Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = ALKBH5

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4108 KB  
Article
Comprehensive Explorations and Preliminary Experimental Verification of RNA Modification-Related Diagnostic Markers in the Subtype Classification of Peripheral Blood-Derived Mononuclear Cells Derived from Post-Traumatic Stress Disorder Patients
by Lesheng Wang, Gaomeng Luo, Sha Liu, Zhipeng Xu, Wei Wei and Xiang Li
Diseases 2025, 13(10), 323; https://doi.org/10.3390/diseases13100323 - 1 Oct 2025
Abstract
Background: The precise role of RNA modification in post-traumatic stress disorder (PTSD) remains incompletely understood. This study aims to elucidate the effects of five common RNA modifications in PTSD, specifically m6A, m5C, m1A, m7G, and [...] Read more.
Background: The precise role of RNA modification in post-traumatic stress disorder (PTSD) remains incompletely understood. This study aims to elucidate the effects of five common RNA modifications in PTSD, specifically m6A, m5C, m1A, m7G, and ψ. Methods: We extracted data from the GEO repository to conduct a series of bioinformatics analyses. These included differential analysis to identify key regulators of five common RNA modifications, model construction using random forest (RF), least absolute shrinkage and selection operator (LASSO), and nomogram techniques, as well as consensus clustering of RNA modification subtypes. Furthermore, GO enrichment analysis was performed on DEGs associated with various RNA modification patterns. Immune cell infiltration was assessed using PCA and ssGSEA. RT-qPCR was performed to validate RNA modification-related genes (RMGs). Results: Twenty-one differentially expressed RMGs were identified. LASSO and RF intersection yielded eight signature genes (YTHDC1, IGFBP1, IGF2BP1, ALKBH5, NSUN4, TET2, TET3, WDR4) that robustly diagnosed PTSD (AUC = 0.804). Furthermore, these feature genes were validated using RT-qPCR, which was basically consistent with the results of bioinformatics analysis. Consensus clustering analysis may reveal two distinguishable subtypes: clusterA marked by high immunoinflammation, and clusterB characterized by high-neuroendocrine dysregulation. Conclusions: RMGs may play a crucial role in the pathogenesis of PTSD. Analyzing RNA modification patterns could offer potential diagnostic markers and help to guide immunotherapeutic approaches or neurotransmitter system interventions for PTSD in the future. Full article
(This article belongs to the Section Neuro-psychiatric Disorders)
12 pages, 2443 KB  
Review
Functions of RNA N6-Methyladenosine Demethylases in Plant Development and Stress Responses
by Ran Su, Ying Cao, Wenjie Yu, Shanhua Lyu, Yinglun Fan and Haiyun Li
Agronomy 2025, 15(10), 2269; https://doi.org/10.3390/agronomy15102269 - 25 Sep 2025
Abstract
N6-methyladenosine (m6A), the most abundant internal modification in eukaryotic mRNA, regulates gene expression by modulating mRNA metabolism. Demethylases (“erasers”) specifically remove these m6A marks. In mammals, FTO and ALKBH5 (ALKBH family members) are key erasers regulating metabolism, [...] Read more.
N6-methyladenosine (m6A), the most abundant internal modification in eukaryotic mRNA, regulates gene expression by modulating mRNA metabolism. Demethylases (“erasers”) specifically remove these m6A marks. In mammals, FTO and ALKBH5 (ALKBH family members) are key erasers regulating metabolism, reproduction, and development. Notably, heterologous expression of human FTO in rice and potato significantly increase yield. In contrast, research on plant m6A demethylases is still in its infancy, though several ALKBH family members have been identified. These enzymes play crucial roles in regulating plant growth and development, as well as in mediating stress responses, highlighting their considerable potential in enhancing crop yield and improving agronomic traits. This review summarizes current knowledge on identified m6A demethylases, conducts a phylogenetic analysis of the ALKBH family across representative plant species, and elaborates on the roles of these enzymes in key biological processes such as flowering time regulation, fruit ripening, male fertility, and responses to both biotic and abiotic stresses. Further research on plant RNA m6A demethylases will deepen our understanding of RNA epigenetic regulatory mechanisms, uncover valuable genetic resources, and ultimately facilitate the breeding of high-yielding, high-quality crop varieties. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

12 pages, 1245 KB  
Article
Reduced Expression of m6A Demethylases FTO and ALKBH5 in Monocytes from the Site of Inflammation in Patients with Juvenile Idiopathic Arthritis
by Hisham I. Abu-Tawil, Lucas W. Picavet, Ellen C. N. van Vroonhoven, Alejandra Bodelón, Rianne C. Scholman, Nienke ter Haar, Arjan Boltjes, Sebastiaan J. Vastert and Jorg van Loosdregt
Int. J. Mol. Sci. 2025, 26(18), 9248; https://doi.org/10.3390/ijms26189248 - 22 Sep 2025
Viewed by 187
Abstract
N6-methyladenosine (m6A) has recently emerged as a post-transcriptional modulator governing cell-specific gene expression in innate immune cells, particularly in monocytes. Disruptions in m6A homeostasis, manifested as the altered expression of m6A-related proteins and m6 [...] Read more.
N6-methyladenosine (m6A) has recently emerged as a post-transcriptional modulator governing cell-specific gene expression in innate immune cells, particularly in monocytes. Disruptions in m6A homeostasis, manifested as the altered expression of m6A-related proteins and m6A levels, have been implicated in autoimmune disorders. Perturbations in m6A dynamics within total Peripheral blood mononuclear cells (PBMCs) have shown strong correlations with disease severity in rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). It remains unclear in which specific cell type(s) m6A homeostasis is disturbed, and also whether other rheumatic diseases such as juvenile idiopathic arthritis (JIA) show similar features. Here, we assess the involvement of m6A and m6A-regulatory proteins in JIA monocytes. Notably, the diminished expression of m6A-eraser proteins FTO and ALKBH5 was observed in JIA monocytes extracted from the inflamed joint. This resulted in increased m6A-methylated transcripts in monocytes from these patients. Correspondingly, we observed that culturing monocytes in the presence of synovial fluid from JIA inflamed joints reduced the expression of both FTO and ALKBH5. The knock-out of FTO in human monocytes of healthy controls increased monocyte activation, indicating the relevance of FTO and m6A in the context of JIA. These findings underscore the potential of ALKBH5 and FTO expression as a biomarker in JIA and identify the m6A machinery as a potential therapeutic target for the treatment of JIA and possibly other autoimmune diseases in the future. Full article
Show Figures

Figure 1

21 pages, 6957 KB  
Article
Integrated Multi-Omics Analysis Reveals the Role of Resveratrol in Regulating the Intestinal Function of Megalobrama amblycephala via m6A Methylation
by Zhengyan Gu, Qiaoqiao Mu, Linjie Qian, Yan Lin, Wenqiang Jiang, Siyue Lu, Linghong Miao and Xianping Ge
Int. J. Mol. Sci. 2025, 26(17), 8587; https://doi.org/10.3390/ijms26178587 - 3 Sep 2025
Viewed by 639
Abstract
Resveratrol (RES), a natural polyphenol with lipid metabolism-regulating properties, also demonstrates remarkable efficacy in strengthening intestinal barrier integrity. In order to elucidate the mechanism by which RES ameliorates intestinal damage and lipid metabolism disturbances in Megalobrama amblycephala under a high-fat (HF) diet, a [...] Read more.
Resveratrol (RES), a natural polyphenol with lipid metabolism-regulating properties, also demonstrates remarkable efficacy in strengthening intestinal barrier integrity. In order to elucidate the mechanism by which RES ameliorates intestinal damage and lipid metabolism disturbances in Megalobrama amblycephala under a high-fat (HF) diet, a conventional diet (CON), an HF diet (HF), or an HF diet supplemented with 0.6, 3, or 6 g/kg RES (HF + 0.06%, 0.3%, or 0.6% RES) was fed to fish. After 8 weeks, RES supplementation in the HF diet significantly improved the growth performance and alleviated hepatic lipid deposition. Microbiota profiling revealed RES improved intestinal barrier function by reducing α-diversity, Actinobacteria and Bosea abundances, and enriching Firmicutes abundance. RES also maintained the integrity of the intestinal physical barrier and inhibited the inflammatory response. MeRIP-seq analysis indicated that RES modulated intestinal mRNA m6A methylation by upregulating methyltransferase-like 3 (mettl3) and downregulating fat mass and obesity-associated gene (fto) and Alk B homolog 5 (alkbh5). Combined RNA-seq and MeRIP-seq data revealed that RES alleviated endoplasmic reticulum stress (ERS) by upregulating the m6A methylation and gene level of heat shock protein 70 (hsp70). Correlation analyses identified significant associations between intestinal microbiota composition and ERS, tight junction, and inflammation. In summary, RES ameliorates lipid dysregulation via a synergistic mechanism involving intestinal microbiota, m6A modification, ERS, barrier function, and inflammatory response. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

15 pages, 1488 KB  
Article
Deficiency of N1-Adenine Methyltransferase Aggravates RNA and Protein Aggregation
by Marion Alriquet, Roberto Arsiè, Giulia Calloni, Gian G. Tartaglia and R. Martin Vabulas
Cells 2025, 14(17), 1370; https://doi.org/10.3390/cells14171370 - 2 Sep 2025
Viewed by 736
Abstract
RNA modifications regulate diverse aspects of transcripts’ function and stability. Among these, N1-methyladenine (m1A) is a reversible mark primarily installed by the TRMT6/TRMT61A methyltransferase on tRNA, though it is also found on other RNA types. m1A has been implicated [...] Read more.
RNA modifications regulate diverse aspects of transcripts’ function and stability. Among these, N1-methyladenine (m1A) is a reversible mark primarily installed by the TRMT6/TRMT61A methyltransferase on tRNA, though it is also found on other RNA types. m1A has been implicated in protecting mRNAs during acute protein misfolding stress. However, the role of m1A under chronic proteotoxic conditions, such as intracellular amyloid aggregation, remains poorly understood. To address this gap, we examined the effects of reduced N1-adenine methylation in human cells undergoing amyloidogenesis. Suppression of the methyltransferase TRMT61A or overexpression of the m1A-specific demethylase ALKBH3 enhanced amyloid aggregation. A deficiency of N1-adenine methylation also impaired the expression of a reporter mRNA-encoded protein, highlighting the protective role of m1A in safeguarding transcript functionality. Proteomic analysis of amyloid aggregates from TRMT61A-deficient cells revealed increased co-aggregation of bystander proteins, particularly those with known RNA-binding activity. At the same time, the aggregates from methylation-deficient cells contained elevated levels of mRNAs. Collectively, our findings support a role for m1A in preventing RNA entanglement within aggregates and limiting RNA-mediated propagation of protein co-aggregation. Full article
Show Figures

Figure 1

23 pages, 8967 KB  
Article
Comprehensive Analysis of N6-Methyladenosine Methylation in Transverse Aortic Constriction-Induced Cardiac Fibrosis Based on MeRIP-Seq Analysis
by Shidong Liu, Pengying Zhao, Yuyuan He, Jieneng Wang, Bing Song and Cuntao Yu
Biomedicines 2025, 13(9), 2092; https://doi.org/10.3390/biomedicines13092092 - 27 Aug 2025
Viewed by 768
Abstract
Background: The function and mechanism of N6-methyladenosine (m6A) methylation in pressure-overload cardiac fibrosis remains limited and unclear. This study aims to analyze and predict m6A modifications present in mouse hearts because of transverse aortic constriction (TAC). Materials and Methods: Twelve male C57BL/6 mice [...] Read more.
Background: The function and mechanism of N6-methyladenosine (m6A) methylation in pressure-overload cardiac fibrosis remains limited and unclear. This study aims to analyze and predict m6A modifications present in mouse hearts because of transverse aortic constriction (TAC). Materials and Methods: Twelve male C57BL/6 mice were randomly assigned to two groups, TAC group and sham group. The RNA Dot Blot assay was employed to evaluate the overall m6A methylation levels in both TAC and sham mice. The expression level of m6A-related enzymes were investigated through RT-PCR and Western blotting. MeRIP-seq and RNA-seq analyses were conducted to identify differentially modified m6A genes and mRNA expression genes. The protein–protein interaction (PPI) network was carried out to choose potential hub genes. Additionally, the transcription factor (TF)–microRNA (miRNA) coregulatory network and the drug–hub gene interaction network were built based on these hub genes. Furthermore, molecular docking simulations were also performed to analyze the interactions between drugs and hub genes. Results: Compared with the sham group, the TAC group demonstrated elevated levels of global m6A methylation. METTL3 and METTL14 were significantly upregulated, whereas FTO and ALKBH5 were significantly downregulated following TAC. MeRIP-seq analysis identified 17,806 m6A peaks associated with 9184 genes and 16,392 m6A peaks associated with 8550 genes in the TAC and sham groups, respectively. In conjunction with RNA-seq data, 66 genes were identified as exhibiting concurrent differences in both m6A methylation levels and mRNA expression. Six hub genes, Cd33, Irf4, Nr4a2, Hspa1b, Nr4a1, and Adcy1, were identified through the construction of a PPI network. The TF-miRNA coregulatory network contains six hub genes, 31 miRNAs, and 24 TFs. The drug–hub genes interaction network included five hub genes and 36 candidate drugs. Conclusions: The m6A modification is prevalent in TAC-induced cardiac fibrosis and significantly contributes to the fibrotic process by regulating critical genes. In the future, it may emerge as one of the potential cardiac fibrosis therapeutic targets. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

16 pages, 1452 KB  
Article
Altered Expression of m6A-Associated Genes Is Linked with Poor Prognosis in Pediatric Acute Myeloid Leukemia Patients
by Parminder Kaur, Bollipogu Rajitha, Richa Jain, Pankaj Sharma, Prateek Bhatia, Shano Naseem, Amita Trehan and Minu Singh
Biomolecules 2025, 15(9), 1238; https://doi.org/10.3390/biom15091238 - 27 Aug 2025
Viewed by 559
Abstract
The dysregulation of m6A-related genes recognized as ‘writers’, ‘readers’, and ‘erasers’ is reported to be involved in the initiation, progression, and drug resistance of acute myeloid leukemia (AML). In the present study, we investigated the expression levels of various readers, writers, and erasers [...] Read more.
The dysregulation of m6A-related genes recognized as ‘writers’, ‘readers’, and ‘erasers’ is reported to be involved in the initiation, progression, and drug resistance of acute myeloid leukemia (AML). In the present study, we investigated the expression levels of various readers, writers, and erasers in pediatric AML patients. Additionally, we categorized the patients according to the molecular subtyping of common mutations and recurrent fusions and correlated the expression of m6A-associated genes with different molecular subtypes and evaluated their prognostic and clinical implications. A total of fifty-seven patients with pediatric de novo AML were enrolled in the study. The study cohort consisted of 41 males and 16 females with a median age of 7 years (range 1 to 12 years). A high expression of m6A RNA modification complex genes was noted in AML patients. Among the writers, METTL3 and METTL14 were found to be upregulated in 19 and 17 patients, the readers YTHDF1 and YTHDF2 showed higher expression in 6 and 10 patients, while a high expression of erasers FTO and ALKBH5 was found in 28 patients and 1 patient, respectively. Further, the expression of m6A regulators showed a significant association with genetic alterations including FLT3-ITD, RBM15::MKL fusions and NPM1 mutations. Additionally, while evaluating the prognostic implications, both the readers YTHDF1 and YTHDF2 showed a significant correlation with TLC at diagnosis (p < 0.05). Further, Kaplan–Meier estimation showed a poor event-free survival in cases with the overexpression of YTHDF1 (log-rank p = 0.028). Additionally, we noted a strong correlation between YTHDF1 overexpression and treatment-related mortality (log-rank p < 0.001), and a nearly significant correlation with YTHDF2 expression in such patients (log-rank p = 0.053) at a median follow-up of 8 months. Thus, our data suggest that m6A genes, especially readers YTHDF1 and YTHDF2, are involved in the disease prognosis of AML and probably function in an integrated manner with other m6A-modifying genes to subsequently play a role in AML pathogenesis. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapeutic Targets in Leukaemia)
Show Figures

Figure 1

20 pages, 1516 KB  
Review
Ferroptosis and Nrf2 Signaling in Head and Neck Cancer: Resistance Mechanisms and Therapeutic Prospects
by Jaewang Lee, Youngin Seo and Jong-Lyel Roh
Antioxidants 2025, 14(8), 993; https://doi.org/10.3390/antiox14080993 - 13 Aug 2025
Cited by 1 | Viewed by 1156
Abstract
Ferroptosis is an iron-dependent form of regulated cell death marked by lipid peroxidation in polyunsaturated phospholipids. In head and neck cancer (HNC), where resistance to chemotherapy and immunotherapy is common, ferroptosis offers a mechanistically distinct strategy to overcome therapeutic failure. However, cancer cells [...] Read more.
Ferroptosis is an iron-dependent form of regulated cell death marked by lipid peroxidation in polyunsaturated phospholipids. In head and neck cancer (HNC), where resistance to chemotherapy and immunotherapy is common, ferroptosis offers a mechanistically distinct strategy to overcome therapeutic failure. However, cancer cells often evade ferroptosis via activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key regulator of antioxidant and iron-regulatory genes. HNC remains therapeutically challenging due to therapy resistance driven by redox adaptation. This review highlights the ferroptosis pathway—a form of regulated necrosis driven by iron and lipid peroxidation—and its regulation by Nrf2, a master antioxidant transcription factor. We detail how Nrf2 contributes to ferroptosis evasion in HNC and summarize emerging preclinical studies targeting this axis. The review aims to synthesize molecular insights and propose therapeutic perspectives for overcoming resistance in HNC by modulating Nrf2–ferroptosis signaling. We conducted a structured narrative review of the literature using PubMed databases. Relevant studies from 2015 to 2025 focusing on ferroptosis, Nrf2 signaling, and head and neck cancer were selected based on their experimental design, novelty, and relevance to clinical resistance mechanisms. In HNC, Nrf2 mediates resistance through transcriptional upregulation of GPX4 and SLC7A11, epigenetic stabilization by PRMT4 and ALKBH5, and activation by FGF5 and platelet-derived extracellular vesicles. Epstein–Barr virus (EBV) infection also enhances Nrf2 signaling in nasopharyngeal carcinoma. More recently, loss-of-function KEAP1 mutations have been linked to persistent Nrf2 activation and upregulation of NQO1, which confer resistance to both ferroptosis and immune checkpoint therapy. Targeting NQO1 in KEAP1-deficient models restores ferroptosis and reactivates antitumor immunity. Additionally, the natural alkaloid trigonelline has shown promise in reversing Nrf2-mediated ferroptosis resistance in cisplatin-refractory tumors. Pharmacologic agents such as auranofin, fucoxanthin, carnosic acid, and disulfiram/copper complexes have demonstrated efficacy in sensitizing HNC to ferroptosis by disrupting the Nrf2 axis. This review summarizes emerging mechanisms of ferroptosis evasion and highlights therapeutic strategies targeting the Nrf2–ferroptosis network. Integrating ferroptosis inducers with immune and chemotherapeutic approaches may provide new opportunities for overcoming resistance in head and neck malignancies. Full article
(This article belongs to the Special Issue Oxidative Stress and NRF2 in Health and Disease—2nd Edition)
Show Figures

Graphical abstract

16 pages, 5477 KB  
Article
Structural Analysis of the AlkB Family in Poultry
by Yuling Niu, Kan Li, Xuerong You, Yutao Wu, Xue Du, Ayong Zhao and Zhijun Wang
Animals 2025, 15(13), 1942; https://doi.org/10.3390/ani15131942 - 1 Jul 2025
Viewed by 487
Abstract
The objective of this study was to identify the AlkB family genes in poultry using bioinformatics, and to explore their molecular characteristics, evolutionary relationships, and expression patterns to clarify their potential functions in poultry. (1) Methods: The study utilized the NCBI database to [...] Read more.
The objective of this study was to identify the AlkB family genes in poultry using bioinformatics, and to explore their molecular characteristics, evolutionary relationships, and expression patterns to clarify their potential functions in poultry. (1) Methods: The study utilized the NCBI database to obtain chicken genome data, and screened and validated AlkB family members (ALKBH1-5, ALKBH8, and FTO) by hmmsearch and TBtools. MEGA 11.0 was used for phylogenetic analysis, PHYRE2 and I-TASSER predicted protein structures, and the String database was used to construct an interoperability network. Finally, the tissue expression profiles were analyzed by using The Human Protein Atlas online database and qRT-PCR. (2) Results: Phylogenetic analysis revealed distinct avian and mammalian clusters, with chicken AlkB proteins exhibiting low sequence homology but conserved 3D structures compared to mammals. Chromosomal synteny and conserved domains highlighted evolutionary divergence, with ALKBH4 lacking typical AlkB structural motifs. Protein interaction networks linked ALKBH1/2/3/5/8/FTO, underscoring functional coordination in poultry adaptation. Tissue-specific expression showed high AlkB levels in brain tissues, while ALKBH5 dominated in muscle. During differentiation, ALKBH3, ALKBH5, and FTO expression significantly increased during myoblast differentiation. (3) Conclusions: This study identified seven AlkB family genes in poultry, revealing their phylogenetic classification into two subfamilies, conserved structural domains, chromosomal synteny, and tissue-specific expression patterns. Full article
(This article belongs to the Special Issue Genetic Diversity and Conservation of Local Poultry Breeds)
Show Figures

Figure 1

12 pages, 1031 KB  
Article
IDH1 Mutation Impacts DNA Repair Through ALKBH2 Rendering Glioblastoma Cells Sensitive to Artesunate
by Olivier Switzeny, Stefan Pusch, Markus Christmann and Bernd Kaina
Biomedicines 2025, 13(6), 1479; https://doi.org/10.3390/biomedicines13061479 - 16 Jun 2025
Cited by 1 | Viewed by 1225
Abstract
Background: Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are enzymes that catalyze the oxidative decarboxylation of isocitrate to alpha-ketoglutarate (α-KG), which is essential for many metabolic processes, including some steps in DNA repair. In tumors, notably in gliomas, IDH1 and IDH2 [...] Read more.
Background: Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are enzymes that catalyze the oxidative decarboxylation of isocitrate to alpha-ketoglutarate (α-KG), which is essential for many metabolic processes, including some steps in DNA repair. In tumors, notably in gliomas, IDH1 and IDH2 are frequently mutated. The mutation found in different cancers is functionally active, causing, instead of α-KG, the formation of 2-hydroxyglutarate (2-HG), which inhibits α-KG-dependent enzymes. Gliomas harboring mutated IDH1/2 show a better prognosis than IDH1 wild-type (wt) tumors of the same grade, which might result from the inhibition of DNA repair functions. A DNA repair enzyme dependent on α-KG is alkB homolog 2 (ALKBH2), which removes several lesions from DNA. These findings prompted us to investigate the response of glioma cells to artesunate (ART), a plant ingredient with genotoxic and anticancer activity currently used in several trials. Materials and Methods: We used isogenic glioblastoma cell lines that express IDH1 wild-type or, based on a TET-inducible system, the IDH1 mutant (mt) protein, and treated them with increasing doses of artesunate. We also treated glioblastoma cells with 2-HG, generated ALKBH2 knockout cells, and checked their sensitivity to the cytotoxic effects of artesunate. Results: We show that the cell-killing effect of ART is enhanced if the IDH1 mutant (R132H) is expressed in glioblastoma cells. Further, we show that 2-HG imitates the effect of IDH1mt as 2-HG ameliorates the cytotoxicity of ART. Finally, we demonstrate that the knockout of ALKBH2 causes the sensitization of glioblastoma cells to ART. Conclusions: The data indicate that ALKBH2 protects against the anticancer effect of ART, and the mutation of IDH1/2 commonly occurring in low-grade gliomas sensitizes to ART via an ALKBH2-dependent mechanism. The data support the use of ART in the therapy of IDH1/2-mutated cancers both in combination with chemotherapy and adjuvant treatment. Full article
(This article belongs to the Special Issue Glioma Therapy: Current Status and Future Prospects)
Show Figures

Figure 1

18 pages, 4438 KB  
Article
Strain-Divergent m6A Landscapes Modulate Nipah Virus Replication and METTL3 Inhibition Attenuates Virulence
by Ting Luo, Zhen Chen, Fang Zhang, Haibin Liu, Fang Huang, Xueyan Zhang, Jiangpeng Feng, Shuang Ding, Lishi Liu, Wuxiang Guan, Aiping Zeng and Haojie Hao
Viruses 2025, 17(6), 831; https://doi.org/10.3390/v17060831 - 9 Jun 2025
Viewed by 889
Abstract
Nipah virus (NiV), a highly lethal zoonotic paramyxovirus, displays strain-specific pathogenicity, yet the molecular basis for this divergence remains elusive. Here, we identify N6-methyladenosine (m6A) modification as a pivotal regulator of NiV replication. Higher m6A methylation levels on viral genomic RNA and mRNAs [...] Read more.
Nipah virus (NiV), a highly lethal zoonotic paramyxovirus, displays strain-specific pathogenicity, yet the molecular basis for this divergence remains elusive. Here, we identify N6-methyladenosine (m6A) modification as a pivotal regulator of NiV replication. Higher m6A methylation levels on viral genomic RNA and mRNAs are associated with the increased virulence observed in the NiV-Malaysia (NiV-M) strain compared to NiV-Bangladesh (NiV-B). Underlying this phenomenon, NiV infection orchestrates a reprogramming of the host m6A machinery by downregulating the methyltransferase METTL3 and the demethylase ALKBH5, while concurrently upregulating m6A reader proteins YTHDF1-3. Both METTL3 and ALKBH5 bind directly to NiV RNA, with METTL3 installing m6A to promote viral replication and ALKBH5 removing them to inhibit it. Strikingly, pharmacological inhibition of m6A modification markedly attenuates NiV replication in vitro and in vivo, underscoring the therapeutic potential of targeting the m6A pathway. Our study establishes m6A as a key determinant of NiV pathogenicity and provides a paradigm for host-directed antiviral strategies against high-risk RNA viruses. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

19 pages, 8378 KB  
Article
Melatonin Mitigates Cd-Induced Growth Repression and RNA m6A Hypermethylation by Triggering MMR-Mediated DNA Damage Response
by Zihan Tang, Hetong Wang, Xianpeng Wang, Richard A. Ludlow, Zhouli Liu, Min Zhang, Qijiang Cao, Wan Liu and Qiang Zhao
Plants 2025, 14(9), 1398; https://doi.org/10.3390/plants14091398 - 6 May 2025
Viewed by 862
Abstract
Melatonin (MT) has been found to mitigate cadmium (Cd) toxicity with negligible environmental risks. It remains poorly understood as to how MT mitigates Cd-induced growth repression and regulates RNA m6A methylation. We aimed to elucidate the effect of MT on growth [...] Read more.
Melatonin (MT) has been found to mitigate cadmium (Cd) toxicity with negligible environmental risks. It remains poorly understood as to how MT mitigates Cd-induced growth repression and regulates RNA m6A methylation. We aimed to elucidate the effect of MT on growth repression and RNA m6A methylation in Arabidopsis (Arabidopsis thaliana) exposed to Cd stress. MT mitigated, on average, 13.96% and 8.42% of growth repression resulting from Cd and mismatch repair (MMR) deficiency. The ameliorative effect on Cd stress was reduced by 70.56% and 34.23% in msh2 and msh6 mutants, respectively. With distinct dose–effect relationships, m6A hypermethylation responded to Cd stress rather than Cu stress, which was further elevated in MMR-deficient seedlings. MT reduced m6A levels by 22.98% even without stress induction, whereas the depressed m6A levels in MMR-deficient seedlings, greatly exceeding those in the WT. The “writer” and “eraser” gene expression responsible for m6A methylation was reduced with the concentration of stresses due to MT, but VIR and ALKBH9B no longer responded to Cd stress in msh2 and msh6. Despite the remarkable repression, MMR gene expression was regularly promoted by MT under Cd and Cu stress. Our study provides novel insights into the molecular mechanisms underlying the restorative effects of MT on growth repression and m6A methylation regulation, which shed light on Cd phytoremediation. Full article
(This article belongs to the Special Issue Application of Melatonin to Abiotic Stress in Horticultural Crops)
Show Figures

Figure 1

16 pages, 2771 KB  
Article
An Investigation of the RNA Modification m6A and Its Regulatory Enzymes in Rat Brains Affected by Chronic Morphine Treatment and Withdrawal
by Anna Hronova, Eliska Pritulova, Lucie Hejnova and Jiri Novotny
Int. J. Mol. Sci. 2025, 26(9), 4371; https://doi.org/10.3390/ijms26094371 - 4 May 2025
Cited by 1 | Viewed by 1029
Abstract
N6-methyladenosine (m6A) is one of the most prevalent methylated modifications of mRNA in eukaryotes. This reversible alteration can directly or indirectly influence biological functions, including RNA degradation, translation, and splicing. This study investigates the impact of chronic morphine administration and varying [...] Read more.
N6-methyladenosine (m6A) is one of the most prevalent methylated modifications of mRNA in eukaryotes. This reversible alteration can directly or indirectly influence biological functions, including RNA degradation, translation, and splicing. This study investigates the impact of chronic morphine administration and varying withdrawal durations (1 day, 1 week, 4 weeks, and 12 weeks) on the m6A modification levels in brain regions critical to addiction development and persistence. Our findings indicate that in the prefrontal cortex, the m6A levels and METTL3 expression decrease, accompanied by an increase in FTO and ALKBH5 expression, followed by fluctuating, but statistically insignificant changes in methylation-regulating enzymes over prolonged withdrawal. In the striatum, reductions in m6A levels and METTL3 expression are observed at 4 weeks of withdrawal, preceded by non-significant fluctuations in enzyme expression and the m6A modification levels. In contrast, no changes in the m6A modification levels or the expression of related enzymes are detected in the hippocampus and the cerebellum. Our data suggest that m6A modification and its regulatory enzymes undergo region-specific and time-dependent changes in response to chronic morphine exposure and subsequent withdrawal. Full article
(This article belongs to the Special Issue New Advances in Opioid Research)
Show Figures

Figure 1

14 pages, 3629 KB  
Article
Identification and Functional Exploration of the ALKBH Gene Family in Oriental Melon Fruit Ripening
by Chong Zhang, Xinqi Guo, Ying Zhang, Hongbo Pang and Qiang Chen
Int. J. Mol. Sci. 2025, 26(9), 4254; https://doi.org/10.3390/ijms26094254 - 29 Apr 2025
Viewed by 746
Abstract
N6-methyladenosine (m6A) methylation functions as a vital post-transcriptional and epigenetic modification in higher plants regulated by α-ketoglutarate-dependent dioxygenases (ALKBH). However, the role of ALKBH genes in oriental melon (Cucumis melo L.) fruit ripening has not been explored. Therefore, we treated [...] Read more.
N6-methyladenosine (m6A) methylation functions as a vital post-transcriptional and epigenetic modification in higher plants regulated by α-ketoglutarate-dependent dioxygenases (ALKBH). However, the role of ALKBH genes in oriental melon (Cucumis melo L.) fruit ripening has not been explored. Therefore, we treated oriental melon with an exogenous m6A demethylase inhibitor (mechlorfenamic acid) then analyzed endogenous ethylene production and ripening-related indicators to explore the effects of m6A methylation on ripening. Bioinformatics and real-time quantitative PCR analyses were used to determine the impact of ALKBH genes on key ethylene synthesis gene expression. Treatment effectively inhibited endogenous ethylene production, firmness changes, and soluble solid contents, thereby extending fruit ripening. Eight ALKBH gene family members belonging to five major groups were identified in the melon genome. All members were expressed in ripening fruits, with different expression patterns during ripening. CmALKBH6, CmALKBH7, and CmALKBH8 expression was inhibited by an ethylene inhibitor (1-methylcyclopropene). The transient overexpression (OE) of CmALKBH8 in oriental melon led to the increased expression of the ethylene synthesis genes CmACS1, CmACS2, and CmACO1. In summary, the ethylene-regulated gene CmALKBH8 may participate in oriental melon fruit ripening regulation by modulating the methylation levels of ethylene synthesis-related genes. These findings help us better understand how m6A methylation regulates melon ripening. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 2900 KB  
Article
Analysis of Genotype and Expression of FTO and ALKBH5 in a MENA-Region Renal Cell Carcinoma Cohort
by Muna Abdalla Alhammadi, Burcu Yener Ilce, Poorna Manasa Bhamidimarri, Amal Bouzid, Nival Ali, Reem Sami Alhamidi, Alaa Mohamed Hamad, Mona Mahfood, Abdelaziz Tlili, Iman M. Talaat and Rifat Hamoudi
Cancers 2025, 17(9), 1395; https://doi.org/10.3390/cancers17091395 - 22 Apr 2025
Viewed by 1004
Abstract
Background/Objectives: RNA-modifying proteins play a crucial role in the progression of cancer. The fat mass and obesity-associated protein (FTO) and alkB homolog 5 RNA demethylase (ALKBH5) are RNA-demethylating proteins that have contrasting effects in renal cell carcinoma (RCC) among different populations. This [...] Read more.
Background/Objectives: RNA-modifying proteins play a crucial role in the progression of cancer. The fat mass and obesity-associated protein (FTO) and alkB homolog 5 RNA demethylase (ALKBH5) are RNA-demethylating proteins that have contrasting effects in renal cell carcinoma (RCC) among different populations. This research investigates the genotype and expression levels of FTO and ALKBH5 in RCC patients from the Middle East and Northern Africa (MENA) region. Methods: Formalin-fixed paraffin-embedded samples from the kidney biopsies of RCC patients and controls were examined using targeted DNA sequencing, whole transcriptome profiling, and immunohistochemistry. Results: Our findings show that the rs11075995T variant in FTO is associated with a heightened risk of clear-cell RCC (ccRCC). ALKBH5 and FTO protein expression were significantly lower in ccRCC and chromophobe RCC (chRCC) patients but not in papillary RCC (pRCC) patients. In ccRCC, transcriptomic data revealed a significant downregulation of FTO (log2FC = −5.2, q < 0.001) and ALKBH5 (log2FC = −4.7, q < 0.001) compared to controls. A significant negative correlation was found in ccRCC between FTO expression and T allele frequency in rs11075995, suggesting that FTO expression is affected. Conclusions: This is the first demonstration of the association of the dysregulated expression of FTO and ALKBH5 in ccRCC and chRCC patients from the MENA region. FTO variant rs11075995T increased the risk of ccRCC and was negatively associated with FTO protein expression. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Graphical abstract

Back to TopTop