Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = Abies balsamea

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1408 KB  
Article
Effect of Pyroligneous Acid on Needle Retention and Certain Stress-Related Phytochemicals in Balsam Fir (Abies balsamea)
by Niruppama Senthilkumar, Ravalika Kasu, Raphael Ofoe, Lord Abbey and Mason T. MacDonald
Plants 2026, 15(2), 261; https://doi.org/10.3390/plants15020261 - 15 Jan 2026
Viewed by 153
Abstract
Balsam fir is an important specialty horticultural crop in eastern North America and commonly harvested for use as Christmas trees. Postharvest quality is a major challenge for producers, who are particularly concerned about postharvest needle retention. It was hypothesized that pyroligneous acid (PA) [...] Read more.
Balsam fir is an important specialty horticultural crop in eastern North America and commonly harvested for use as Christmas trees. Postharvest quality is a major challenge for producers, who are particularly concerned about postharvest needle retention. It was hypothesized that pyroligneous acid (PA) would help increase postharvest needle retention in balsam fir when supplied via xylem or foliage. This project first identified foliar spraying as the best application method, then designed a multivariate experiment with two factors. The first factor was foliar treatment (control, water, 1% PA, 2% PA, and 4% PA). The second factor was time, where branches were evaluated for needle abscission at 0, 2, 4, 6, and 8 weeks after harvest. The experiment was replicated 5 times and needle abscission, water uptake, chlorophyll, carotenoids, flavonoids, total phenolics, membrane injury, proline, and H2O2 production were all measured in response. Postharvest abscission reached 100% over the 8-week experiment and water uptake decreased by over 80%. Chlorophyll, proline, membrane injury, and H2O2 production all increased over time. Although PA did not improve needle retention compared to the control under the tested conditions, 4% PA spray increased proline concentration by 40% while decreasing membrane injury by 26%. Ultimately, PA did not consistently improve needle retention but did induce proline accumulation and membrane protection. Full article
(This article belongs to the Special Issue Advances in Biostimulant Use on Horticultural Crops)
Show Figures

Figure 1

15 pages, 4910 KB  
Review
Forest Dieback of Abies Balsamea in Eastern North America
by Adrian Bent, Mason T. MacDonald and James W. N. Steenberg
Forests 2025, 16(12), 1799; https://doi.org/10.3390/f16121799 - 29 Nov 2025
Viewed by 393
Abstract
An increased shift in climate change contributes to accelerated forest dieback around the world. Forest dieback is the process of a forest ecosystem suffering from disease, with mortality rates increasing among trees, potentially leading to the death of the ecosystem. Dieback can be [...] Read more.
An increased shift in climate change contributes to accelerated forest dieback around the world. Forest dieback is the process of a forest ecosystem suffering from disease, with mortality rates increasing among trees, potentially leading to the death of the ecosystem. Dieback can be caused through a variety of biotic and abiotic factors such as climate change, land use change, pests, pathogens, and invasive species. Balsam fir trees (Abies balsamea) in eastern North America are particularly vulnerable to dieback. Increased temperatures associated with climate change hinder their tree germination, growth, and competitiveness in an ecosystem. It has been determined that limiting forest dieback damage can be performed by monitoring forest conditions and identifying symptoms such as yellowing of leaves, delayed growth, and reduced stem and twig growth. Diversification was determined to be one of the primary methods of reducing the damage caused by forest dieback. Other methods that were found included decreasing deforestation and limiting the effects of climate change within an ecosystem. These strategies can be applied to balsam fir trees, although the efficacy of mitigation strategies would need to be explored long term. Full article
(This article belongs to the Special Issue Impacts of Climate Change and Disturbances on Forest Ecosystems)
Show Figures

Figure 1

10 pages, 1854 KB  
Article
Cost-Effective Monitoring of Spruce Budworm Larvae
by Marc Rhainds and Pierre Therrien
Insects 2025, 16(2), 108; https://doi.org/10.3390/insects16020108 - 22 Jan 2025
Cited by 1 | Viewed by 1379
Abstract
The spruce budworm, Choristoneura fumiferana Clem. (Lepidoptera: Tortricidae), is the most severe defoliator of balsam fir (Abies balsamea) in eastern Canada and northeast U.S.A. A large budworm outbreak is currently underway in the province of Québec, with 10.5 million hectares defoliated [...] Read more.
The spruce budworm, Choristoneura fumiferana Clem. (Lepidoptera: Tortricidae), is the most severe defoliator of balsam fir (Abies balsamea) in eastern Canada and northeast U.S.A. A large budworm outbreak is currently underway in the province of Québec, with 10.5 million hectares defoliated in 2023, up 14.1% from the year before. Populations of budworms are controlled using management guidelines of Forest Protection Strategy (FPS); the approach aims at killing defoliating larvae with aerial application of microbial insecticide, with the objective to limit defoliation and prevent tree mortality. The decision to treat/not treat a given forest block is based, in part, on local density of overwintering second instars (L2) collected at ca. 600 sampling points each year across the entire province at a cost of CAD 350 for three branches per site; the threshold for FPS (TFPS) corresponds to 20 L2/branch. Aerial defoliation maps also guide management decisions because FPS generally target areas within or in the vicinity of defoliated forest stands. Budworm abundance rapidly declines with distance to aerial defoliation (in km), to the extent that larval density rarely attains TFPS outside the core range of FPS (>15 km from defoliation). A cost-effective monitoring approach is proposed whereby forest blocks outside the core range of FPS are sampled every second year (as opposed to every year), representing a potential economy of CAD 40,000 annually. Full article
Show Figures

Figure 1

23 pages, 7104 KB  
Article
Simulating the Long-Term Response of Forest Succession to Climate Change in the Boreal Forest of Northern Ontario, Canada
by Guy R. Larocque, F. Wayne Bell, Eric B. Searle, Stephen J. Mayor, Thomas Schiks and Parvin Kalantari
Forests 2024, 15(8), 1417; https://doi.org/10.3390/f15081417 - 13 Aug 2024
Cited by 3 | Viewed by 2344
Abstract
The effect of climate change on forest dynamics is likely to increase in importance in the forthcoming decades. For this reason, it is essential to predict the extent to which changes in temperature, precipitation, and atmospheric CO2 might affect the development of [...] Read more.
The effect of climate change on forest dynamics is likely to increase in importance in the forthcoming decades. For this reason, it is essential to predict the extent to which changes in temperature, precipitation, and atmospheric CO2 might affect the development of forest ecosystems and successional pathways. The gap model ZELIG-CFS was used to simulate the potential long-term effects of climate change on species-specific annual change in mean basal area and stand density under two scenarios of representative concentration pathways (RCP), 4.5 and 8.5, for the boreal forest region of Ontario, Canada, where mean temperature, precipitation, and atmospheric CO2 are expected to increase. Forest ecosystems in this boreal region included pure and mixed stands of black spruce (Picea mariana [Mill.] B.S.P.), paper birch (Betula papyrifera Marsh.), balsam fir (Abies balsamea [L.] Mill.), jack pine (Pinus banksiana Lamb.), trembling aspen (Populus tremuloides Michx.), white spruce (Picea glauca [Moench] Voss), northern white cedar (Thuja occidentalis L.), American larch (Larix laricina [Du Roi] K. Koch), and balsam poplar (Populus balsamifera L.). Simulation results under climate change generally predicted a decline in the basal area and stand density for black spruce, balsam fir, jack pine, and white spruce, but an increase for paper birch, trembling aspen, American larch, and balsam poplar. However, the extent of change differed regionally among species. Forest composition is expected to change over the long term. Simulation results indicated that shade-intolerant deciduous and conifer species will increase their dominance over the 100-year time horizon. This transition toward the increasing presence of deciduous forests is likely explained by more favorable temperature conditions for their growth and development. Full article
(This article belongs to the Special Issue Forest Growth Modeling in Different Ecological Conditions)
Show Figures

Figure 1

25 pages, 2517 KB  
Article
Modelling Diameter at Breast Height Distribution for Eight Commercial Species in Natural-Origin Mixed Forests of Ontario, Canada
by Baburam Rijal and Mahadev Sharma
Forests 2024, 15(6), 977; https://doi.org/10.3390/f15060977 - 2 Jun 2024
Cited by 5 | Viewed by 2243
Abstract
Diameter at breast height (DBH) is a unique attribute used to characterize forest growth and development for forest management planning and to understand forest ecology. Forest managers require an array of DBHs of forest stands, which can be reconstructed using selected probability distribution [...] Read more.
Diameter at breast height (DBH) is a unique attribute used to characterize forest growth and development for forest management planning and to understand forest ecology. Forest managers require an array of DBHs of forest stands, which can be reconstructed using selected probability distribution functions (PDFs). However, there is a lack of practices that fit PDFs of sub-dominating species grown in natural mixed forests. This study aimed to fit PDFs and develop predictive models for PDF parameters, so that the predicted distribution would represent dynamic forest structures and compositions in mixed forest stands. We fitted three of the simplest forms of PDFs, log-normal, gamma, and Weibull, for the DBH of eight tree species, namely balsam fir (Abies balsamea [L.] Mill.), eastern white pine (Pinus strobus L.), paper birch (Betula papyrifera Marshall), red maple (Acer rubrum L.), red pine (Pinus resinosa Aiton), sugar maple (Acer saccharum Marshall), trembling aspen (Populus tremuloides Michx), and white spruce (Picea glauca [Moench] Voss), all grown in natural-origin mixed forests in Ontario province, Canada. We estimated the parameters of the PDFs as a function of DBH mean and standard deviation for these species. Our results showed that log-normal fit the best among the three PDFs. We demonstrated that the predictive model could estimate the recovered parameters unbiasedly for all species, which can be used to reconstruct the DBH distributions of these tree species. In addition to prediction, the cross-validated R2 for the DBH mean ranged between 0.76 for red maple and 0.92 for red pine. However, the R2 for the regression of the standard deviation ranged between 0.00 for red pine and 0.69 for sugar maple, although it produced unbiased predictions and a small mean absolute bias. As these mean and standard deviations are regressed with dynamic covariates (such as stem density and stand basal area), in addition to climate and static geographic variables, the predicted DBH distribution can reflect change over time in response to management or any type of disturbance in the regime of the given geography. The predictive model-based DBH distributions can be applied to the design of appropriate silviculture systems for forest management planning. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

21 pages, 5188 KB  
Article
Using Ground Penetrating Radar (GPR) to Predict Log Moisture Content of Commercially Important Canadian Softwoods
by Isabelle Duchesne, Queju Tong and Guillaume Hans
Forests 2023, 14(12), 2396; https://doi.org/10.3390/f14122396 - 8 Dec 2023
Viewed by 2091
Abstract
The non-destructive testing of wood fibre properties is crucial for informing forest management decisions and achieving optimal resource utilization. Moisture content (MC) is an important indicator of wood freshness and may reveal the presence of wood degradation. However, efficient methods are still needed [...] Read more.
The non-destructive testing of wood fibre properties is crucial for informing forest management decisions and achieving optimal resource utilization. Moisture content (MC) is an important indicator of wood freshness and may reveal the presence of wood degradation. However, efficient methods are still needed to better monitor this property along the forest–wood value chain. The objective of the study was to develop prediction models to evaluate log MC based on the propagation of ground penetrating radar (GPR) signals. A total of 165 trees representing four species (black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench) Voss), red spruce (Picea rubens Sarg.), and balsam fir (Abies balsamea (L.) Mill.)) were harvested in two regions of the province of Quebec. GPR signals were acquired in the green (fresh) state and at three subsequent drying stages. Partial least squares regression (PLSR) and locally weighted PLSR (LWPLSR) were employed to establish relationships between GPR signals (antenna frequency: 1.6 GHz) and log properties. The models were fitted on three calibration sets containing four drying stages and different species mixes. The LWPLSR models performed better than the PLSR models for predicting log MC, with a lower root mean square error (RMSEp range: 10.8%–20.2% vs. 13.0%–20.5%) and a higher R2p (0.63–0.87 vs. 0.62–0.82). Spruce-only models performed considerably better than fir-only models while multi-species models were in-between. Despite the complex anisotropy of wood and the physics of wave propagation, the GPR technology can be successfully used to estimate log moisture content, but the GPR-based MC models should be calibrated for each specific type of wood material. Full article
Show Figures

Figure 1

11 pages, 847 KB  
Article
Field Test of the Propheromones of the Whitemarked Tussock Moth (WMTM) Orgyia leucostigma (J.E. Smith) (Lepidoptera: Erebidae)
by Peter Mayo, Sumudu Deepa Abeysekera, Peter J. Silk, David I. MaGee, Gaetan Leclair, Jon Sweeney and Jeffrey Ogden
Insects 2023, 14(11), 880; https://doi.org/10.3390/insects14110880 - 15 Nov 2023
Cited by 1 | Viewed by 1691
Abstract
The whitemarked tussock moth (WMTM), Orgyia leucostigma (J.E. Smith) (Lepidoptera: Erebidae), is an economic pest in Nova Scotia, Canada, where it undergoes periodic outbreaks defoliating several tree species of economic value, including balsam fir, Abies balsamea (L.) Miller (Pinaceae). Herein is described a [...] Read more.
The whitemarked tussock moth (WMTM), Orgyia leucostigma (J.E. Smith) (Lepidoptera: Erebidae), is an economic pest in Nova Scotia, Canada, where it undergoes periodic outbreaks defoliating several tree species of economic value, including balsam fir, Abies balsamea (L.) Miller (Pinaceae). Herein is described a releasing device for the WMTM sex pheromone (Z,Z)-6, 9-heneicosadien-11-one based on a rubber septum, which converts pheromone precursors, such as acetals, namely (Z,Z)-11,11-dimethoxy-6,9-heneicosadiene and (Z,Z)-6,9-heneicosadien-11-one ethylene ketal, to the pheromone itself by the action of acetic acid and releases it over time. The pheromone is unstable in nature and, consequently, lures made with this compound will only attract WMTM for a day or two. The two pheromone precursors, however, are more stable, and are converted slowly into the pheromone by acetic acid impregnated in the releasing device, or by acidic conditions in the environment. The two pheromone precursors were synthesized in 2019 using a modified, previously published approach. Field trapping studies conducted from 2019–22 showed that traps baited with rubber septa loaded with either (Z,Z)-11,11-dimethoxy-6,9-heneicosadiene by itself or (Z,Z)-6,9-heneicosadien-11-one ethylene ketal plus acetic acid consistently caught significantly more WMTM than traps baited with blank septa in most experiments. Full article
Show Figures

Figure 1

16 pages, 3533 KB  
Article
Changes in Polar Lipid Composition in Balsam Fir during Seasonal Cold Acclimation and Relationship to Needle Abscission
by Mason T. MacDonald, Rajasekaran R. Lada, Gaye E. MacDonald, Claude D. Caldwell and Chibuike C. Udenigwe
Int. J. Mol. Sci. 2023, 24(21), 15702; https://doi.org/10.3390/ijms242115702 - 28 Oct 2023
Cited by 3 | Viewed by 1745
Abstract
Needle abscission in balsam fir has been linked to both cold acclimation and changes in lipid composition. The overall objective of this research is to uncover lipid changes in balsam fir during cold acclimation and link those changes with postharvest abscission. Branches were [...] Read more.
Needle abscission in balsam fir has been linked to both cold acclimation and changes in lipid composition. The overall objective of this research is to uncover lipid changes in balsam fir during cold acclimation and link those changes with postharvest abscission. Branches were collected monthly from September to December and were assessed for cold tolerance via membrane leakage and chlorophyll fluorescence changes at −5, −15, −25, −35, and −45 °C. Lipids were extracted and analyzed using mass spectrometry while postharvest needle abscission was determined gravimetrically. Cold tolerance and needle retention each significantly (p < 0.001) improved throughout autumn in balsam fir. There were concurrent increases in DGDG, PC, PG, PE, and PA throughout autumn as well as a decrease in MGDG. Those same lipids were strongly related to cold tolerance, though MGDG had the strongest relationship (R2 = 55.0% and 42.7% from membrane injury and chlorophyll fluorescence, respectively). There was a similar, albeit weaker, relationship between MGDG:DGDG and needle retention (R2 = 24.3%). Generally, a decrease in MGDG:DGDG ratio resulted in better cold tolerance and higher needle retention in balsam fir, possibly due to increased membrane stability. This study confirms the degree of cold acclimation in Nova Scotian balsam fir and presents practical significance to industry by identifying the timing of peak needle retention. It is suggested that MGDG:DGDG might be a beneficial tool for screening balsam fir genotypes with higher needle retention characteristics. Full article
(This article belongs to the Special Issue Abiotic Stresses in Plants: From Molecules to Environment)
Show Figures

Figure 1

19 pages, 9501 KB  
Article
Integrating the Rate of Moisture Loss into Needle Retention Testing to Improve the Selection of Balsam Fir (Abies balsamea) for Use as Christmas Trees
by Joel D. Tremblay, Ronald F. Smith and Loïc D’Orangeville
Forests 2023, 14(8), 1626; https://doi.org/10.3390/f14081626 - 11 Aug 2023
Cited by 2 | Viewed by 3033
Abstract
A study was conducted to identify balsam fir (Abies balsamea) for use in Christmas tree breeding programs in Northeastern North America. A total of sixty-four phenotypically good trees were identified from a provincial clonal seed orchard in New Brunswick, a multi-aged [...] Read more.
A study was conducted to identify balsam fir (Abies balsamea) for use in Christmas tree breeding programs in Northeastern North America. A total of sixty-four phenotypically good trees were identified from a provincial clonal seed orchard in New Brunswick, a multi-aged natural seed production area in Nova Scotia, and an operational plantation in Quebec, Canada. Trees were selected for good growth and form, numbers, and vigour of internodal branches, acceptable crown taper, needle colour, age class, branch angle, needle configuration, and freedom from insects and diseases or deformities, all traits deemed desirable in a Christmas tree. Three branches from each tree were collected at two harvest dates each year, one early and one late during the normal harvesting season in 2020, 2021, and 2022. Qualitative assessments of colour and branch pliability were performed weekly in conjunction with needle loss rub tests. A quantitative assessment of moisture loss was conducted weekly by measuring branch weights. The combination of qualitative and quantitative assessments was used to identify 7 of the 64 trees for which one or more tested branches consistently remained green and pliable, retained the majority of their needles, and lost moisture at a significantly reduced rate in all six testing periods. Grafts of the seven ‘Select’ trees are currently being integrated into seed orchards in the three participating provinces. These second-generation seed orchards are part of breeding programs designed to develop Christmas trees that will perform well under warm fall conditions, an outcome of climate change. The results from this study combined with the progeny testing of the ‘Select’ trees will be used to test for the heritability of needle retention, a key trait for the next generation of Christmas trees in the Northeast. Full article
Show Figures

Figure 1

11 pages, 2299 KB  
Article
Optimizing Bacillus thuringiensis (Btk) Aerial Spray Prescriptions in Mixed Balsam Fir-White Spruce Stands against the Eastern Spruce Budworm
by Alvaro Fuentealba, Émile Pelletier-Beaulieu, Alain Dupont, Christian Hébert, Richard Berthiaume and Éric Bauce
Forests 2023, 14(7), 1289; https://doi.org/10.3390/f14071289 - 22 Jun 2023
Cited by 8 | Viewed by 2124
Abstract
Forest protection against eastern spruce budworm, Choristoneura fumiferana (Clemens), relies on aerial applications of Bacillus thuringiensis (Btk). However, Btk prescriptions have been developed for balsam fir (Abies balsamea (L.) Mill.) stands, generating uncertainty as to the relevance of this protection [...] Read more.
Forest protection against eastern spruce budworm, Choristoneura fumiferana (Clemens), relies on aerial applications of Bacillus thuringiensis (Btk). However, Btk prescriptions have been developed for balsam fir (Abies balsamea (L.) Mill.) stands, generating uncertainty as to the relevance of this protection approach on white spruce (Picea glauca (Moench) Voss). The main goal of this study was to evaluate the efficacy of three Btk application treatments (early application, late application, and double application) for protecting white spruce and balsam fir in mixed stands. Our results show that all Btk treatments tested kept defoliation under the 50% threshold on balsam fir (27.7 to 38.1% less defoliation than in controls). In contrast, differences in defoliation among treatments were not significant for white spruce. Larval mortality was significantly lower on white spruce than on balsam fir. The low efficacy of Btk treatments on white spruce may be explained by its shoot phenology (most bud caps were still present during the early application), and its foliar chemistry, which could decrease Btk efficacy. Consequently, many larvae may survive simply because Btk spores do not reach them, or because they may consume sublethal doses. We recommend maintaining the current strategy in mixed stands, as it provides a good protection for balsam fir. Further research is needed to determine the causes of the low efficacy of Btk treatments on white spruce. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

13 pages, 1587 KB  
Article
Seasonal, Monthly, Daily, and Diel Growth, and Water Status Dynamics of Balsam Fir in a Cold and Humid Boreal Environment
by Shalini Oogathoo, Louis Duchesne, Daniel Houle, Daniel Kneeshaw and Nicolas Bélanger
Forests 2023, 14(4), 802; https://doi.org/10.3390/f14040802 - 13 Apr 2023
Cited by 5 | Viewed by 2472
Abstract
Despite new knowledge in recent years, our understanding of the phenology of wood formation for various species growing in different environments remains limited. To enhance our knowledge of the tree growth dynamics of boreal tree species, we investigated the average seasonal, monthly, daily, [...] Read more.
Despite new knowledge in recent years, our understanding of the phenology of wood formation for various species growing in different environments remains limited. To enhance our knowledge of the tree growth dynamics of boreal tree species, we investigated the average seasonal, monthly, daily, and diel patterns of tree growth and water status from 11 years of observations with the 15 min and 1.5 µm resolved stem radial size variation data of 12 balsam fir (Abies balsamea (L.) Mill.) trees growing in a cold and humid boreal environment. Growth only occurred above an air temperature threshold of 9–10 °C, and the maximal growth rate over the year (23–24 June) was synchronous with the maximal day length (20–21 June) and not with the maximal air temperature, which occurred on average about 2 weeks later (4–5 July). Tree growth was mostly restricted by air temperature and solar radiation under these cold and wet boreal conditions, but our results also highlight a turgor-driven growth mechanism. Diel dynamics reveal that tree growth is minimal during the day when the stem dehydrates, and higher past midnight when the stem is fully rehydrated. This pattern suggests that carbon assimilation through photosynthesis occurs primarily during the day, while energy production and carbon allocation to woody tissues occur primarily at night via cellular respiration. Overall, our results show that the temporal patterns of the growth and water status of balsam fir growing in cold and humid boreal environments are controlled by a set of environmental factors that influence various physiological processes and mechanisms, many of which still need to be documented. Full article
(This article belongs to the Special Issue Intrinsic Regulation of Diameter Growth in Woody Plants)
Show Figures

Figure 1

17 pages, 2808 KB  
Article
Balsam Fir (Abies balsamea (L.) Mill.) Wood Quality after Defoliation by Spruce Budworm (Choristoneura fumiferana Clem.) in the Boreal Forest of Quebec, Canada
by Audrey Lemay, Julie Barrette and Cornelia Krause
Forests 2022, 13(11), 1926; https://doi.org/10.3390/f13111926 - 16 Nov 2022
Cited by 5 | Viewed by 2011
Abstract
Eastern spruce budworm (Choristoneura fumiferana Clem.) is considered the most important disturbing insect in coniferous stands in eastern North America. During an outbreak, spruce budworm can cause severe defoliation in balsam fir (Abies balsamea (L.) Mill.), which can affect wood properties [...] Read more.
Eastern spruce budworm (Choristoneura fumiferana Clem.) is considered the most important disturbing insect in coniferous stands in eastern North America. During an outbreak, spruce budworm can cause severe defoliation in balsam fir (Abies balsamea (L.) Mill.), which can affect wood properties such as moisture content and mechanical properties. This project aimed to assess the influence of the duration of spruce budworm defoliation on the wood quality of mature balsam fir trees. To do this, we studied sapwood proportion, decay, moisture content, mechanical properties and tracheid dimensions in stands that had suffered three, four or five years of defoliation. We also compared living and dead balsam firs and evaluated the change in wood properties with time. Our results showed that dead balsam firs suffered from a loss of wood quality rapidly after their death, particularly in terms of moisture content and decay in the sapwood. Sapwood proportion was similar between living and dead trees, but the sapwood of dead trees contained more decay and had a lower moisture content than living trees. Mechanical properties and tracheid dimensions were 10% and 4% lower in dead trees than in living trees. We did not observe any major differences in wood properties between the three durations of defoliation, suggesting that wood degradation occurs before that. The study did not make it possible to determine the optimal duration of defoliation to harvest the stands. Full article
(This article belongs to the Special Issue Wood Quality and Mechanical Properties)
Show Figures

Figure 1

13 pages, 3270 KB  
Article
Linking Changes in Fatty Acid Composition to Postharvest Needle Abscission Resistance in Balsam Fir Trees
by Gaye E. MacDonald, Rajasekaran R. Lada, Claude D. Caldwell, Chibuike C. Udenigwe and Mason T. MacDonald
Forests 2022, 13(5), 800; https://doi.org/10.3390/f13050800 - 20 May 2022
Cited by 2 | Viewed by 2527
Abstract
Balsam fir needle retention and fatty acid profile changes due to cold acclimation throughout autumn, but little is known about the relationship between these two phenomena. The objective was to examine differences in FAs in contrasting needle abscission resistant balsam fir genotypes throughout [...] Read more.
Balsam fir needle retention and fatty acid profile changes due to cold acclimation throughout autumn, but little is known about the relationship between these two phenomena. The objective was to examine differences in FAs in contrasting needle abscission resistant balsam fir genotypes throughout autumn and early winter. Branches from genotypes with low and high needle abscission resistance (NAR) were collected from September to January and analyzed for FA composition. High NAR genotypes retained needles 120–130% longer than low NAR genotypes and NAR increased through autumn in both genotypes. There was approximately a 3:1 ratio of unsaturated: saturated FAs, which increased by 4% in favor of unsaturated fatty acids through autumn. Palmitic, palmitoleic, and linolenic acid content was significantly higher in high NAR versus low NAR genotypes; arachidic, oleic, linoleic, pinolenic, coniferonic, icosadienoic, and sciadonic acids were lower in high NAR genotypes versus low. Linolenic acid was of particular interest because it tended to decrease throughout autumn, to the point that high NAR genotypes were significantly lower in linolenic acid than low NAR genotypes in January. These changes may be linked to an increase in abscisic acid and/or jasmonic acid synthesis depleting linolenic acid stores and promoting postharvest needle abscission resistance. Full article
Show Figures

Figure 1

27 pages, 13159 KB  
Article
Evaluating the Performance of a Forest Succession Model to Predict the Long-Term Dynamics of Tree Species in Mixed Boreal Forests Using Historical Data in Northern Ontario, Canada
by Guy R. Larocque and F. Wayne Bell
Forests 2021, 12(9), 1181; https://doi.org/10.3390/f12091181 - 31 Aug 2021
Cited by 6 | Viewed by 4339
Abstract
Environmental concerns and economic pressures on forest ecosystems have led to the development of sustainable forest management practices. As a consequence, forest managers must evaluate the long-term effects of their management decisions on potential forest successional pathways. As changes in forest ecosystems occur [...] Read more.
Environmental concerns and economic pressures on forest ecosystems have led to the development of sustainable forest management practices. As a consequence, forest managers must evaluate the long-term effects of their management decisions on potential forest successional pathways. As changes in forest ecosystems occur very slowly, simulation models are logical and efficient tools to predict the patterns of forest growth and succession. However, as models are an imperfect representation of reality, it is desirable to evaluate them with historical long-term forest data. Using remeasured tree and stand data from three data sets from two ecoregions in northern Ontario, the succession gap model ZELIG-CFS was evaluated for mixed boreal forests composed of black spruce (Picea mariana [Mill.] B.S.P.), balsam fir (Abies balsamea [L.] Mill.), jack pine (Pinus banksiana L.), white spruce (Picea glauca [Moench] Voss), trembling aspen (Populus tremuloides Michx.), white birch (Betula papyrifera Marsh.), northern white cedar (Thuja occidentalis L.), American larch (Larix laricina [Du Roi] K. Koch), and balsam poplar (Populus balsamefera L.). The comparison of observed and predicted basal areas and stand densities indicated that ZELIG-CFS predicted the dynamics of most species consistently for periods varying between 5 and 57 simulation years. The patterns of forest succession observed in this study support gap phase dynamics at the plot scale and shade-tolerance complementarity hypotheses at the regional scale. Full article
(This article belongs to the Special Issue Simulation Models of the Dynamics of Forest Ecosystems)
Show Figures

Figure 1

18 pages, 5043 KB  
Article
Avian Predation in a Declining Outbreak Population of the Spruce Budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae)
by Jacques Régnière, Lisa Venier and Dan Welsh
Insects 2021, 12(8), 720; https://doi.org/10.3390/insects12080720 - 11 Aug 2021
Cited by 5 | Viewed by 3302
Abstract
The impact of avian predation on a declining population of the spruce budworm, Choristoneura fumifereana (Clem.), was measured using single-tree exclosure cages in a mature stand of balsam fir, Abies balsamea (L.), and white spruce, Picea glauca (Moench.) Voss. Bird population censuses and [...] Read more.
The impact of avian predation on a declining population of the spruce budworm, Choristoneura fumifereana (Clem.), was measured using single-tree exclosure cages in a mature stand of balsam fir, Abies balsamea (L.), and white spruce, Picea glauca (Moench.) Voss. Bird population censuses and observations of foraging and nest-feeding activity were also made to determine the response of budworm-linked warblers to decreasing food availability. Seasonal patterns of foraging. as well as foraging success in the declining prey population was compared to similar information from birds observed in another stand where the spruce budworm population was rising. Avian predation was an important source of mortality between the 4th instar and moth emergence in the declining outbreak population. Mortality by predation increased from negligible to over 98% as budworm density dropped from 100 to <1 larva/kg of host foliage, over 3 years. Calculations based on nest-feeding activity and basic metabolic demands support these observed rates. Seasonal and yearly differences in predation rates observed between the two host-tree species correspond to equivalent shifts in bird foraging behavior in response to dropping insect density. In particular, a preference for searching on white spruce disappeared, although budworm-linked birds remained more efficient at finding food on this plant. The ability to change foraging behavior as prey density dropped differed between bird species. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

Back to TopTop