chaoli Zheng, Yingfei Wang, Yongji Dang, Ruiyuan Li, Ye Tao, Yucheng Yang, Xiaofeng Sun, Zekun Song, Pengcheng Sun, Qian Zhang, Dandan Qian, Wenhao Ren, Xiyu Cao, Bowen Wang, Mengxi Xu, Bingyang Jiang, Yujing Li, Qing Sun, Jinye Wang, Lei Zheng and Yanling Sunadd Show full author list remove Hide full author list
Fishes 2025, 10(1), 29; https://doi.org/10.3390/fishes10010029 - 13 Jan 2025
Viewed by 944
Abstract
Aeromonas species are among the main pathogens causing rainbow trout infections. Silver nanoparticles (AgNPs) have a broad spectrum of antimicrobial properties and are usually produced by various green-synthesis methods. However, the application of commercialized AgNPs has not fully been clarified. Thus, the objective [...] Read more.
Aeromonas species are among the main pathogens causing rainbow trout infections. Silver nanoparticles (AgNPs) have a broad spectrum of antimicrobial properties and are usually produced by various green-synthesis methods. However, the application of commercialized AgNPs has not fully been clarified. Thus, the objective of this study was to evaluate the antibacterial activities of commercialized AgNPs (range of sizes 10–12 nm) on two contrasting A. salmonicida strains (I-1 and I-4), isolated from rainbow trout; the antibacterial mechanism, histopathological alterations and the expression of immune-related genes were investigated. In vitro, the minimal inhibitory concentration (MIC) was 10 µg/mL for I-1, and lowered to 9.5 µg/mL for I-4, respectively. AgNPs were shown to disrupt both the cell wall and membrane of I-1 and I-4, resulting in cell lysis and degradation. In vivo, rainbow trout challenged by immersed or intraperitoneally injected infection, the 10 µg/mL AgNP-treated groups, both showed delayed deaths and lower mortalities compared to the control groups, without any clinical signs and pathological changes. Especially for the virulent I-4, the enhanced expressions of immune-related genes TNF-α, IL-1β, IL-10 and IL-11 were significantly reduced in the AgNP-treated group, indicating a lesser inflammation due to the application of AgNPs. This study would lay theoretical foundation for the wide application of silver nanoparticles in fish diseases. Full article
(This article belongs to the Special Issue Fish Diseases Diagnostics and Prevention in Aquaculture)
Show Figures

Graphical abstract

18 pages, 5532 KiB  
Article
Antibacterial and Antibiofilm Activity of Essential Oils Against Aeromonas spp. Isolated from Rainbow Trout
by Patrícia Hudecová, Jana Koščová, Vanda Hajdučková, Ján Király and Peter Horňak
Animals 2024, 14(22), 3202; https://doi.org/10.3390/ani14223202 - 8 Nov 2024
Cited by 4 | Viewed by 1730
Abstract
Aeromonas spp. is a major pathogen in aquaculture with a great negative economic impact. Essential oils (EOs) are compounds of the secondary metabolism of plants known for their antibacterial and antibiofilm activities. In this study, in vitro antibacterial activity of eight EOs: tea [...] Read more.
Aeromonas spp. is a major pathogen in aquaculture with a great negative economic impact. Essential oils (EOs) are compounds of the secondary metabolism of plants known for their antibacterial and antibiofilm activities. In this study, in vitro antibacterial activity of eight EOs: tea tree (extracted from Melaleuca alternifolia), eucalyptus (extracted from Eucalyptus globulus LABILL.), knee timber (extracted from Pini mungo L.), peppermint (extracted from Mentha piperita L.), oregano (extracted from Origanum vulgare L.), rosemary (extracted from Rosmarinus officinalis L.), thyme (extracted from Thymus vulgaris L.) and pine EO (extracted from Pinus silvestris L.), obtained from Calendula a.s., was evaluated. Their antibacterial activity was demonstrated against Aeromonas spp. isolates. Oregano and thyme EOs showed the strongest activity against all tested isolates at low concentrations, followed by tea tree and peppermint EOs. The MIC value ranged from 0.06 µL/mL to 1.0 µL/mL. The tested EOs showed a significant antibiofilm activity against biofilm-forming isolates with MBIC50 ranging from 0.015 µL/mL to 0.25 µL/mL. All tested isolates were obtained from rainbow trout free of clinical signs of infection. Twelve isolates of Aeromonas salmonicida subsp. masoucida, four Aeromonas hydrophila, and four isolates of Aeromonas veronii were identified. The results of the in vitro study showed a significant effect of EOs against Aeromonas spp., which confirmed their potential for use in aquaculture as a prevention against bacterial diseases and a way of reducing the use of antibiotics. Full article
Show Figures

Figure 1

13 pages, 470 KiB  
Article
Evaluation of the Antimicrobial Effects of Olive Mill Wastewater Extract Against Food Spoiling/Poisoning, Fish-Pathogenic and Non-Pathogenic Microorganisms
by Dilek Kahraman Yılmaz, Fevziye Işıl Kesbiç, Ekrem Şanver Çelik, Deniz Anıl Odabaşı, Sevdan Yilmaz and Hany M. R. Abdel-Latif
Microorganisms 2024, 12(11), 2216; https://doi.org/10.3390/microorganisms12112216 - 31 Oct 2024
Cited by 2 | Viewed by 1346
Abstract
Although antibiotics are the main therapy for bacterial infections, the reports showed that the overuse (or misuse) of antibiotics will results in several problems such as the development of antibiotic-resistant strains, persistence of drug residues, and numerous environmental concerns. Therefore, finding antibiotic alternatives [...] Read more.
Although antibiotics are the main therapy for bacterial infections, the reports showed that the overuse (or misuse) of antibiotics will results in several problems such as the development of antibiotic-resistant strains, persistence of drug residues, and numerous environmental concerns. Therefore, finding antibiotic alternatives is considered of vital importance. Investigation of the antimicrobial properties of several plant substances and extracts is of great value to replace antibiotics. With this objective, this study aimed to evaluate the antimicrobial activities of an ethanolic extract prepared from olive mill wastewater (OMWW), which is a by-product of olive oil production with considerable environmental burden, against 38 bacterial strains, including fish-associated pathogens, non-pathogenic isolates, collection strains, and one yeast strain, Candida albicans. Disk diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal/fungicidal concentration (MBC/MFC) tests were used to determine the antimicrobial activity of the OMWWE. According to the results, OMWWE provoked strong inhibitory effects against Shewanella baltica strain SY-S145. It also showed a moderate inhibitory effect on Plesiomonas shigelloides strain SY-PS16 and Vibrio anguillarum strain SY-L24. The MIC and MBC of OMWWE on Shewanella baltica SY-S145, Vibrio gigantis strain C24, and V. anguillarum strain SY-L24 were 500 µg/mL. The MIC and MBC on V. parahaemolyticus ATCC 17802 were 1000 µg/mL, whereas the values for Aeromonas salmonicida ATCC 33658 were 500 µg/mL and 1000 µg/mL, respectively. To put it briefly, the OMWW extract showed high antimicrobial activity and can act as an environmentally friendly additive for the control and prevention of diseases caused by A. veronii, A. hydrophila, P. shigelloides, S. baltica, V. anguillarum, and V. parahaemolyticus. Its active agents also prevented infections of both fish-associated pathogens and food spoiling bacteria, which means it can not only help in the disease control mechanism but also in improving the safety of food by reduction of the microbial contamination. Full article
(This article belongs to the Special Issue Waterborne Pathogen Infection and Antibiotic Resistance)
15 pages, 7072 KiB  
Article
Correlation Analysis of the Transcriptome and Gut Microbiota in Salmo trutta Resistance to Aeromonas salmonicida
by Shuaijie Sun, Jun Lv, Kuankuan Lei, Zhuangzhuang Wang, Wanliang Wang, Zhichao Li, Ming Li and Jianshe Zhou
Microorganisms 2024, 12(10), 1983; https://doi.org/10.3390/microorganisms12101983 - 30 Sep 2024
Cited by 1 | Viewed by 1254
Abstract
Aeromonas salmonicida is a major pathogenic bacterium that poses a significant threat to salmonid fish. Yadong County, located in the Xizang Autonomous Region, is renowned for its characteristic industry of Salmo trutta aquaculture. In recent years, the outbreak of Bacterial Gill Disease (BGD) [...] Read more.
Aeromonas salmonicida is a major pathogenic bacterium that poses a significant threat to salmonid fish. Yadong County, located in the Xizang Autonomous Region, is renowned for its characteristic industry of Salmo trutta aquaculture. In recent years, the outbreak of Bacterial Gill Disease (BGD) has led to substantial economic losses for S. trutta farmers. Our prior research identified A. salmonicida as one of the primary culprits behind BGD. To mitigate the impact of A. salmonicida on S. trutta, we conducted a comprehensive study aimed at identifying genes associated with resistance to A. salmonicida. This involved transcriptome sequencing and 16S rRNA sequencing of intestinal flora, providing valuable insights for the study of disease resistance in S. trutta. In this study, we identified 324 genera with 5171 ASVs in the susceptible group and 293 genera with 5669 ASVs in the resistant group. Notably, Methylobacterium and Sphingomonas were common bacteria present in the salmon’s gut, and their proportions remained relatively stable before and after infection. Shewanella, with its antagonistic relationship with Aeromonas, may play a crucial role in the salmon’s defense against A. salmonicida. Several related genes were identified, including angptl4, cipcb, grasp, ccr9a, sulf1, mtmr11, B3GNT3, mt2, PLXDC1, and ank1b. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

19 pages, 64166 KiB  
Article
Genome-Wide Identification and Interaction Analysis of Turbot Heat Shock Protein 40 and 70 Families Suggest the Mechanism of Chaperone Proteins Involved in Immune Response after Bacterial Infection
by Yuanwei Geng, Yuxuan Gai, Yanping Zhang, Shengwei Zhao, Anlan Jiang, Xueqing Li, Kaiqing Deng, Fuxuan Zhang, Lingling Tan and Lin Song
Int. J. Mol. Sci. 2024, 25(14), 7963; https://doi.org/10.3390/ijms25147963 - 21 Jul 2024
Cited by 1 | Viewed by 1368
Abstract
Hsp40–Hsp70 typically function in concert as molecular chaperones, and their roles in post-infection immune responses are increasingly recognized. However, in the economically important fish species Scophthalmus maximus (turbot), there is still a lack in the systematic identification, interaction models, and binding site analysis [...] Read more.
Hsp40–Hsp70 typically function in concert as molecular chaperones, and their roles in post-infection immune responses are increasingly recognized. However, in the economically important fish species Scophthalmus maximus (turbot), there is still a lack in the systematic identification, interaction models, and binding site analysis of these proteins. Herein, 62 Hsp40 genes and 16 Hsp70 genes were identified in the turbot at a genome-wide level and were unevenly distributed on 22 chromosomes through chromosomal distribution analysis. Phylogenetic and syntenic analysis provided strong evidence in supporting the orthologies and paralogies of these HSPs. Protein–protein interaction and expression analysis was conducted to predict the expression profile after challenging with Aeromonas salmonicida. dnajb1b and hspa1a were found to have a co-expression trend under infection stresses. Molecular docking was performed using Auto-Dock Tool and PyMOL for this pair of chaperone proteins. It was discovered that in addition to the interaction sites in the J domain, the carboxyl-terminal domain of Hsp40 also plays a crucial role in its interaction with Hsp70. This is important for the mechanistic understanding of the Hsp40–Hsp70 chaperone system, providing a theoretical basis for turbot disease resistance breeding, and effective value for the prevention of certain diseases in turbot. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

14 pages, 5372 KiB  
Article
Mechanism of Ligilactobacillus salivarius GX118 in Regulating the Growth of Rainbow Trout (Oncorhynchus mykiss) and Resistance to Aeromonas salmonicida Infection
by Xiyu Cao, Bowen Wang, Wenhao Ren, Jiang Wang, Qi Liu, Yichao Ren and Xianliang Meng
Fishes 2024, 9(5), 157; https://doi.org/10.3390/fishes9050157 - 27 Apr 2024
Cited by 1 | Viewed by 1583
Abstract
Lactic acid bacteria Ligilactobacillus salivarius has been shown to be a substitute for antibiotics in the treatment of bacterial disease in high animals. However, its beneficial mechanism in fish farming is still unclear. This study evaluated the antagonistic effects of the Ligilactobacillus salivarius [...] Read more.
Lactic acid bacteria Ligilactobacillus salivarius has been shown to be a substitute for antibiotics in the treatment of bacterial disease in high animals. However, its beneficial mechanism in fish farming is still unclear. This study evaluated the antagonistic effects of the Ligilactobacillus salivarius GX118 strain on Aeromonas salmonicida and its regulation of rainbow trout growth in vivo and in vitro. The results found that GX118 produces an antibacterial substance that can directly destroy the cell wall of A. salmonicida. Whole-genome sequencing of GX118 revealed that Enterolysin A is a type III bacteriocin with antibacterial properties. An in vivo experiment showed that the supplementation of GX118 in diet competitively inhibited the colonization of A. salmonicida in the intestine. In addition, it was able to improve the growth performance of rainbow trout within a 21-day feeding experiment. The supplementation of GX118 increased the diversity of gut microbiota, in which the abundance of Bacteroidota, Blautia, and Rhodobacteraceae increased. In addition, the use of GX118 activated the expression of IFN-γ and NF-κB genes and reduced the expression level of IL-6 and IL-8, thus exhibiting a certain effect on activating the immunity of rainbow trout. This study provides a scientific basis for the development of antibacterial probiotics in the healthy farming of rainbow trout. Full article
(This article belongs to the Special Issue Fish Diseases Diagnostics and Prevention in Aquaculture)
Show Figures

Figure 1

11 pages, 1610 KiB  
Article
Evaluation of Immune Protection of a Bivalent Inactivated Vaccine against Aeromonas salmonicida and Vibrio vulnificus in Turbot
by Yunji Xiu, Jingyuan Yi, Ruixin Feng, Jiaxue Song, Yunfei Pang, Peng Liu and Shun Zhou
Fishes 2024, 9(4), 131; https://doi.org/10.3390/fishes9040131 - 9 Apr 2024
Cited by 2 | Viewed by 2321
Abstract
The Aeromonas salmonicida is responsible for causing furunculosis in various fish species. Furunculosis is a ubiquitous disease that affects the aquaculture industry and causes the mass mortality of turbot. Vibrio vulnificus is a pathogen that causes skin ulcers and hemorrhagic septicemia in fish, [...] Read more.
The Aeromonas salmonicida is responsible for causing furunculosis in various fish species. Furunculosis is a ubiquitous disease that affects the aquaculture industry and causes the mass mortality of turbot. Vibrio vulnificus is a pathogen that causes skin ulcers and hemorrhagic septicemia in fish, resulting in significant mortality in aquaculture. In this study, we have established a bivalent inactivated vaccine against A. salmonicida and V. vulnificus with Montanide™ ISA 763 AVG as an adjuvant. This bivalent inactivated vaccine was used to immunize turbot by intraperitoneal injection, and the relevant immune indexes were detected. The results demonstrate that the bivalent inactivated vaccine exhibited a relative percent survival (RPS) of 77% following A. salmonicida and V. vulnificus intraperitoneal challenge. The vaccinated group exhibited higher levels of acid phosphatase activity and lysozyme activity compared to the control group. ELISA results showed a significant increase in serum antibody levels in immunized turbot, which was positively correlated with immunity. In the kidney tissue, related immune genes (TLR5, CD4, MHCI and MHCII) were up-regulated significantly, showing that the vaccine can induce cellular and humoral immune responses in turbot. In conclusion, the bivalent inactivated vaccine against A. salmonicida and V. vulnificus was immunogenic, efficiently preventing turbot from infection, which has the potential to be applied in aquaculture. Full article
(This article belongs to the Special Issue Fish Diseases Diagnostics and Prevention in Aquaculture)
Show Figures

Figure 1

24 pages, 9423 KiB  
Article
Isolation and Characterization of a Novel Aeromonas salmonicida-Infecting Studiervirinae Bacteriophage, JELG-KS1
by Karina Svanberga, Jelena Avsejenko, Juris Jansons, Davids Fridmanis, Tatjana Kazaka, Aivars Berzins, Andris Dislers, Andris Kazaks and Nikita Zrelovs
Microorganisms 2024, 12(3), 542; https://doi.org/10.3390/microorganisms12030542 - 8 Mar 2024
Cited by 1 | Viewed by 2576
Abstract
Representatives of the bacterial genus Aeromonas are some of the most notorious aquaculture pathogens associated with a range of diseases in different fish species. As the world forges toward the post-antibiotic era, alternative options for combating bacterial pathogens are needed. One such alternative [...] Read more.
Representatives of the bacterial genus Aeromonas are some of the most notorious aquaculture pathogens associated with a range of diseases in different fish species. As the world forges toward the post-antibiotic era, alternative options for combating bacterial pathogens are needed. One such alternative option is phage biocontrol. In this study, a novel podophage—JELG-KS1—infecting Aeromonas salmonicida was retrieved from wastewater along with its host strain. The genome of the JELG-KS1 phage is a 40,505 bp dsDNA molecule with a GC% of 53.42% and 185 bp direct terminal repeats and encodes 53 predicted proteins. Genomic analysis indicates that JELG-KS1 might represent a novel genus within the subfamily Studiervirinae. Podophage JELG-KS1 is a strictly lytic phage without any identifiable virulence or AMR genes that quickly adsorbs onto the surface of host cells to initiate a 48 min long infectious cycle, resulting in the release of 71 ± 12 JELG-KS1 progeny virions per infected cell. JELG-KS1 effectively lyses its host population in vitro, even at very low multiplicities of infection. However, when challenged against a panel of Aeromonas spp. strains associated with diseases in aquaculture, JELG-KS1 shows host-specificity that is confined only to its isolation strain, immediately compromising its potential for Aeromonas spp. biocontrol in aquaculture. Full article
(This article belongs to the Topic Women in Aquaculture Research)
Show Figures

Figure 1

12 pages, 583 KiB  
Article
Aeromonas spp. in Freshwater Bodies: Antimicrobial Resistance and Biofilm Assembly
by Maria Nascimento, Joao Rodrigues, Rui Matias and Luisa Jordao
Antibiotics 2024, 13(2), 166; https://doi.org/10.3390/antibiotics13020166 - 8 Feb 2024
Cited by 4 | Viewed by 3157
Abstract
Aeromonas spp. are environmental bacteria able to infect animals and humans. Here, we aim to evaluate the role of biofilms in Aeromonas persistence in freshwater. Aeromonas were isolated from water and biofilm samples and identified by Vitek-MS and 16S rRNA sequencing. Antibiotic susceptibility [...] Read more.
Aeromonas spp. are environmental bacteria able to infect animals and humans. Here, we aim to evaluate the role of biofilms in Aeromonas persistence in freshwater. Aeromonas were isolated from water and biofilm samples and identified by Vitek-MS and 16S rRNA sequencing. Antibiotic susceptibility profiles were determined according to EUCAST, and a crystal violet assay was used to assess biofilm assembly. MTT and the enumeration of colony-forming units were used to evaluate biofilm and planktonic Aeromonas susceptibility to chlorination, respectively. Identification at the species level was challenging, suggesting the need to improve the used methodologies. Five different Aeromonas species (A. salmonicida, A. hydrophila, A. media, A. popoffii and A. veronii) were identified from water, and one species was identified from biofilms (A. veronii). A. veronnii and A. salmonicida presented resistance to different antibiotics, whith the highest resistance rate observed for A. salmonicida (multiple antibiotic resistance index of 0.25). Of the 21 isolates, 11 were biofilm producers, and 10 of them were strong biofilm producers (SBPs). The SBPs presented increased tolerance to chlorine disinfection when compared with their planktonic counterparts. In order to elucidate the mechanisms underlying biofilm tolerance to chlorine and support the importance of preventing biofilm assembly in water reservoirs, further research is required. Full article
(This article belongs to the Section Antibiofilm Strategies)
Show Figures

Figure 1

18 pages, 3703 KiB  
Article
Application of 4 × 44 Oligo Microarray to Transcriptomic Analysis of Immune Response in Rainbow Trout Infected with Aeromonas salmonicida
by Magdalena Małachowicz, Andrzej K. Siwicki, Stefan Dobosz and Roman Wenne
Appl. Sci. 2023, 13(23), 12793; https://doi.org/10.3390/app132312793 - 29 Nov 2023
Cited by 1 | Viewed by 1874
Abstract
Rainbow trout, one of the most economically important aquaculture fish species worldwide, is affected by the pathogenic bacteria A. salmonicida, which causes furunculosis outbreaks, leading to huge economic losses. In this study, an oligonucleotide microarray was applied to identify transcriptional changes in [...] Read more.
Rainbow trout, one of the most economically important aquaculture fish species worldwide, is affected by the pathogenic bacteria A. salmonicida, which causes furunculosis outbreaks, leading to huge economic losses. In this study, an oligonucleotide microarray was applied to identify transcriptional changes in the skin of rainbow trout individuals in response to a bacterial infection. Overall, 656 and 434 differentially expressed genes (DEGs) were identified at 2 and 6 days after a bacterial challenge (dpi), respectively. A comparison of moribund (2 dpi) and survivor fish (6 dpi) revealed 169 DEGs. Between these were many genes involved in immune response, including lysozymes, pattern recognition receptors (c-type lectins), antimicrobial peptides (cathelicidin and hepcidin), acute-phase proteins (serum amyloids and haptoglobin), complement cascade proteins (c3, c4, c6 and c7), interleukins (il11 and il1b) and chemokines (ccl19 and cxcl8). Alterations of leptin, eicosanoids and prostaglandins have been found, which suggest metabolic remodeling in conjunction with immune response. Further, the regulation of programmed cell death genes (caspase 8, bcl2 apoptosis regulator, nfkb inhibitor alpha and heme oxygenase) and structural proteins (collagens, myosins, keratins and metalloproteinases) was observed. This study provides, for the first time, a gene expression analysis of rainbow trout skin in response to A. salmonicida infection, revealing the complexity of defense strategies in response to furunculosis. Full article
(This article belongs to the Special Issue Recent Developments and Emerging Trends in Marine Biotechnology)
Show Figures

Figure 1

Back to TopTop