Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,474)

Search Parameters:
Keywords = 4-PP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1283 KB  
Systematic Review
Clinical and Molecular Spectrum of PPP2R1A-Related Neurodevelopmental Disorders: A Systematic Review
by Jaewoong Lee, Ari Ahn, Jaeeun Yoo and Seungok Lee
Genes 2025, 16(12), 1508; https://doi.org/10.3390/genes16121508 - 16 Dec 2025
Abstract
Background/Objectives: PPP2R1A encodes the scaffold subunit Aα of protein phosphatase 2A (PP2A). Pathogenic variants cause Houge-Janssens syndrome 2, a rare neurodevelopmental disorder characterized by developmental delay, intellectual disability, epilepsy, and brain malformations. We systematically reviewed published cases to define the clinical spectrum, [...] Read more.
Background/Objectives: PPP2R1A encodes the scaffold subunit Aα of protein phosphatase 2A (PP2A). Pathogenic variants cause Houge-Janssens syndrome 2, a rare neurodevelopmental disorder characterized by developmental delay, intellectual disability, epilepsy, and brain malformations. We systematically reviewed published cases to define the clinical spectrum, characterize the mutational landscape, and explore genotype–phenotype correlations. Methods: We conducted systematic searches of PubMed, Embase, and Web of Science from inception to March 2025, supplemented by GeneReviews and OMIM references. Studies reporting PPP2R1A variants with clinical data were included. Data extraction followed PRISMA guidelines, encompassing study characteristics, genetic findings, and phenotypic features. Results: We identified 16 studies representing 60 patients with PPP2R1A-related disorders. Twenty-six distinct pathogenic variants were identified; these were predominantly de novo heterozygous missense changes clustering within HEAT repeats 5–7. Recurrent hotspots included p.Arg182Trp (n = 12) and p.Arg183Gln (n = 5). Developmental delay and intellectual disability were universally present in all patients for whom data were available (100%, 58/58). Epilepsy occurred in 50.9% (29/57), and structural brain abnormalities in 83.1% (49/59), with corpus callosum abnormalities (40.7%, 24/59) and ventriculomegaly (32.2%, 19/59) being most frequent. Microcephaly was reported in 17.2% (10/58) and macrocephaly in 25.9% (15/58), while dysmorphic features were present in 53.4% (31/58). The phenotypic spectrum ranged from severe neonatal presentations with high mortality to milder neurodevelopmental courses, with prenatal manifestations including ventriculomegaly, corpus callosum abnormalities, and rare cardiac defects. Clear genotype–phenotype correlations emerged, with HEAT5 variants (p.Arg182Trp, p.Arg183Gln) associated with severe phenotypes and increased mortality, while p.Arg258His variants demonstrated comparatively milder courses. Conclusions: PPP2R1A-related disorders encompass a broad clinical spectrum ranging from lethal neonatal disease to survivable forms with variable neurodevelopmental outcomes. Prenatal features including ventriculomegaly and corpus callosum abnormalities enable early genetic diagnosis, informing reproductive counseling. Recognition of recurrent hotspot variants and their phenotype associations facilitates diagnosis, prognosis, and genetic counseling. These findings provide evidence-based guidance for clinical management and highlight the importance of variant-specific prognostication in this emerging neurodevelopmental disorder. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

21 pages, 4069 KB  
Article
Effect of Notch Depth on Mode II Interlaminar Fracture Toughness of Rubber-Modified Bamboo–Coir Composites
by C. Bhargavi, K S Sreekeshava, Narendra Reddy and Naveen Dyava Naik
J. Compos. Sci. 2025, 9(12), 704; https://doi.org/10.3390/jcs9120704 - 16 Dec 2025
Abstract
This study investigates the Mode II fracture behavior of bamboo–coir–rubber (BCR) hybrid composite panels developed as sustainable alternatives for wood-based panels used in structural applications. The composites were fabricated using alternating bamboo and coir layers within a polypropylene (PP) thermoplastic matrix, with styrene–butadiene [...] Read more.
This study investigates the Mode II fracture behavior of bamboo–coir–rubber (BCR) hybrid composite panels developed as sustainable alternatives for wood-based panels used in structural applications. The composites were fabricated using alternating bamboo and coir layers within a polypropylene (PP) thermoplastic matrix, with styrene–butadiene rubber (SBR) incorporated as an additive at 0–30 wt.% to enhance interlaminar toughness. Commercial structural plywood was tested as the benchmark. Mode II interlaminar fracture toughness (GIIc) was evaluated using the ASTM D7905 End-Notched Flexure (ENF) test, supported by optical monitoring to study crack monitoring and Scanning Electron Microscopy (SEM) for microstructural interpretation. Results demonstrated a steady increase in GIIc from 1.26 kJ/m2 for unmodified laminates to a maximum of 1.98 kJ/m2 at 30% SBR, representing a 60% improvement over the baseline and nearly double the toughness of plywood (0.7–0.9 kJ/m2). The optimum performance was obtained at 20–25 wt.% SBR, where the laminated retained approximately 85–90% of their initial flexural modulus while exhibiting enhanced energy absorption. Increasing the initial notch ratio (a0/L) from 0.2 to 0.4 caused a reduction of 20% in GIIc and a twofold rise in compliance, highlighting the geometric sensitivity of shear fracture to the remaining ligament. Analysis of Variance (ANOVA) confirmed that the increase in GIIc for the 20–25% SBR laminates relative to plywood and the unmodified composite is significant at p < 0.05. SEM observations revealed rubber-particle cavitation, matrix shear yielding, and coir–fiber bridging as the dominant toughening mechanisms responsible for the transition from abrupt to stable delamination. The measured toughness levels (1.5–2.0 kJ/m2) position the BCR panels within the functional range required for reusable formwork, interior partitions, and transport flooring. The combination of renewable bamboo and coir with a thermoplastic PP matrix and rubber modification hence offers a formaldehyde-free alternative to conventional plywood for shear-dominated applications. Full article
(This article belongs to the Section Biocomposites)
Show Figures

Figure 1

18 pages, 3824 KB  
Article
Comprehensive Analysis of the PP2C Gene Family in Grape (Vitis vinifera L.) and Identification of VvPP2C26 and VvPP2C41 as Negative Regulators of Fruit Ripening
by Kaidi Li, Kai Liu, Keyi Wang, Yunning Pang, Xuzhe Zhang, Xiujie Li and Bo Li
Plants 2025, 14(24), 3827; https://doi.org/10.3390/plants14243827 - 16 Dec 2025
Abstract
Protein phosphatase 2Cs (PP2Cs) are members of the serine/threonine phosphatase family that play pivotal roles in regulating plant development and responses to environmental stresses. However, comprehensive genome-wide studies of the PP2C gene family in grape (Vitis vinifera L.) have not yet been [...] Read more.
Protein phosphatase 2Cs (PP2Cs) are members of the serine/threonine phosphatase family that play pivotal roles in regulating plant development and responses to environmental stresses. However, comprehensive genome-wide studies of the PP2C gene family in grape (Vitis vinifera L.) have not yet been conducted. In the present study, 78 VvPP2C genes were identified and classified into 12 clades based on their phylogenetic relationships. Analysis of physicochemical properties and gene/protein architectures revealed that the members within each clade shared conserved structural features. Synteny analysis demonstrated that both tandem and segmental duplications substantially contributed to the expansion of the VvPP2C gene family. Tissue-specific transcriptional profiles and cis-element analyses indicated the potential involvement of these genes in grape development and stress responses. Moreover, expression analysis identified VvPP2C26 and VvPP2C41 as the most abscisic acid (ABA)-responsive genes, with expression patterns highly correlated with grape berry development. Functional validation in transgenic tomato lines demonstrated that the overexpression of either gene markedly delayed fruit ripening. Collectively, this study provides new insights into the evolutionary diversification and regulatory functions of the PP2C gene family in grape and identifies VvPP2C26 and VvPP2C41 as key candidates for elucidating ABA-mediated ripening mechanisms in non-climacteric fruits. Full article
(This article belongs to the Special Issue Berry and Cherry Fruit Crops)
Show Figures

Figure 1

15 pages, 2119 KB  
Article
Lightweight Modification of Polypropylene Cable Insulation Materials Doped with Hollow Glass Microspheres
by Xindong Zhao, Dongxu Luo, Kai Wang, Jiaming Yang, Ling Weng, Xiongjun Liu, Xiao Han and Xin Yao
Polymers 2025, 17(24), 3321; https://doi.org/10.3390/polym17243321 - 16 Dec 2025
Abstract
Overhead transmission lines have long relied on cross-linked polyethylene (XLPE) insulation. The production of XLPE insulation requires silane cross-linking, which generates by-products, consumes high energy, and results in poor recyclability-retired XLPE insulation can only be disposed of through incineration or landfilling. Additionally, its [...] Read more.
Overhead transmission lines have long relied on cross-linked polyethylene (XLPE) insulation. The production of XLPE insulation requires silane cross-linking, which generates by-products, consumes high energy, and results in poor recyclability-retired XLPE insulation can only be disposed of through incineration or landfilling. Additionally, its high density leads to increased cable weight and sag, reducing the service life of the cables. Therefore, there is an urgent need to develop recyclable and lightweight insulation materials. In this study, recyclable polypropylene (PP) was used as a substitute for XLPE. Hollow glass microspheres (HGM) were incorporated to reduce weight, and hydrogenated styrene-ethylene-butylene-styrene block copolymer (SEBS) was added for toughening, thereby constructing a PP/HGM/SEBS ternary composite system. The results show that the introduction of HGM into the PP matrix effectively reduces the material density, decreasing from 0.890 g/cm3 (pure PP) to 0.757 g/cm3—a reduction of 15%. With the addition of SEBS, the mechanical properties of the composite are significantly improved: the tensile strength increases from 14.94 MPa (PP/HGM) to 32.40 MPa, and the elongation at break jumps sharply from 72.02% to 671.22%, achieving the synergistic optimization of “weight reduction” and “strengthening-toughening”. Electrical performance tests indicate that the PP/HGM/SEBS composite exhibits a volume resistivity of 1.66 × 1012 Ω·m, a characteristic breakdown strength of 108.6 kV/mm, a low dielectric loss tangent of 2.76 × 10−4, and a dielectric constant of 2.24. It achieves density reduction while maintaining low dielectric loss and high insulation strength, verifying its feasibility for application in lightweight insulation scenarios of overhead transmission lines. Full article
Show Figures

Figure 1

28 pages, 1813 KB  
Article
Econometric and Python-Based Forecasting Tools for Global Market Price Prediction in the Context of Economic Security
by Dmytro Zherlitsyn, Volodymyr Kravchenko, Oleksiy Mints, Oleh Kolodiziev, Olena Khadzhynova and Oleksandr Shchepka
Econometrics 2025, 13(4), 52; https://doi.org/10.3390/econometrics13040052 - 15 Dec 2025
Abstract
Debate persists over whether classical econometric or modern machine learning (ML) approaches provide superior forecasts for volatile monthly price series. Despite extensive research, no systematic cross-domain comparison exists to guide model selection across diverse asset types. In this study, we compare traditional econometric [...] Read more.
Debate persists over whether classical econometric or modern machine learning (ML) approaches provide superior forecasts for volatile monthly price series. Despite extensive research, no systematic cross-domain comparison exists to guide model selection across diverse asset types. In this study, we compare traditional econometric models with classical ML baselines and hybrid approaches across financial assets, futures, commodities, and market index domains. Universal Python-based forecasting tools include month-end preprocessing, automated ARIMA order selection, Fourier terms for seasonality, circular terms, and ML frameworks for forecasting and residual corrections. Performance is assessed via anchored rolling-origin backtests with expanding windows and a fixed 12-month horizon. MAPE comparisons show that ARIMA-based models provide stable, transparent benchmarks but often fail to capture the nonlinear structure of high-volatility series. ML tools can enhance accuracy in these cases, but they are susceptible to stability and overfitting on monthly histories. The most accurate and reliable forecasts come from models that combine ARIMA-based methods with Fourier transformation and a slight enhancement using machine learning residual correction. ARIMA-based approaches achieve about 30% lower forecast errors than pure ML (18.5% vs. 26.2% average MAPE and 11.6% vs. 16.8% median MAPE), with hybrid models offering only marginal gains (0.1 pp median improvement) at significantly higher computational cost. This work demonstrates the domain-specific nature of model performance, clarifying when hybridization is effective and providing reproducible Python pipelines suited for economic security applications. Full article
Show Figures

Figure 1

15 pages, 6124 KB  
Article
The Effect of Shavings from 3D-Printed Patient-Specific Cutting Guide Materials During Jaw Resection on Bone Healing
by Erina Tsunoda, Masako Fujioka-Kobayashi, Masateru Koyanagi, Yuichiro Arai, Toru Inomata, Ryo Inada and Takafumi Satomi
Materials 2025, 18(24), 5624; https://doi.org/10.3390/ma18245624 - 15 Dec 2025
Abstract
Patient-specific cutting guides are used for safe and accurate jaw resection during oral and maxillofacial surgery. This study investigated the effect of shavings from 3D-printed cutting guide materials during surgery on bone healing. The biocompatibility of commercially available biocompatible polymers including photopolymer resin [...] Read more.
Patient-specific cutting guides are used for safe and accurate jaw resection during oral and maxillofacial surgery. This study investigated the effect of shavings from 3D-printed cutting guide materials during surgery on bone healing. The biocompatibility of commercially available biocompatible polymers including photopolymer resin (PP) and polyamide resin (PA) materials was assessed in the present study. The viability of mouse osteoblast-like MC3T3E-1 cells was evaluated upon coculture with the materials. Furthermore, the effects of PP and PA as additives on bone formation were investigated in a rat calvarial bone defect model. Both PP and PA were biocompatible and allowed cells to attach to them. However, both materials could be damaged when cutting devices were used, and their shavings impaired osteoblast proliferation and bone formation. Cutting guide materials are designed to be biocompatible when they are fabricated according to the manufacturer’s protocol. Nevertheless, the polymer shavings generated during jaw cutting might adversely affect bone healing. Full article
Show Figures

Figure 1

18 pages, 6173 KB  
Article
Performance Degradation Mechanism of Hemp Fiber-Reinforced Polypropylene Composites Under Accelerated Aging
by Wei Guo, Xiaorui Liu, Feng Zhao, Huayao Huang and Bo Li
Polymers 2025, 17(24), 3309; https://doi.org/10.3390/polym17243309 - 14 Dec 2025
Viewed by 43
Abstract
In the context of increasing resource scarcity and environmental concerns, the development of green composite materials is essential for promoting sustainability in the automotive industry. However, poor interfacial compatibility between plant fibers and polypropylene (PP), as well as the performance deterioration under complex [...] Read more.
In the context of increasing resource scarcity and environmental concerns, the development of green composite materials is essential for promoting sustainability in the automotive industry. However, poor interfacial compatibility between plant fibers and polypropylene (PP), as well as the performance deterioration under complex environmental aging conditions, severely limits their engineering applications. In this study, a synergistic interfacial modification strategy combining alkali treatment of hemp fibers (HFs) with polypropylene grafted maleic anhydride (PP-g-MAH) was employed to enhance fiber–matrix interaction. Hemp fiber-reinforced polypropylene composites (HFRPs) with varying fiber contents (7.5–30 wt%) were fabricated via injection molding. Accelerated aging tests were conducted on the compatibilized HFRPs for up to 2400 h under ultraviolet–thermal–moisture coupled conditions, in accordance with the SAE J2527 standard. The evolution of surface color, mechanical properties, chemical structure, and microstructure was systematically characterized. After aging, surface whitening of the composites was observed. Tensile strength and impact strength decreased by 9.57–22.12% and 38.68–46.03%, respectively, while flexural strength remained relatively stable due to the supporting effect of the fiber skeleton. The aging of compatibilized HFRPs follows an outside-in progressive degradation mechanism, characterized by a stepwise cascade of surface oxidation, crack propagation, moisture ingress, interfacial degradation, and mechanical performance deterioration. These findings offer valuable insights into the long-term durability of natural fiber-reinforced thermoplastic composites and provide theoretical and practical guidance for their structural design and application in demanding service environments. Full article
9 pages, 607 KB  
Brief Report
Enhanced Benefits of Prone Positioning Combined with Lung Recruitment Maneuver in Patients with COVID-19 and Non-COVID-19 ARDS: A Secondary Analysis of a Randomized Clinical Trial
by Lan Lan, Yuenan Ni, Yubei Zhou, Ping Li, Faping Wang and Fengming Luo
J. Clin. Med. 2025, 14(24), 8822; https://doi.org/10.3390/jcm14248822 - 13 Dec 2025
Viewed by 147
Abstract
Background: Early reports highlighted unique features of COVID-19-associated ARDS. The combination of prone position (PP) and positive end-expiratory pressure (PEEP)-induced lung recruitment maneuver (LRM) has demonstrated efficacy in enhancing oxygenation and improving outcomes in patients with ARDS, but it remains unknown whether there [...] Read more.
Background: Early reports highlighted unique features of COVID-19-associated ARDS. The combination of prone position (PP) and positive end-expiratory pressure (PEEP)-induced lung recruitment maneuver (LRM) has demonstrated efficacy in enhancing oxygenation and improving outcomes in patients with ARDS, but it remains unknown whether there is a difference between COVID-19 ARDS and non-COVID-19 ARDS. Method: This study is a secondary analysis of a previously conducted randomized controlled trial. Patients with moderate to severe ARDS were consecutively enrolled during the study period (June–December 2023). After initiation of PP, patients received a PEEP-induced LRM followed by 12 h of daily PP. The interventions were repeated at least three times over the subsequent 3 days. Clinical outcomes, respiratory mechanics, and electrical impedance tomography (EIT) results were evaluated. Results: Twenty-eight patients were included in the final analysis, half of whom were infected with COVID-19 (50%). The PEEP-induced LRM led to greater improvement in oxygenation among COVID-19 ARDS than non-COVID-19 ARDS (∆PaO2/FiO2 ratio 90.5 mmHg vs. 65.5 mmHg, p < 0.05). Based on EIT measurement, compared with the non-COVID-19 ARDS group, PEEP-induced LRM resulted in a greater increase in ventilation distribution, mainly in the dorsal regions of interest 4 (ROI 4) ventilation distribution (∆ROI4 4.5% vs. 1.0%, p = 0.01) and in dorsal regional ventilation (∆dorsal regional ventilation 10.0% vs. 5.5%, p = 0.04) in the COVID-19 ARDS group. Conclusions: Compared to typical ARDS, PEEP-induced LRM combined with PP may be more effective in enhancing oxygenation in COVID-19-related ARDS. Full article
(This article belongs to the Section Intensive Care)
Show Figures

Figure 1

21 pages, 3531 KB  
Article
Plant Proteins as Alternative Natural Emulsifiers in Food Emulsions
by Dominika Kaczmarek, Marta Pokora-Carzynska, Leslaw Juszczak, Ewelina Jamroz and Janusz Kapusniak
Foods 2025, 14(24), 4291; https://doi.org/10.3390/foods14244291 - 13 Dec 2025
Viewed by 238
Abstract
The growing interest in plant-based ingredients in food production has increased the demand for effective alternatives to animal-derived emulsifiers. In this study, the physicochemical and functional properties of selected commercial plant protein preparations as natural emulsifiers in food emulsions were assessed. Emulsifying activity [...] Read more.
The growing interest in plant-based ingredients in food production has increased the demand for effective alternatives to animal-derived emulsifiers. In this study, the physicochemical and functional properties of selected commercial plant protein preparations as natural emulsifiers in food emulsions were assessed. Emulsifying activity and stability (EA, ES), foaming capacity and stability (FC, FS), water and oil absorption (WAC, OAC), color (CIE Lab*), viscosity, surface tension, and zeta potential were analyzed. Pea (PP1–PP4), rice (RP1, RP2) and chickpea (CP1) proteins showed the most favorable properties, characterized by high EA values (58.3–62.5%) and emulsion stability during storage (62–65%) after 6 days. Emulsions formulated with these proteins were significantly lighter (L* > 69). PP1 exhibited more than twice the viscosity of the other samples. The lowest surface tension values (<45 mN/m) were observed for RP2 and PP1, indicating strong surface activity. Pea proteins PP1, PP2, and PP4 showed the highest system stability, with zeta potential values below –35 mV. Overall, the selected plant protein preparations, particularly pea, rice, and chickpea proteins, showed promising functional properties, confirming their potential use as natural emulsifiers in clean-label plant-based formulations and providing a basis for further product development. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

17 pages, 4365 KB  
Article
Comparative Study on the Passivation Effect of Potato Peel and Pig Manure-Based Biochar Prepared by Cyclic Catalytic Pyrolysis on Cd and Pb in Soil: An Experimental Study in a Ring Pipe
by Qiushi Zheng, Wenjing Shi, Ran Tu, Yuquan Tian, Huanyu Wang, Yue Zhao, Jingyu Shen, Can Wang, Guoxin Lan and Yan Wu
Processes 2025, 13(12), 4029; https://doi.org/10.3390/pr13124029 - 12 Dec 2025
Viewed by 163
Abstract
This study innovatively combines the cyclic catalytic pyrolysis system (CCPS) with a circular pipe device, using biochar from potato peels (PP) and pig manure (PM) to passivate Cd and Pb in the soil, and explores the influencing mechanisms via multiple methods. Results showed [...] Read more.
This study innovatively combines the cyclic catalytic pyrolysis system (CCPS) with a circular pipe device, using biochar from potato peels (PP) and pig manure (PM) to passivate Cd and Pb in the soil, and explores the influencing mechanisms via multiple methods. Results showed that in aqueous adsorption, biochar from the CCPS performed better, with the potato peel-based biochar produced via the cyclic catalytic pyrolysis system (PPB-2) achieving 100% removal of Cd2+ and Pb2+ within 100–270 min. In the soil remediation experiment using a ring pipe setup, pig manure-based biochar produced via the cyclic catalytic pyrolysis system (PMB-2) exhibited superior performance, reducing Cd concentration from 22.36 mg/kg to 11.21 mg/kg (49.87% removal) and Pb concentration from 718.28 mg/kg to 400.09 mg/kg (44.3% removal) after 40 days. This confirms that the PM-derived biochar prepared by CCPS is more suitable for the remediation of cadmium- and lead-contaminated soils, providing a reference for research on soil heavy metal passivation. Notably, the raw materials (PP and PM) are low-cost, locally abundant agricultural wastes, enabling resource recycling and lowering large-scale application costs. The ring pipe encapsulation further simplifies operational procedures for practical promotion while avoiding direct biochar–soil contact and mitigating secondary pollution risks. Full article
Show Figures

Figure 1

8 pages, 4348 KB  
Proceeding Paper
Effect of Artificial Ageing on Mechanical Properties of Recycled Polypropylene Hollow Chamber Sheets
by Stamatina Theochari, Agathi Anthoula Kaminari, Angelos Kaldellis, Athanasios Karabotsos, Isidoros Iakovidis, Stavros Chionopoulos, Theano Vlachou and Athina Georgia Alexopoulou
Eng. Proc. 2025, 119(1), 12; https://doi.org/10.3390/engproc2025119012 - 11 Dec 2025
Viewed by 102
Abstract
Packaging materials made from polypropylene (PP) can be used to protect cultural heritage objects from damage ensuring their long-life preservation. This research work concerns the assessment of recycled polypropylene hollow chamber sheets as potential packaging materials for archival collections and cultural heritage objects. [...] Read more.
Packaging materials made from polypropylene (PP) can be used to protect cultural heritage objects from damage ensuring their long-life preservation. This research work concerns the assessment of recycled polypropylene hollow chamber sheets as potential packaging materials for archival collections and cultural heritage objects. It was carried out through a multidisciplinary diagnostic methodology combining mechanical methods, non-destructive imaging techniques in visible light (VIS), and ultraviolet-induced visible luminescence (UVL), as well as handheld digital microscopy, colorimetry, glossimetry, and SEM microanalysis. The results showed that the condition and mechanical performance of the specimens are affected by the ageing process. Full article
Show Figures

Figure 1

21 pages, 9518 KB  
Article
An Optimization Procedure for Improving the Prediction Performance of Failure Assessment Model
by Yan He, Lingyun Guo and Zhenzhong Shen
Buildings 2025, 15(24), 4488; https://doi.org/10.3390/buildings15244488 - 11 Dec 2025
Viewed by 141
Abstract
Improving the Prediction Performance (PP) of crack pipeline Failure Assessment Model (FAM) is of great significance for the safety of pipeline structure and engineering. However, conventional optimizations for PP always focus on either safety or accuracy, failing to balance the overall requirements of [...] Read more.
Improving the Prediction Performance (PP) of crack pipeline Failure Assessment Model (FAM) is of great significance for the safety of pipeline structure and engineering. However, conventional optimizations for PP always focus on either safety or accuracy, failing to balance the overall requirements of structural applications. Therefore, this paper proposes an optimization procedure for comprehensively improving FAM’s PP. The establishment of the procedure can be divided into three parts: 1. setting a rational and robust optimization target, where the Improved Guo-Ni Model (IGNM) is raised to provide an absolute score s for fully quantifying FAM’s PP in terms of the multi-dimensional performances, including stability and Distributional Location Characterizations (DLCs) of FAM’s prediction results; 2. determining the candidate solutions which are selected as the Critical Safety Factor (CSF) values related to FAM’s prediction confidence level (R1) in this paper; 3. constructing the optimization framework based on the Particle Swarm Optimization algorithm to search for the optimal CSF (OCSF) that can maximize s. Finally, empirical verification results show that the procedure enhances the overall s values of BS 7910:2019 and CorLAS models by 3.32% and 6.09%, respectively, through balancing DLCs, which increases the applicability of FAM across different projects and provides a new approach for the optimization control of FAM’s overall performance. Full article
(This article belongs to the Special Issue Reliability and Risk Assessment of Building Structures)
Show Figures

Figure 1

28 pages, 12396 KB  
Article
An Integrated Spatial Assessment of Macro-, Meso-, and Microplastic Pollution Along Cox’s Bazar Beach in Bangladesh
by Kazi Arafat, Helmut Yabar and Takeshi Mizunoya
Recycling 2025, 10(6), 223; https://doi.org/10.3390/recycling10060223 - 10 Dec 2025
Viewed by 636
Abstract
Bangladesh generates approximately 3000 tons of plastic waste daily, and high mismanagement leads to substantial discharge into soils, rivers, and oceans. Limited research exists on plastic pollution along Cox’s Bazar in southeastern Bangladesh, with no studies spanning the entire coast; this study provides [...] Read more.
Bangladesh generates approximately 3000 tons of plastic waste daily, and high mismanagement leads to substantial discharge into soils, rivers, and oceans. Limited research exists on plastic pollution along Cox’s Bazar in southeastern Bangladesh, with no studies spanning the entire coast; this study provides the first comprehensive assessment of the full coastline. This study investigates the abundance, types, and distribution of macro-, meso-, and microplastics in sediments from 23 stations covering Tourism, Active, and Less Active areas. Plastics were classified by size, shape, color, and polymer composition using stereomicroscopy and Fourier Transform Infrared Spectroscopy (FTIR), while spatial patterns of microplastic polymers were analyzed using Inverse Distance Weighted (IDW) interpolation. A total of 11,558 plastic particles were identified, with microplastics dominating (409.04 particles/m2), followed by mesoplastics (60.7 particles/m2) and macroplastics (32.8 particles/m2). Expanded polystyrene (EPS) and fragments were the most prevalent shapes, while transparent-white particles dominated in color. Polystyrene (PS), polypropylene (PP), and polyethylene (PE) comprised over 95% of polymers. IDW mapping highlighted Tourism, urban, and industrial zones as microplastic hotspots, with higher abundances in tourism areas. These findings provide a baseline for monitoring coastal plastic pollution and emphasize improved plastic management and recycling, contributing globally to understanding contamination in rapidly urbanizing, tourism-driven developing regions. Full article
Show Figures

Figure 1

12 pages, 1221 KB  
Article
Prognostic Value of Brachial–Ankle Pulse Wave Velocity in the Prediction of Cardiovascular Events: Comparison with Brachial Pulse Pressure
by Bo Kyung Jeon, Hack-Lyoung Kim and Kyung-Jin Kim
J. Clin. Med. 2025, 14(24), 8724; https://doi.org/10.3390/jcm14248724 - 9 Dec 2025
Viewed by 198
Abstract
Background: Although brachial–ankle pulse wave velocity (baPWV) has been used to predict cardiovascular events, studies comparing it with brachial pulse pressure (brPP) for predictive value have been lacking. We investigated how brPP and baPWV differ in their ability to predict future cardiovascular [...] Read more.
Background: Although brachial–ankle pulse wave velocity (baPWV) has been used to predict cardiovascular events, studies comparing it with brachial pulse pressure (brPP) for predictive value have been lacking. We investigated how brPP and baPWV differ in their ability to predict future cardiovascular events. Methods: We retrospectively reviewed the clinical data of 11,703 consecutive patients where brPP and baPWV measurements had been made. The primary endpoint was differences in the incidence of major adverse cardiovascular and cerebrovascular events (MACCE). Results: Participants had a median age of 61 years, and men accounted for 57.7% of the cohort. During a median follow-up duration of 3.64 years, 347 (3.0%) MACCE occurred. Using established reference values of baPWV > 1800 cm/s and brPP > 60 mmHg, we, respectively, stratified patients by these values. Kaplan–Meier survival curve analysis revealed that both high baPWV and brPP groups displayed elevated MACCE incidence, all-cause mortality, and cardiovascular mortality. After controlling for potential confounders, multivariate Cox regression analysis showed that individuals with elevated baPWV had higher rates of MACCE, overall mortality, and cardiovascular death, whereas brPP was not significantly associated with these outcomes. Subgroup analysis showed a consistent difference in MACCE incidence across all subgroups when stratified by baPWV; however, the significance disappeared in several subgroups when stratified by brPP. Conclusions: baPWV exhibited a stronger association with MACCE incidence than brPP. Thus, baPWV may be a more effective factor than brPP for cardiovascular risk stratification. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

20 pages, 2676 KB  
Article
Mechanical and Structural Consequences of PLA/PBAT Contamination in Polypropylene and Polystyrene Recycling
by Przemysław Postawa, Tomasz Stachowiak, Krystyna Malińska, Danuta Dróżdż, Tomasz Jaruga and Arkadiusz Kloziński
Materials 2025, 18(24), 5523; https://doi.org/10.3390/ma18245523 - 9 Dec 2025
Viewed by 218
Abstract
The increasing use of biodegradable plastics derived from renewable sources (PLA, PHB, PBAT, and others) in the packaging industry raises controversies and risks related to potentially integrating these plastics into municipal waste streams, which may significantly hinder future recycling efforts. This publication addresses [...] Read more.
The increasing use of biodegradable plastics derived from renewable sources (PLA, PHB, PBAT, and others) in the packaging industry raises controversies and risks related to potentially integrating these plastics into municipal waste streams, which may significantly hinder future recycling efforts. This publication addresses this issue by investigating a selected bio-based and biodegradable commercial mixture of poly(lactic acid) and poly(butylene adipate terephthalate) (PLA/PBAT), referred to as (BIO), in blends with polypropylene (PP) and polystyrene (PS). The blends were prepared with three different mass contents of 1, 5, and 10 wt.% using (PP) and (PS) as base materials. The effects of introducing biodegradable and bio-based plastics into municipal waste streams (PCR—Post-Consumer Recycling), which typically contain polypropylene, various grades of polyethylene, and polystyrene, remain unknown. The purpose of the study was to assess the consequences of contaminating municipal waste destined for recycling (using PP and PS as examples) with small amounts (between 1 and 10%) of BIO plastics. The designed experiment and the obtained results simulate the expected presence of BIO contamination in future PP and PS recyclates. The prepared mixtures were subjected to injection molding to produce test specimens, which were then analyzed for changes in their physical properties such as tensile strength, impact strength and hardness. Thermal properties were assessed using Differential Scanning Calorimetry (DSC), while dynamic properties were analyzed at variable temperatures using Dynamic Mechanical Thermal Analysis (DMTA). The tests provided insights into how the addition of selected, but insignificant ratios (of 1 to 10%) of biopolymers affects the properties of (PP) and (PS) compared to materials without content of biopolymers. The conducted tests of mechanical properties (static and dynamic) and thermomechanical properties have shown that the change in the properties of the mixture depends not only on the amount of biodegradable polymer but also on the nature of the load. It would be advisable to analyze mechanical properties in relation to the duration of the load; therefore, a long-term load analysis is necessary. For dynamic tests, a decrease in impact strength was demonstrated with increasing biodegradable polymer content in the produced mixtures. Similar behavior was recorded for hardness measurements. The results underscore the need for continued research, given the valuable findings for processors and the advancement of mechanical recycling technologies. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

Back to TopTop