Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (442)

Search Parameters:
Keywords = AC-DC-AC test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3802 KiB  
Article
Parameter Identification and Speed Control of a Small-Scale BLDC Motor: Experimental Validation and Real-Time PI Control with Low-Pass Filtering
by Ayman Ibrahim Abouseda, Resat Ozgur Doruk and Ali Amini
Machines 2025, 13(8), 656; https://doi.org/10.3390/machines13080656 - 27 Jul 2025
Viewed by 376
Abstract
This paper presents a structured and experimentally validated approach to the parameter identification, modeling, and real-time speed control of a brushless DC (BLDC) motor. Electrical parameters, including resistance and inductance, were measured through DC and AC testing under controlled conditions, respectively, while mechanical [...] Read more.
This paper presents a structured and experimentally validated approach to the parameter identification, modeling, and real-time speed control of a brushless DC (BLDC) motor. Electrical parameters, including resistance and inductance, were measured through DC and AC testing under controlled conditions, respectively, while mechanical and electromagnetic parameters such as the back electromotive force (EMF) constant and rotor inertia were determined experimentally using an AVL dynamometer. The back EMF was obtained by operating the motor as a generator under varying speeds, and inertia was identified using a deceleration method based on the relationship between angular acceleration and torque. The identified parameters were used to construct a transfer function model of the motor, which was implemented in MATLAB/Simulink R2024b and validated against real-time experimental data using sinusoidal and exponential input signals. The comparison between simulated and measured speed responses showed strong agreement, confirming the accuracy of the model. A proportional–integral (PI) controller was developed and implemented for speed regulation, using a low-cost National Instruments (NI) USB-6009 data acquisition (DAQ) and a Kelly controller. A first-order low-pass filter was integrated into the control loop to suppress high-frequency disturbances and improve transient performance. Experimental tests using a stepwise reference speed profile demonstrated accurate tracking, minimal overshoot, and robust operation. Although the modeling and control techniques applied are well known, the novelty of this work lies in its integration of experimental parameter identification, real-time validation, and practical hardware implementation within a unified and replicable framework. This approach provides a solid foundation for further studies involving more advanced or adaptive control strategies for BLDC motors. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

32 pages, 10857 KiB  
Article
Improved Fault Resilience of GFM-GFL Converters in Ultra-Weak Grids Using Active Disturbance Rejection Control and Virtual Inertia Control
by Monigaa Nagaboopathy, Kumudini Devi Raguru Pandu, Ashmitha Selvaraj and Anbuselvi Shanmugam Velu
Sustainability 2025, 17(14), 6619; https://doi.org/10.3390/su17146619 - 20 Jul 2025
Viewed by 343
Abstract
Enhancing the resilience of renewable energy systems in ultra-weak grids is crucial for promoting sustainable energy adoption and ensuring a reliable power supply during disturbances. Ultra-weak grids characterized by a very low Short-Circuit Ratio, less than 2, and high grid impedance significantly impair [...] Read more.
Enhancing the resilience of renewable energy systems in ultra-weak grids is crucial for promoting sustainable energy adoption and ensuring a reliable power supply during disturbances. Ultra-weak grids characterized by a very low Short-Circuit Ratio, less than 2, and high grid impedance significantly impair voltage and frequency stability, imposing challenging conditions for Inverter-Based Resources. To address these challenges, this paper considers a 110 KVA, three-phase, two-level Voltage Source Converter, interfacing a 700 V DC link to a 415 V AC ultra-weak grid. X/R = 1 is controlled using Sinusoidal Pulse Width Modulation, where the Grid-Connected Converter operates in Grid-Forming Mode to maintain voltage and frequency stability under a steady state. During symmetrical and asymmetrical faults, the converter transitions to Grid-Following mode with current control to safely limit fault currents and protect the system integrity. After fault clearance, the system seamlessly reverts to Grid-Forming Mode to resume voltage regulation. This paper proposes an improved control strategy that integrates voltage feedforward reactive power support and virtual capacitor-based virtual inertia using Active Disturbance Rejection Control, a robust, model-independent controller, which rapidly rejects disturbances by regulating d and q-axes currents. To test the practicality of the proposed system, real-time implementation is carried out using the OPAL-RT OP4610 platform, and the results are experimentally validated. The results demonstrate improved fault current limitation and enhanced DC link voltage stability compared to a conventional PI controller, validating the system’s robust Fault Ride-Through performance under ultra-weak grid conditions. Full article
Show Figures

Figure 1

27 pages, 3704 KiB  
Article
Increasing Efficiency of Energy Conversion Systems from Renewable Sources Using Voltage Source Inverters with Soft Switching of Transistors
by Witold Mazgaj and Zbigniew Szular
Energies 2025, 18(13), 3474; https://doi.org/10.3390/en18133474 - 1 Jul 2025
Viewed by 206
Abstract
This article presents proposals to increase the efficiencies of energy conversion systems from renewable sources using a soft-switching technique in three-phase voltage source inverters. The first part of this article briefly presents basic systems for generating energy from renewable sources. Special attention is [...] Read more.
This article presents proposals to increase the efficiencies of energy conversion systems from renewable sources using a soft-switching technique in three-phase voltage source inverters. The first part of this article briefly presents basic systems for generating energy from renewable sources. Special attention is paid to both photovoltaic and wind power plants. The next section describes the voltage source inverter with the soft-switching system of transistors, which is resistant to disturbances in the control systems of inverters. Laboratory tests on cooperation between the voltage source inverter and the AC grid are carried out for two cases, when energy is transmitted from the DC circuit to the AC grid and vice versa. In the final part, the efficiencies of energy conversion systems operating under the voltage source inverter with the soft-switching technique are compared with those of an inverter using hard switching of transistors. A comparison is made for energy conversion systems with a rated power of 100 kW and 1 MW. Full article
Show Figures

Figure 1

23 pages, 6307 KiB  
Article
Enhanced Sliding Mode Control for Dual MPPT Systems Integrated with Three-Level T-Type PV Inverters
by Farzaneh Bagheri, Jakson Bonaldo, Naki Guler, Marco Rivera, Patrick Wheeler and Rogerio Lima
Energies 2025, 18(13), 3344; https://doi.org/10.3390/en18133344 - 26 Jun 2025
Viewed by 379
Abstract
Dual Maximum Power Point Tracking (MPPT) inverters are essential in residential and small commercial solar power systems, optimizing power extraction from two independent solar panel arrays to enhance efficiency and energy harvesting. On the other hand, the Three-Level T-Type Voltage Source Inverter (3L [...] Read more.
Dual Maximum Power Point Tracking (MPPT) inverters are essential in residential and small commercial solar power systems, optimizing power extraction from two independent solar panel arrays to enhance efficiency and energy harvesting. On the other hand, the Three-Level T-Type Voltage Source Inverter (3L T-Type VSI) is known for its reduced switching losses, improved harmonic distortion, and reduced part count in comparison to other three-level topologies. In this paper, a novel architecture is proposed to integrate the dual MPPT structure directly to each DC-side split capacitor of the 3L T-Type VSI, taking advantage of the intrinsic characteristics of the inverter’s topology. Further performance enhancement is achieved by integrating a classical MPPT strategy to the control framework to make it feasible for a real-case grid integration. The combination of these methods ensures faster and stable tracking under dynamic irradiance conditions. Considering that strategies dedicated to balancing the DC-link capacitor’s voltage slightly affect the AC-side current waveform, an enhanced sliding mode control (SMC) strategy tailored for dual MPPT and 3L T-Type VSI is deployed, combining the simplicity of conventional PI controllers used in the independent MPPT-based DC-DC converters with the superior robustness and dynamic performance of SMC. Real-time results obtained using the OPAL-RT Hardware-in-the-Loop platform validated the performance of the proposed control strategy under realistic test scenarios. The current THD was maintained below 4.8% even under highly distorted grid conditions, and the controller achieved a steady state within approximately 15 ms following perturbations in the DC-link voltage, sudden irradiance variations, and voltage sags and swells. Additionally, the power factor remained unitary, enhancing power transfer from the renewable source to the grid. The proposed system was able to achieve efficient power extraction while maintaining high power quality (PQ) standards for the output, positioning it as a practical and flexible solution for advanced solar PV systems. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

17 pages, 2795 KiB  
Article
Coordinated Control Strategy-Based Energy Management of a Hybrid AC-DC Microgrid Using a Battery–Supercapacitor
by Zineb Cabrane, Donghee Choi and Soo Hyoung Lee
Batteries 2025, 11(7), 245; https://doi.org/10.3390/batteries11070245 - 25 Jun 2025
Cited by 1 | Viewed by 692
Abstract
The need for electrical energy is dramatically increasing, pushing researchers and industrial communities towards the development and improvement of microgrids (MGs). It also encourages the use of renewable energies to benefit from available sources. Thereby, the implementation of a photovoltaic (PV) system with [...] Read more.
The need for electrical energy is dramatically increasing, pushing researchers and industrial communities towards the development and improvement of microgrids (MGs). It also encourages the use of renewable energies to benefit from available sources. Thereby, the implementation of a photovoltaic (PV) system with a hybrid energy storage system (HESS) can create a standalone MG. This paper presents an MG that uses photovoltaic energy as a principal source. An HESS is required, combining batteries and supercapacitors. This MG responds “insure” both alternating current (AC) and direct current (DC) loads. The batteries and supercapacitors have separate parallel connections to the DC bus through bidirectional converters. The DC loads are directly connected to the DC bus where the AC loads use a DC-AC inverter. A control strategy is implemented to manage the fluctuation of solar irradiation and the load variation. This strategy was implemented with a new logic control based on Boolean analysis. The logic analysis was implemented for analyzing binary data by using Boolean functions (‘0’ or ‘1’). The methodology presented in this paper reduces the stress and the faults of analyzing a flowchart and does not require a large concentration. It is used in this paper in order to simplify the control of the EMS. It permits the flowchart to be translated to a real application. This analysis is based on logic functions: “Or” corresponds to the addition and “And” corresponds to the multiplication. The simulation tests were executed at Tau  =  6 s of the low-pass filter and conducted in 60 s. The DC bus voltage was 400 V. It demonstrates that the proposed management strategy can respond to the AC and DC loads. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

15 pages, 2000 KiB  
Article
A Bench-Scale Demonstration of Direct Air Capture Using an Enhanced Electrochemical System
by Jinwen Wang, Xin Gao, Adam Berger, Ayokunle Omosebi, Tingfei Chen, Aron Patrick and Kunlei Liu
Clean Technol. 2025, 7(2), 50; https://doi.org/10.3390/cleantechnol7020050 - 16 Jun 2025
Viewed by 594
Abstract
The bench-scale demonstration of the UKy-IDEA process for direct air capture (DAC) technology combines solvent-aided CO2 capture with electrochemical regeneration (ER) through a pH swing process, enabling efficient CO2 capture and simultaneous solvent regeneration, producing high-purity hydrogen as a valuable co-product. [...] Read more.
The bench-scale demonstration of the UKy-IDEA process for direct air capture (DAC) technology combines solvent-aided CO2 capture with electrochemical regeneration (ER) through a pH swing process, enabling efficient CO2 capture and simultaneous solvent regeneration, producing high-purity hydrogen as a valuable co-product. The system shows stable performance with over 90% CO2 capture efficiency and approximately 80% CO2 recovery, handling ambient air at 280 L/min. During testing, the unit captured 1 kg of CO2 over 100 h, with a concentrated CO2 output purity of around 70%. Operating efficiently at low voltage (<3 V), the system supports flexible and remote operation without AC/DC converters when using intermittent renewable energy. Techno-economic analysis (TEA) and Life Cycle Assessment (LCA) highlight its minimized required footprint and cost-effectiveness. Marketable hydrogen offsets capture costs, and compatibility with renewable DC power enhances appeal. Hydrogen production displacing CO2 produced via electrolysis achieves 0.94 kg CO2 abated per kg CO2 captured. The project would be economic, with USD 26 per ton of CO2 from the federal 45Q tax credit for carbon utilization, and USD 5 to USD 12 per kg for H2. Full article
Show Figures

Figure 1

15 pages, 13534 KiB  
Article
Mechanical Properties Analysis of WAAM Produced Wall Made from 6063 Alloy Using AC MIG Process
by Ivica Garašić, Mislav Štefok, Maja Jurica, Davor Skejić and Mato Perić
Appl. Sci. 2025, 15(12), 6740; https://doi.org/10.3390/app15126740 - 16 Jun 2025
Viewed by 384
Abstract
Wire and arc additive manufacturing (WAAM) is a promising method of producing medium- and large-sized aluminum alloy structures, though it faces challenges such as porosity, residual stresses and inconsistent mechanical properties. This study investigates the effect of current type (AC and DC MIG [...] Read more.
Wire and arc additive manufacturing (WAAM) is a promising method of producing medium- and large-sized aluminum alloy structures, though it faces challenges such as porosity, residual stresses and inconsistent mechanical properties. This study investigates the effect of current type (AC and DC MIG welding) and polarity balance (influencing the duration of the positive/negative period of the cycle) on the mechanical and microstructural properties of 6063 aluminum alloy walls produced by WAAM. A TiB2-refined Al–Mg–Si (6063) filler wire, specifically developed for arc-based processing, was used. Tensile tests, Vickers hardness measurements (HV5), optical microscopy and X-ray diffraction based on cosα method were used to evaluate performance in terms of strength, ductility, hardness, grain structure, porosity and residual stress. The results showed that the balance of AC polarity significantly affects wall geometry, porosity and grain structure. Increasing the negative polarity period resulted in taller and narrower walls, while the widest walls were produced with increased positive polarity. Residual stress measurements revealed a tensile–compressive–tensile distribution, with the DC-MIG samples showing the highest surface stress values. The highest tensile strength (172 MPa) was measured in the lower region of the DC-MIG sample, suggesting that areas near the substrate benefit from faster cooling. Full article
(This article belongs to the Special Issue Advanced Welding Technology and Its Applications)
Show Figures

Figure 1

13 pages, 2572 KiB  
Article
Predictive Control for Grid-Forming Single-Stage PV System Without Energy Storage
by Xiao Zeng, Pengcheng Yang, Hongda Cai, Jing Li, Yanghong Xia and Wei Wei
Sustainability 2025, 17(11), 5227; https://doi.org/10.3390/su17115227 - 5 Jun 2025
Viewed by 541
Abstract
Unlike diesel generators or energy storage systems, photovoltaic (PV) arrays lack inherent rotational inertia and have output limitations due to their operational environmental dependencies. These characteristics restrict their suitability as primary power system backbone components. This study proposes a grid-forming (GF) control strategy [...] Read more.
Unlike diesel generators or energy storage systems, photovoltaic (PV) arrays lack inherent rotational inertia and have output limitations due to their operational environmental dependencies. These characteristics restrict their suitability as primary power system backbone components. This study proposes a grid-forming (GF) control strategy for PV inverters in low voltage grid (LVG) using a model predictive control (MPC) approach. The proposed method introduces a novel predictive model accounting for capacitor dynamics to precisely regulate both AC-side output voltage and DC-side voltage. Furthermore, in this paper, P-V droop control replaces the traditional frequency regulation, achieving the real-time balance of DC/AC power and seamless sharing of multiple photovoltaic power sources. By integrating a modified cost function, the controller can flexibly switch between maximum power point tracking (MPPT) mode and power reserve mode according to varying output demands. The proposed strategy can provide advanced frequency stability, MPPT accuracy, and fast dynamic response under rapidly changing solar irradiance and load conditions. Simulation and experimental tests are carried out to validate the effectiveness of the proposed strategy. Full article
Show Figures

Figure 1

14 pages, 12187 KiB  
Article
Magnetic Field Simulation and Torque-Speed Performance of a Single-Phase Squirrel-Cage Induction Motor: An FEM and Experimental Approach
by Jhonny Barzola and Jonathan Chandi
Machines 2025, 13(6), 492; https://doi.org/10.3390/machines13060492 - 5 Jun 2025
Viewed by 531
Abstract
This study presents a detailed investigation of the torque-speed characteristics of a WEG single-phase squirrel-cage induction motor (SPSCIM) of (1/2 hp), 110/220 V at 60 Hz. The primary objective was to derive the motor’s equivalent circuit and validate its performance curves through finite [...] Read more.
This study presents a detailed investigation of the torque-speed characteristics of a WEG single-phase squirrel-cage induction motor (SPSCIM) of (1/2 hp), 110/220 V at 60 Hz. The primary objective was to derive the motor’s equivalent circuit and validate its performance curves through finite element analysis (FEA), simulation using MATLAB®/Simulink®, and experimental testing. Finite element simulations were conducted using the software FEMM (Finite Element Method Magnetics) to model the magnetic flux distribution within the motor’s stator and rotor. These simulations, based on the motor’s dimensions and nameplate data, provided essential insights into the electromagnetic behavior, including flux density and saturation effects, which are crucial for accurate torque-speed curve predictions. For experimental validation, tests were performed under open-circuit and locked-rotor conditions through a universal machine as a load emulator. The torque-speed characteristics were determined using the Suhr method and the classical approach, with the resulting curves compared to experimental measurements. Voltage and current were measured using AC PZEM-004T and DC PZEM-017 meters, while rotor speed was monitored with a Hall effect sensor (A3144). The results revealed strong agreement between the FEM simulations, Surh method, and experimental data, demonstrating the reliability and accuracy of the combined simulation and analytical methods for modeling the motor’s performance. The estimations using classical and Suhr methods, Simulink simulations, and FEMM yielded low error percentages, mostly below 2%. However, in the FEMM simulation, rotor resistance showed a higher error of around 20% due to unavailable data on the exact number of windings turns, a modifiable parameter that can be corrected through further adjustments in the simulation. The torque-speed curves obtained at different voltage levels showed an excellent correlation, confirming the effectiveness of the proposed approach in characterizing the motor’s operational behavior. Full article
Show Figures

Figure 1

21 pages, 23863 KiB  
Article
Application of AC-DC-AC Accelerated Aging to Assess the Galvanic Corrosion Risk of Mild Steel Coated with Graphene-Embedded Epoxy Coatings
by Kazem Sabet-Bokati and Kevin Paul Plucknett
Coatings 2025, 15(5), 501; https://doi.org/10.3390/coatings15050501 - 23 Apr 2025
Viewed by 696
Abstract
This study presents a novel approach to evaluate the galvanic corrosion risk of mild steel coated with graphene-embedded epoxy coatings. The potential for graphene platelets to promote anodic dissolution of the underlying steel substrate via galvanic corrosion mechanisms was systematically assessed through the [...] Read more.
This study presents a novel approach to evaluate the galvanic corrosion risk of mild steel coated with graphene-embedded epoxy coatings. The potential for graphene platelets to promote anodic dissolution of the underlying steel substrate via galvanic corrosion mechanisms was systematically assessed through the accelerated alternating current-direct current-alternating current (AC-DC-AC) technique and cathodic disbondment testing. The possible risk of displacing cathodic reactions from the coating–steel interface to the dispersed graphene platelets within the epoxy matrix was investigated by evaluating the degradation trend of the graphene-containing coating under the AC-DC-AC test. The degradation behaviour of both pure epoxy and graphene-embedded epoxy coatings during accelerated aging was characterized using electrochemical impedance spectroscopy (EIS) measurements. The finding highlighted the negligible catalytic effect of incorporated graphene platelets on the anodic dissolution of steel substrate. On the other hand, as an inert filler, graphene platelets contributed to the enhancement of the structural integrity of the epoxy matrix during the AC-DC-AC test and natural immersion in NaCl 3.5 wt % solution by enhancing the barrier performance of the coating. Despite their spectacular barrier performance, damaged graphene-containing coatings performed inferiorly against corrosion-induced delamination compared to pure epoxy. Samples underwent the cathodic disbondment test to eliminate the effect of substrate anodic dissolution from corrosion-induced delamination. The accelerated delamination of graphene-embedded epoxy coatings was attributed to the destructive impact of graphene platelets on the interfacial adhesion of the epoxy matrix to the steel substrate. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

11 pages, 235 KiB  
Article
Clinical Trial: Effects of Autologous Dendritic Cell Administration on Renal Hemodynamics and Inflammatory Biomarkers in Diabetic Kidney Disease
by Endang Drajat, Aziza Ghanie Icksan, Jonny Jonny, Aditya Pratama Lokeswara, Bhimo Aji Hernowo, Elvita Rahmi Daulay and Terawan Agus Putranto
Diseases 2025, 13(4), 122; https://doi.org/10.3390/diseases13040122 - 21 Apr 2025
Viewed by 568
Abstract
Background: Diabetic kidney disease (DKD) is a significant risk factor for End-Stage Renal Disease, with a high global incidence and mortality rate. Hyperglycemia in DKD induces inflammation, contributing to glomerular hyperfiltration, fibrosis, and impaired renal function. Current therapies, including SGLT2 inhibitors, ACE inhibitors, [...] Read more.
Background: Diabetic kidney disease (DKD) is a significant risk factor for End-Stage Renal Disease, with a high global incidence and mortality rate. Hyperglycemia in DKD induces inflammation, contributing to glomerular hyperfiltration, fibrosis, and impaired renal function. Current therapies, including SGLT2 inhibitors, ACE inhibitors, and ARBs, show limited efficacy. Autologous dendritic cells (DCs) offer potential anti-inflammatory effects by reducing cytokine activity and fibrosis biomarkers. Methods: A quasi-experimental pretest–post-test design was conducted involving 29 DKD patients. Baseline blood and urine samples were collected for MMP-9, TGF-β, and Doppler ultrasound (PSV, EDV) measurements. The subjects received subcutaneous injections of autologous DCs, and follow-up measurements were conducted four weeks after treatment. The statistical analyses included paired t-tests, Wilcoxon signed-rank tests, and linear regression. Results: After treatment, there were a significant decrease in PSV (from 47.1 ± 23.87 cm/s to 27.85 ± 20.53 cm/s, p = 0.044) and a significant increase in EDV (from 13 ± 5.32 cm/s to 15.7 ± 12.55 cm/s, p = 0.039). A strong correlation was observed between the TGF-β and MMP-9 levels (p = 0.001). Linear regression analysis showed reduced MMP-9 influence on the TGF-β after treatment, suggesting potential fibrosis reduction. Gender and UACR subgroup analyses revealed significant PSV and EDV improvements in females and the microalbuminuria group. Conclusion: Autologous dendritic cell therapy significantly improved renal hemodynamics and showed potential to reduce fibrosis by modulating TGF-β and MMP-9 levels in DKD patients, warranting further investigation. Full article
17 pages, 4872 KiB  
Article
Influence of the Heterophasic Structure and Its Characteristics on the DC Electrical Properties of Impact Polypropylene Copolymer
by Xinhao Huang, Jiaming Yang, Xindong Zhao, Xu Yang, Kai Wang, Dianyu Wang and Zhe Fu
Polymers 2025, 17(7), 951; https://doi.org/10.3390/polym17070951 - 31 Mar 2025
Viewed by 264
Abstract
Space charge injection in polypropylene (PP) significantly weakens the stability of HVDC cables. Impact polypropylene copolymer (IPC) is often used as insulation material for AC cables, but in the DC field, IPC has the problem of space charge accumulation. This is because there [...] Read more.
Space charge injection in polypropylene (PP) significantly weakens the stability of HVDC cables. Impact polypropylene copolymer (IPC) is often used as insulation material for AC cables, but in the DC field, IPC has the problem of space charge accumulation. This is because there is a multi-phase structure inside the IPC to which ethylene monomer was added in the production process, and the difference in physicochemical properties of each phase is an important reason for the accumulation of space charge inside the material. In this work, the vinyl phases and propenyl phases of two types of IPC were separated. The film samples were prepared and tested at 30 °C and 50 °C for DC electrical conductivity, and at 30 °C, 50 °C, and 80 °C for space charge. The experimental results show that the DC conductivity of vinyl phases is significantly higher than that of propenyl phases in both types of IPC. The degrees of mismatch between the DC conductivity of vinyl phase and that of propenyl phase are different in the two types of IPC, and the mismatch degree of DC conductivity is from several times to hundreds of times. The conductivity of the two vinyl samples is ohmic. The conductivity of the two propenyl phases shows nonlinearity under different electric field intensity, and the mismatch degree of the two phases increases with temperature. Compared to untreated IPC, at all test temperatures, the maximum space charge density of the propenyl samples is much lower, which can be reduced by about 1/3 at 50 °C and by about 50% at 80 °C. The density of heteropolar charge produced by impurity ionization in the samples and the depth of electrode injection both decreased. At each temperature, the distortion rate of the electric field in propenyl samples is lower than that in IPC, the distortion rate can be reduced by more than 15%, and the distortion rate can be reduced by nearly half at 80 °C. The charge dissipation characteristic of propenyl samples during depolarization is also optimized compared with IPC samples, the time required for charge dissipation to reach stability is shortened, and the residual charge density in the sample is reduced at the end of depolarization. In addition, the relevance between the variation of DC conductivity of phases and space charge characteristics was discussed according to SCLC (space charge limited current) theory. This work provides a feasible reference for the manufacture of high-reliability polypropylene-based cable material with excellent insulation performance. Full article
(This article belongs to the Special Issue Electrical Properties of Polymer Composites)
Show Figures

Figure 1

17 pages, 3909 KiB  
Article
Input Power Quality Enhancement in Controlled Single-Phase AC to DC Converter
by Naveed Ashraf, Ghulam Abbas and Tanveer Yazdan
Energies 2025, 18(7), 1674; https://doi.org/10.3390/en18071674 - 27 Mar 2025
Cited by 1 | Viewed by 332
Abstract
Voltage-controlled AC to DC converters govern the load voltage as per requirement. They may be employed in numerous applications, including battery-charging systems, light dimming, and industrial speed drive systems. The voltage regulation is based on the delay angle control of the thyristors, which [...] Read more.
Voltage-controlled AC to DC converters govern the load voltage as per requirement. They may be employed in numerous applications, including battery-charging systems, light dimming, and industrial speed drive systems. The voltage regulation is based on the delay angle control of the thyristors, which has a simple gate control mechanism. Still, their input currents are highly distorted due to the generation of low-order harmonics. Also, their output voltage can only be regulated in step-down mode. The total harmonic distortion (THD) of the input current depends on the relative value of the fundamental frequency components to their non-fundamental component. The power factor (PF) also depends on these values, as well as the phase displacement angle, which is controlled by the firing delay. The improvement in THD and PF can be enhanced by maintaining the sinusoidal characteristics of the input current as much as possible. The use of an AC filter may enhance these characteristics, but filtering the low-order harmonics is a big challenge. This research suggests a novel control and circuit of a single-phase rectifier that may ensure the sinusoidal characteristics of the input current with a dual polarity-controlled output voltage. Thus, it improves the THD and PF for any polarity of the output DC voltage. A practical test circuit is built for the validation of the analytical and computer simulation results. Full article
Show Figures

Figure 1

19 pages, 16474 KiB  
Article
13-Level Single-Source Switched-Capacitor Boost Multilevel Inverter
by Kah Haw Law, Yew Wei Sia, Raymond Choo Wee Chiong, Swee Peng Ang, Kenneth Siok Kiam Yeo and Sy Yi Sim
Energies 2025, 18(7), 1664; https://doi.org/10.3390/en18071664 - 27 Mar 2025
Cited by 2 | Viewed by 495
Abstract
Transformerless inverters (TIs) are becoming increasingly popular in solar photovoltaic (PV) applications due to their enhanced efficiency and cost-effectiveness. Unlike transformer-based inverters, TIs, which lack transformers and additional components, offer significant advantages in terms of reduced weight, compactness, and lower costs. Research studies [...] Read more.
Transformerless inverters (TIs) are becoming increasingly popular in solar photovoltaic (PV) applications due to their enhanced efficiency and cost-effectiveness. Unlike transformer-based inverters, TIs, which lack transformers and additional components, offer significant advantages in terms of reduced weight, compactness, and lower costs. Research studies have demonstrated that multilevel TIs can achieve lower total harmonic distortion (THD), reduced switching stresses, and higher AC output voltage levels suitable for high voltage applications. However, achieving these outcomes simultaneously with maximum power ratings and the lowest switching frequencies poses a challenge for TI topologies. In light of these challenges, this research proposes the implementation of a 13-level single-source switched-capacitor boost multilevel inverter (SSCBMLI) designed for solar PV systems. The SSCBMLI consists of a single DC power source, switched-capacitor (SC) units, and a full H-bridge. Compared to other existing 13-level multilevel inverter (MLI) configurations, the proposed SSCBMLI utilizes the fewest components to minimize development costs. Moreover, the SSCBMLI offers voltage boosting and can drive high inductive loads, self-voltage-balanced capacitors, an adaptable topology structure, and reliable system performance. Simulations and experimental tests are conducted using PLECS 4.5 and SIMULINK to assess the performance of the proposed SSCBMLI under varying modulation indices, source powers, and loads. A comparative analysis is then conducted to evaluate the SSCBMLI against existing inverter topologies. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Graphical abstract

21 pages, 6583 KiB  
Article
Communication-Less Data-Driven Coordination Technique for Hybrid AC/DC Transmission Networks
by Arif Mehdi, Syed Jarjees Ul Hassan, Zeeshan Haider, Ho-Young Kim and Arif Hussain
Energies 2025, 18(6), 1416; https://doi.org/10.3390/en18061416 - 13 Mar 2025
Viewed by 481
Abstract
There is a paradigm shift to hybrid (AC/DC) networks that integrate both AC and DC to meet growing energy demands, mitigate global warming, and interconnect distributed energy sources (DERs). However, the unique characteristics of AC/DC faults, the mutual interaction of hybrid lines, the [...] Read more.
There is a paradigm shift to hybrid (AC/DC) networks that integrate both AC and DC to meet growing energy demands, mitigate global warming, and interconnect distributed energy sources (DERs). However, the unique characteristics of AC/DC faults, the mutual interaction of hybrid lines, the harmonic components of converters/inverters, multiple directions of energy flow, and varying current levels have challenged the existing protection algorithms. Therefore, this paper presents a data-driven coordination AC/DC fault protection algorithm. The algorithm utilizes faulty voltage and current signals to retrieve the precise time-domain characteristics of AC, DC, and intersystem (IS) faults to develop the algorithm. The proposed algorithm consists of four stages: stage 1 includes the detection of faults, stage 2 identifies the fault as either AC or DC, stage 3 classifies the respective AC and DC faults, and stage 4 locates the AC/DC fault precisely. The hybrid test system is developed in a MATLAB/Simulink environment, and the data-driven algorithm is trained and tested in Python. The extensive simulation results for multiple fault cases, either AC or DC, and the comparisons of various performance indicators confirm the effectiveness of the developed algorithm, which performs efficiently under a noisy and extended hybrid AC/DC network. Compared to other schemes, the proposed coordination protection approach can enhance the speed and accuracy of hybrid AC/DC networks. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

Back to TopTop