Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,214)

Search Parameters:
Keywords = 3D structure of proteins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1319 KB  
Article
Chronic Treatment with Curcumin Prevents Vascular Dysfunction in the Aorta of Type 1 Diabetes by Restoring Ca2+ Mishandling and Modulating HSP70 Levels
by Swasti Rastogi, Anna Grimm, Brooke Biby, Lucila Mathieu, Brian Trinh and Kenia Pedrosa Nunes
Cells 2025, 14(24), 2015; https://doi.org/10.3390/cells14242015 - 17 Dec 2025
Abstract
Vascular Smooth Muscle Cells (VSMC) dysfunction is a major contributor to Type 1 diabetes (T1D)-associated vascular complications. Ca2+ is a key messenger responsible for maintaining VSMC tone and function, and alterations in its cytosolic levels are central to diabetes-related vasculopathy. Heat Shock [...] Read more.
Vascular Smooth Muscle Cells (VSMC) dysfunction is a major contributor to Type 1 diabetes (T1D)-associated vascular complications. Ca2+ is a key messenger responsible for maintaining VSMC tone and function, and alterations in its cytosolic levels are central to diabetes-related vasculopathy. Heat Shock Protein 70 (HSP70), a multifaceted chaperone present intracellularly (iHSP70), regulates vascular reactivity by supporting Ca2+ handling, and extracellularly (eHSP70) activates immune signaling. Disruption of eHSP70/iHSP70 balance has been implicated in T1D-associated VSMC dysfunction. Curcumin, a phytochemical found in turmeric, is an emerging therapeutic adjuvant for treating a wide range of pathologies, including diabetes. However, whether curcumin modulates Ca2+ dynamics and HSP70 expression, thereby improving VSMC function, in diabetic aorta remains unclear. To investigate this, Streptozotocin-induced diabetic rats (i.p. 65 mg/kg) were treated with curcumin (300 mg/kg) for 28 days. Vascular function was evaluated using wire myography to assess changes in biphasic contraction curve and Ca2+ dynamics, while HSP70 was quantified using Western blotting and ELISA. Structural alterations were analyzed by assessing collagen and elastin using Picrosirius staining and fluorescence microscopy. Chronic curcumin treatment improved vascular function by normalizing Ca2+ mishandling, restoring the eHSP70/iHSP70 ratio, reducing hypercontractility, and mitigating arterial structural alterations. These findings indicate that curcumin could potentially ameliorate diabetes-related VSMC dysfunction by restoring Ca2+ homeostasis and modulating HSP70. Full article
Show Figures

Figure 1

31 pages, 5683 KB  
Article
Evidence Supporting the Hydrophobic-Mismatch Model for Cytochrome b6f-Driven State Transitions in the Cyanobacterium Synechocystis Species PCC 6803
by Terezia Kovacs, Laszlo Kovacs, Mihaly Kis, Michito Tsuyama, Sindhujaa Vajravel, Eva Herman, Nia Petrova, Anelia Dobrikova, Tomas Zakar, Svetla Todinova, Sashka Krumova, Zoltan Gombos and Radka Vladkova
Membranes 2025, 15(12), 383; https://doi.org/10.3390/membranes15120383 - 17 Dec 2025
Abstract
While there is a consensus that the cytochrome b6f complex (cytb6f) in algae and plants is involved in the regulatory mechanism of oxygenic photosynthesis known as light-induced state transitions (STs), no such consensus exists for cyanobacteria. Here, [...] Read more.
While there is a consensus that the cytochrome b6f complex (cytb6f) in algae and plants is involved in the regulatory mechanism of oxygenic photosynthesis known as light-induced state transitions (STs), no such consensus exists for cyanobacteria. Here, we provide the first direct functional evidence for cytb6f using single-point mutation data. We introduced a PetD-Phe124Ala substitution in the cyanobacterium Synechocystis sp. PCC 6803 to test the key predictions of the hydrophobic-mismatch (HMM) model for cytb6f-driven STs in all oxygenic photosynthetic species. These predictions concern the role of the Phe/Tyr124fg-loop-PetD and the extent and kinetic characteristics of STs. The effects of PetD-F124A mutation on STs were monitored using 77K and Pulse-Amplitude-Modulated (PAM) fluorescence. For comparison, we employed a phycobilisome (PBS)-less Synechocystis mutant and wild-type (WT) strain, as well as the stn7 mutant and WT of Arabidopsis plant. The PetD-F124A mutation reduced the extent of STs and selectively affected the two-exponential kinetics components of the transitions. Under State 1 conditions, the mutant exhibited ~60% less energetic decoupling of PBS from photosystem I (PSI) compared to the WT. It is explainable by the HMM model with the inability of the PetD-F124A mutant, during the induction phase of the State 2→State 1 transition to adopt the cytb6f conformation with minimal hydrophobic thickness. PAM-derived parameters indicated that PSII electron transport function is not inhibited, and no detectable effect on cyclic electron transport around PSI was observed under low-light conditions. Circular dichroism and differential scanning calorimetry confirmed that both the PSI trimer/monomer ratio and the structural integrity of the PBSs are preserved in the mutant. The compensatory response to the mutation includes decreased PSI content and an increase in PBS rod size. In conclusion, (1) cytb6f is involved in cyanobacterial STs; (2) evidence is provided supporting the HMM model; (3) the electron transfer and signal transduction functions of cytb6f are separated into distinct domains; and (4) the signaling pathway regulating STs and pigment-protein composition in Synechocystis involves PetD-Phe124. Full article
(This article belongs to the Section Biological Membranes)
21 pages, 21437 KB  
Article
Genome-Wide Identification, Function, and Expression Analysis of the ABC Transporter Gene Family in Forest Musk Deer (Moschus berezovskii) Under Musk Secretion Stage
by Ying-Ying Ren, Xuan-Ze Zhou, Jin-Fang Ma, Xue-Mei Jiang, Fang Dan, Dan-Dan Liao, Cong-Xue Yao, Cheng-Li Zheng and Wen-Hua Qi
Animals 2025, 15(24), 3630; https://doi.org/10.3390/ani15243630 - 17 Dec 2025
Abstract
The ATP-binding cassette (ABC) transporter family is one of the oldest conserved protein families and is widely present in animal and plant cells. However, few studies have investigated the role of ABC in the forest musk deer (FMD; Moschus berezovskii). In this [...] Read more.
The ATP-binding cassette (ABC) transporter family is one of the oldest conserved protein families and is widely present in animal and plant cells. However, few studies have investigated the role of ABC in the forest musk deer (FMD; Moschus berezovskii). In this study, we employed bioinformatics methods to identify and analyze the ABC transporter genes in M. berezovskii to elucidate the potential function of ABC genes in musk secretion. A total of 51 members of the MbABC gene family were identified. The analysis encompassed various aspects including physical and chemical properties, phylogenetic tree, structure prediction, conserved motifs, gene structures, chromosome localization, collinearity analysis, and KEGG and GO enrichment. Collinearity analysis revealed that the ABC transporter gene family is conserved in FMD, Cervidae, and five Bovinae species. MbABCB6, MbABCD4, MbABCF3, and MbABCG5 are key genes in protein–protein interaction networks, which are primarily involved in the transport of vitamins, lipids, and proteins. Tissue expression analysis showed that MbABCs were expressed at different stages. The RT-qPCR analysis revealed that 12 MbABC genes were up-regulated in musk gland cells during the non-secretion phase and stimulation phase, particularly MbABCC4d and MbABCC3. This study provides comprehensive information on the ABC gene family in FMD which can be further used for their functional validation. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

19 pages, 8155 KB  
Article
Hybrid Adjuvant-Allergen H1sD2 Proteoforms Enhance Innate Immunity Activation via Distinct N-Glycosylation Profiles
by Zorana Lopandić, Maša Babović, Tina Ravnsborg, Marina Atanasković-Marković, Ole N. Jensen and Marija Gavrović-Jankulović
Cells 2025, 14(24), 2008; https://doi.org/10.3390/cells14242008 - 16 Dec 2025
Abstract
Novel adjuvants are key to making allergen-specific immunotherapy (AIT) safer and more effective. Their development is crucial for moving AIT into a new generation of precision medicine. N-glycosylation of protein antigens plays a pivotal role in modulating innate immune responses through enhanced recognition [...] Read more.
Novel adjuvants are key to making allergen-specific immunotherapy (AIT) safer and more effective. Their development is crucial for moving AIT into a new generation of precision medicine. N-glycosylation of protein antigens plays a pivotal role in modulating innate immune responses through enhanced recognition by pattern recognition receptors. New AIT vaccine strategies aim to exploit this by using innate-targeting adjuvants, modifying allergen structures, and routing early responses toward tolerance. Thus, we engineered five distinct N-glycosylated adjuvant configurations, composed of the receptor-binding domain of hemagglutinin (H1s) and Der p 2 (D2) allergen, to explore how glycan profile affects innate immune response for the application in therapeutic strategies for Type 1 hypersensitivity. Glycoengineered proteoforms produced in Pichia pastoris were structurally verified by mass spectrometry. Using M0 and M2 THP-1-derived macrophages, binding of all H1sD2 proteoforms to DC-SIGN was confirmed via confocal microscopy and flow cytometry. Stimulation of PBMCs with these proteoforms led to increased IL-10 and IFN-γ levels, indicating a shift toward regulatory immune responses. Notably, the M2 glycovariant elicited the strongest immunomodulatory signature, suggesting significant promise as a therapeutic candidate. These findings support the potential of glycoengineered allergen-adjuvant proteoforms to fine-tune innate immunity and improve the safety and efficacy of AIT. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Figure 1

15 pages, 3343 KB  
Article
Ai-Assisted Discovery of a Direct Physical Interaction Between a Venom Serpin from the Parasitoid Wasp Liragathis javana and a Host Serine Carboxypeptidase
by Jiale Wang, Xunyuan Jiang, Zemiao Xiao, Xuemei Tang and Kai Wan
Toxins 2025, 17(12), 600; https://doi.org/10.3390/toxins17120600 - 16 Dec 2025
Abstract
Parasitoid wasp venoms represent highly specialized biochemical arsenals that evolved to manipulate host physiology and ensure successful development of the parasitoid offspring. However, the molecular targets and mechanisms underlying this complex host modulation remain poorly understood. To address this, we employed an AI-driven [...] Read more.
Parasitoid wasp venoms represent highly specialized biochemical arsenals that evolved to manipulate host physiology and ensure successful development of the parasitoid offspring. However, the molecular targets and mechanisms underlying this complex host modulation remain poorly understood. To address this, we employed an AI-driven discovery pipeline, integrating the sequence-based predictor D-SCRIPT with the structural modeler AlphaFold3, to characterize LjSPI-1, a venom serpin from Liragathis javana. This computational workflow highlighted a previously unreported candidate partner—a host serine carboxypeptidase (Chr09G02510). Crucially, we detected a direct physical interaction between these two proteins through both in vitro pull-down and in vivo yeast two-hybrid assays, supporting this AI-prioritized interaction under experimental conditions. Our study identifies a high-priority molecular pairing and demonstrates the utility of an AI-guided strategy for uncovering candidate targets of venom proteins. In addition, guided by the predicted biochemical role of Chr09G02510, we propose several plausible physiological hypotheses linking this interaction to host peptide metabolism and immune modulation. These hypotheses serve as a conceptual basis for future mechanistic and toxicological investigations. Full article
(This article belongs to the Special Issue Toxins from Animal Venoms Modulating Cellular Activities)
Show Figures

Graphical abstract

13 pages, 1240 KB  
Article
Elevated MMP9 Expression—A Potential In Vitro Biomarker for COMPopathies
by Helen F. Dietmar, Ella P. Dennis, Francesca M. Johnson de Sousa Brito, Louise N. Reynard, David A. Young and Michael D. Briggs
Int. J. Mol. Sci. 2025, 26(24), 12070; https://doi.org/10.3390/ijms262412070 - 15 Dec 2025
Abstract
The intracellular retention of misfolded extracellular matrix proteins is a common disease mechanism in various rare skeletal diseases. This discovery has driven the study of ER stress and the unfolded protein response (UPR) as a promising therapeutic target in several skeletal dysplasias. In [...] Read more.
The intracellular retention of misfolded extracellular matrix proteins is a common disease mechanism in various rare skeletal diseases. This discovery has driven the study of ER stress and the unfolded protein response (UPR) as a promising therapeutic target in several skeletal dysplasias. In the case of COL10A1 mutations, targeting the UPR resulted in a clinical trial of the repurposed drug carbamazepine; however, for other closely related skeletal disorders, treatment with carbamazepine was ineffective, indicating the need for suitable markers for in vitro screenings of potential drug treatments. Mutations in cartilage oligomeric matrix protein (COMP), a cartilage structural protein, cause both multiple epiphyseal dysplasia (MED) and pseudoachondroplasia (PSACH); together referred to as the COMPopathies, which result from the intracellular retention of mutant COMP to varying degrees. In contrast to other closely related skeletal disorders, caused by mutations in cartilage structural proteins, the involvement of the UPR is less clear, and so far, no common COMPopathy marker has been identified. Here, using cell models of COMPopathies, we identified MMP9 upregulation as a common feature of six pathogenic COMP variants that do not induce a prominent UPR. We further show that the archetypal p.V194D matrilin-3 MED variant (which causes MED) does not induce MMP9 expression, suggesting that MMP9 upregulation could serve as a specific marker of COMPopathies in vitro. Full article
(This article belongs to the Special Issue New Insights into the Molecular Mechanisms of the UPR and Cell Stress)
Show Figures

Figure 1

19 pages, 3612 KB  
Article
Integration of ATAC-Seq, Transcriptomic, and Proteomics Reveals the Molecular Mechanism of Intramuscular Fat Deposition and Meat Tenderness Regulation in Pig Breeds
by Yunpeng Zhang, Jing Xu, Suthar Teerath Kumar, Yunlong Zheng, Min Li, Ziyi Zhao, Qi Zhang, Wu-Sheng Sun, Li Pan, Yuan Zhao and Shu-Min Zhang
Biomolecules 2025, 15(12), 1738; https://doi.org/10.3390/biom15121738 - 15 Dec 2025
Viewed by 63
Abstract
Pork is one of the most widely consumed meats worldwide, with tenderness and intramuscular fat (IMF) content serving as key determinants of consumer acceptance. The rising demand for high-quality pork underscores the need to better understand the molecular mechanisms regulating IMF deposition and [...] Read more.
Pork is one of the most widely consumed meats worldwide, with tenderness and intramuscular fat (IMF) content serving as key determinants of consumer acceptance. The rising demand for high-quality pork underscores the need to better understand the molecular mechanisms regulating IMF deposition and meat tenderness. In this study, we systematically examined the tenderness and IMF in the Longissimus dorsi (LD) muscle of 104 eight-month-old Songliao black pigs and Leixiang pigs raised under identical conditions. In addition, three pigs from each breed were randomly selected for multi-omics analyses, including Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq), transcriptomics, and proteomics to elucidate the molecular networks underlying IMF deposition and tenderness. We identified a total of 2635 differentially accessible chromatin (DARs) regions associated with 2006 functional genes and 351 regulatory transcription factors, predominantly enriched in adipocyte differentiation and muscle metabolism pathways. Transcriptome analysis revealed 624 differentially expressed genes (DEGs) involved in lipid metabolism and tissue structure maintenance. While proteomic profiling detected 153 differentially expressed proteins (DEPs) enriched in fatty acid degradation/metabolism, PPAR signaling, energy metabolism, and thermogenesis pathways. Further, combined integrated multi-omics analysis identified nine candidate genes (MBP, DCLK1, COL3A1, ART3, COL14A1, PDK4, VCAN, LIPE, and GPX1) and transcription factor–target interaction networks predicted key regulatory factors including MEF2A/C/D, PR, GR, AR-HALLSITE, NF1-HALLSITE, AP4, TCF21, MYOG, ATOH1, TCF12, BHLHA15, MYF5, ASCL1, and SIX2, which were potentially involved in the regulation of meat tenderness and IMF deposition. These findings provide novel insights into the molecular determinants of IMF and tenderness, offering valuable targets for improving meat quality through genetic breeding strategies. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

24 pages, 1531 KB  
Article
Protein Fortification of Millet-Based Gluten-Free Snacks Designed for 3D Printing
by Jovana Simeunović, Jelena Miljanić, Bojana Kokić, Lidija Perović, Jelena Jovančević, Jovana Glušac and Jovana Kojić
Foods 2025, 14(24), 4308; https://doi.org/10.3390/foods14244308 - 14 Dec 2025
Viewed by 103
Abstract
The global trend in gluten-free snack innovation involves using naturally gluten-free grains as a nutrient-rich foundation, enriching formulations with multifunctional plant and microbial proteins, and optimizing ingredient interactions to balance nutritional demands with structural integrity. The study demonstrates that blending proso millet flour [...] Read more.
The global trend in gluten-free snack innovation involves using naturally gluten-free grains as a nutrient-rich foundation, enriching formulations with multifunctional plant and microbial proteins, and optimizing ingredient interactions to balance nutritional demands with structural integrity. The study demonstrates that blending proso millet flour with yeast-derived and almond (50:50 ratio) proteins effectively produces a protein- and fiber-rich gluten-free dough suitable for 3D printing, without the need for synthetic additives. This approach aligns with the growing demand for clean-label, sustainable protein sources that enable the creation of healthy, stable, and appealing ready-to-eat snacks. The enriched dough demonstrated superior rheological behavior, characterized by a dominant elastic modulus (G′ > G″), enabling smooth extrusion and stable shape retention. Nutritional analysis revealed an increase in protein (28.16 vs. 13.26 g/100 g DB) and dietary fiber (12.17 vs. 6.22 g/100 g DB) compared to the control. The amino acid profile improved significantly, with 48% more essential amino acids and a 63% increase in non-essential amino acids. Dimensional accuracy improved, and post-processing deformation was reduced, confirming enhanced structural integrity. Texture analysis showed no significant increase in hardness, maintaining a desirable texture profile despite higher protein content. Sensory evaluation confirmed greater acceptance of the enriched snack, especially in terms of flavor, aroma, and smell, while preliminary cost assessment indicated that, despite higher ingredient costs, the enriched formulation remains economically feasible. Additional optimization of protein concentration and processing conditions could enhance the overall functionality even further. Full article
Show Figures

Figure 1

16 pages, 1682 KB  
Article
Analysis of the Fatty Acid Desaturase Gene Family and Construction and Screening of High-EPA Transgenic Strains in Phaeodactylum tricornutum
by Wenjin He, Qingying Chen, Haoying Ye, Pingru Gao, Bina Wu, Wenchu Meng, Wenhui Zheng, Jianhua Shi and Haien Murong
J. Mar. Sci. Eng. 2025, 13(12), 2369; https://doi.org/10.3390/jmse13122369 - 13 Dec 2025
Viewed by 113
Abstract
Fatty acid desaturase (FAD) is a key enzyme that catalyzes the biosynthesis of polyunsaturated fatty acids (PUFAs) and is widely present in animals, plants and microorganisms. In this study, Phaeodactylum tricornutum was used as the material. Bioinformatics methods were employed to identify the [...] Read more.
Fatty acid desaturase (FAD) is a key enzyme that catalyzes the biosynthesis of polyunsaturated fatty acids (PUFAs) and is widely present in animals, plants and microorganisms. In this study, Phaeodactylum tricornutum was used as the material. Bioinformatics methods were employed to identify the FAD gene family within the entire genome of P. tricornutum. The genomic distribution, gene structure, conserved domains, phylogenetic relationships, and physicochemical properties of proteins were systematically analyzed. The results showed that a total of 15 FAD genes were identified in the genome of P. tricornutum, which could be classified into 4 subfamilies. These genes are unevenly distributed on the 11 chromosomes. Motif analysis predicted that motif1 and motif2 are not only highly conserved but also play a key role in the synthesis of unsaturated fatty acids. To verify the gene function, we transferred the exogenous Ptd5α gene into P. tricornutum. Through screening and verification, we successfully obtained three transgenic algal strains (5D1, 5D2, 5D3). Compared with the wild algal strain (WT), overexpression of the Ptd5α gene did not have a significant impact on the growth and development of P. tricornutum. Moreover, the total fatty acid content of the transgenic algal strain was significantly increased, and the proportion of EPA in the total fatty acids could be raised to over 30%. The results of this study lay an important foundation for in-depth analysis of the biological functions of the FAD gene family in P. tricornutum, and also provide experimental and theoretical basis for the large-scale industrial production of EPA using model microalgae. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

42 pages, 1604 KB  
Review
Agricultural and Agro-Industrial Residues as Sustainable Sources of Next-Generation Biomedical Materials: Advances, Challenges, and Perspectives
by Stefania Lamponi, Roberta Barletta and Annalisa Santucci
Life 2025, 15(12), 1908; https://doi.org/10.3390/life15121908 - 13 Dec 2025
Viewed by 232
Abstract
Agricultural and agro-industrial residues are increasingly recognized as sustainable, low-cost feedstocks for high-performance biomedical materials. This review critically examines the translational potential of polysaccharides, proteins, inorganic compounds, and phytochemical-rich extracts derived from agro-waste, highlighting their chemical features, structure–function relationships, and application-specific readiness. Polysaccharides [...] Read more.
Agricultural and agro-industrial residues are increasingly recognized as sustainable, low-cost feedstocks for high-performance biomedical materials. This review critically examines the translational potential of polysaccharides, proteins, inorganic compounds, and phytochemical-rich extracts derived from agro-waste, highlighting their chemical features, structure–function relationships, and application-specific readiness. Polysaccharides such as nanocellulose, pectin, and chitosan emerge as the most advanced biopolymer platforms, particularly in wound healing, drug delivery, and 3D-printed scaffolds. Protein-derived materials—including collagen, gelatin, keratin, and soy protein—show strong promise in regenerative medicine, though challenges in mechanical stability and batch reproducibility remain. Inorganic phases such as hydroxyapatite and silica obtained from eggshells, rice husk ash, and marine shells demonstrate high bioactivity, with dental and bone applications approaching clinical translation. Finally, fruit-residue phytochemicals provide multifunctional antioxidant and antimicrobial enhancements to composite systems. By integrating material chemistry, processing strategies, and translational considerations, this review outlines the current state, challenges, and future perspectives for advancing agro-waste-derived biomaterials within a circular bioeconomy. Full article
(This article belongs to the Special Issue Agri-Food Waste Extracts: Structural and Functional Characterization)
Show Figures

Figure 1

28 pages, 10595 KB  
Article
Genome-Wide Discovery and Characterization of the Auxin Response Factor (ARF) Gene Family in Avicennia marina That Regulates Phytohormone Levels and Responds to Salt and Auxin Treatments
by Quaid Hussain, Muhammad Azhar Hussain, Yingying Li, Qi Zhang, Chenjing Shang, Mostafa A. Abdel-Maksoud, Salman Alrokayan and Abdulaziz Alamri
Biology 2025, 14(12), 1774; https://doi.org/10.3390/biology14121774 - 11 Dec 2025
Viewed by 233
Abstract
Auxin response factors (ARFs) are crucial components of auxin signaling, playing a vital role in plant growth, development, hormone regulation, and stress responses. Salinity influences plant growth and development; however, Avicennia marina exhibits remarkable salt tolerance. This study analyzed Avicennia marina ARF genes [...] Read more.
Auxin response factors (ARFs) are crucial components of auxin signaling, playing a vital role in plant growth, development, hormone regulation, and stress responses. Salinity influences plant growth and development; however, Avicennia marina exhibits remarkable salt tolerance. This study analyzed Avicennia marina ARF genes (AmARFs) and their roles in responding to salt and indole-3-acetic acid (IAA) stress. The results indicated that across 5–15 days, endogenous IAA and abscisic acid (ABA) levels in A. marina leaves showed significant, time-dependent changes under salt and IAA treatments, with IAA fluctuating around 2.0–3.3 µg g−1 FW and ABA rising sharply under combined high-salt + IAA conditions (AS25), reaching up to ~25 µg g−1 FW (p < 0.05). This is the first genome-wide identification of 41 ARF genes in Avicennia marina with expression responses to combined salt and auxin treatments. We identified 41 AmARF genes spread across 23 chromosomes. These genes are divided into four groups according to their phylogenetic relationships. Their coding regions encode amino acids from 361 to 1264, and the number of exons varies from 2 to an unspecified upper limit of 25. Examining these gene promoters revealed various hormone- and stress-response elements, with each gene containing distinct response elements. Sixteen miRNAs can inhibit various ARF genes, while protein–protein interactions and 3D structures offered valuable insights into AmARF proteins. GO enrichment analysis revealed that all 41 AmARFs are involved in the auxin-activated signaling pathway and are also involved in cell division. According to the expression experiments, 11 randomly selected genes showed predominantly upregulation in response to salt and IAA stressors compared with controls. These findings extend our understanding of the functional roles of AmARFs in stress responses. The systematic annotation of AmARF family genes offers candidate genes for future functional validation, which may help elucidate the precise roles of AmARFs in stress responses. Full article
(This article belongs to the Special Issue Research Progress on Salt Stress in Plants)
Show Figures

Figure 1

17 pages, 5021 KB  
Article
Thalidomide-Based PROTACs: A Viable Strategy Against Trypanosomatids?
by Romina Manarin, Gianfranco Frattini, Victoria L. Alonso, Victoria Boselli, Giselle R. Bedogni, Elvio Rodríguez Araya, Diego M. Moreno and Esteban Serra
Drugs Drug Candidates 2025, 4(4), 55; https://doi.org/10.3390/ddc4040055 - 10 Dec 2025
Viewed by 137
Abstract
Background: In recent years, compounds known as Proteolysis Targeted Chimeras (PROTACs) have revitalized the field of bioactive molecule design. These compounds promote proteolysis of therapeutic targets by recruiting them to ubiquitin ligases. One of the most commonly used classes of compounds in the [...] Read more.
Background: In recent years, compounds known as Proteolysis Targeted Chimeras (PROTACs) have revitalized the field of bioactive molecule design. These compounds promote proteolysis of therapeutic targets by recruiting them to ubiquitin ligases. One of the most commonly used classes of compounds in the synthesis of PROTACs are immunomodulatory imides (IMiDs), such as thalidomide (TLD), which interact with the E3 ligase CRL4CRBN via the CULT domain of the cereblon protein (CRBN). This domain has been identified in proteins across various phylogenetic groups, including trypanosomatids, leading to the hypothesis that IMiD-derived PROTACs should be active in these organisms. Methods: The trypanocidal activity of the PROTAC dBET1 and its separated components (JQ1 and TLD) were assayed using a T. cruzi strain expressing β-glalactosidase. Potential CRL4-E3L complexes from humans and trypanosomatids were assembled in silico with MultimerMapper. The IMiD-binding site of HsCRBN and its trypanosomatid homologs were analyzed using molecular dynamics and docking simulations. Results: We demonstrate that the compound dBET1 does not function as a PROTAC in Trypanosoma cruzi. In silico structural analysis of CRL4-E3L complex orthologs revealed that the trypanosomal CULT-containing protein is not part of such a complex. Molecular dynamics simulations showed that the pocket of this CULT domain is smaller than that of mammalian CRBN and cannot accommodate IMiDs within. Conclusions: We underscore the importance of functional and structural validation in drug discovery, particularly when extrapolating mechanisms between evolutionarily distant species. While PROTACs hold promise in human therapeutics, our work advocates for re-evaluating the rationale behind thalidomide-based PROTACs in trypanosomatid research. Full article
(This article belongs to the Collection Anti-Parasite Drug Discovery)
Show Figures

Graphical abstract

18 pages, 7609 KB  
Article
Comparative Analysis of the Composition of Exosome-like Nanoparticles from Dried and Fresh Portulaca oleracea L.
by Yinjie Ma, Kaige Yang, Hai Hu, Wenchang Fu, Ce Li, Yutong Zeng, Xinyan Li and Yan Wang
Molecules 2025, 30(24), 4715; https://doi.org/10.3390/molecules30244715 - 9 Dec 2025
Viewed by 208
Abstract
Plant-derived extracellular vesicles (PEVs) have emerged as a promising area of research in biotechnology with enormous potential in drug delivery, skincare, and functional foods. Currently, PEVs are obtained primarily from fresh and dried materials through soaking and extraction; however, little is known about [...] Read more.
Plant-derived extracellular vesicles (PEVs) have emerged as a promising area of research in biotechnology with enormous potential in drug delivery, skincare, and functional foods. Currently, PEVs are obtained primarily from fresh and dried materials through soaking and extraction; however, little is known about the differences in their contents. Using Portulaca oleracea L. as the research object, this study firstly employed a method that combined differential and ultracentrifugation with membrane filtration to separate and purify exosome-like nanoparticles from dried material (D-PELNs) and fresh material (F-PELNs). Then, multi-omics analysis compared the small-molecule metabolites, lipid profiles, and protein expression patterns. Both D-PELNs and F-PELNs showed typical cup-shaped morphology, with mean particle sizes of 139 nm and 186 nm, and mean zeta potentials of −16.015 ± 0.335 mV and −6.29 ± 0.19 mV, respectively. Both types contained diverse small-molecule metabolites. Among them, terpenoids (e.g., caesaldekarin e) were more abundant in F-PELNs, whereas carboxylic acids and their derivatives (e.g., citric acid) were predominantly found in D-PELNs. Both types had abundant lipids. D-PELNs exhibited greater lipid diversity than F-PELNs, with notable enrichment in phosphatidylcholine (18.48%) and ceramide (17.02%). F-PELNs mainly consisted of functional neutral lipids, such as monoglycerides and triglycerides. Proteins involved in plant morphogenesis and secondary-metabolite biosynthesis were also identified. Proteins from both Portulaca oleracea L.-derived exosome-like nanoparticles (PELNs) were localized to intracellular structures, including the cytoplasm and mitochondria of the cells. D-PELNs had a higher protein content related to carbon metabolism, whereas F-PELNs were more enriched in proteins related to secondary metabolite synthesis. In summary, D-PELNs and F-PELNs were successfully isolated and characterized, and their compositions were analyzed and compared using multi-omics approaches. These findings identify the specific chemical components of PELNs and offer new insights for comparing the compositional differences between exosome-like nanoparticles derived from dried and fresh plant states. Full article
Show Figures

Figure 1

16 pages, 1839 KB  
Article
Modulation of Moisturizing and Barrier Related Molecular Markers by Extracellular Vesicles Derived from Leuconostoc mesenteroides DB-21 Isolated from Camellia japonica Flower
by Junseok Baek, Seongguk Cho, Gibok Lee, Hosam Ki, Su Young Kim, Gyu-min Choi, Jae Hong Kim, Ji-Woong Kim, Chang-Min Park, Seung-Young Kim, Byeong-Min Choi and Yang Gyu Choi
Curr. Issues Mol. Biol. 2025, 47(12), 1022; https://doi.org/10.3390/cimb47121022 - 8 Dec 2025
Viewed by 191
Abstract
Among the microorganisms present in the microbiome of Camellia japonica flowers, extracellular vesicles (EVs) derived from Leuconostoc mesenteroides were isolated to investigate their modulatory effects on moisturizing and barrier-related molecular markers. To identify the function of major proteins in L. mesenteroides DB-21-derived extracellular [...] Read more.
Among the microorganisms present in the microbiome of Camellia japonica flowers, extracellular vesicles (EVs) derived from Leuconostoc mesenteroides were isolated to investigate their modulatory effects on moisturizing and barrier-related molecular markers. To identify the function of major proteins in L. mesenteroides DB-21-derived extracellular vesicles (LEVs), Gene Ontology (GO) analysis was performed, revealing ATP binding, ribosomal structural proteins, and metal ion binding as predominant molecular-function categories. These proteomic characteristics provide a molecular context that supports the interpretation of the moisturizing and barrier-related responses observed in this study. To further verify new findings, we performed functional evaluations using in vitro and 3D skin models. LEVs increased the mRNA expression level of HAS3, which encodes hyaluronic acid synthase. In addition, the expression levels of filaggrin and involucrin, key proteins involved in skin barrier formation, increased, and these markers were determined a concentration-dependent increase in a 3D artificial skin model. Also, we confirmed that the expression levels of filaggrin and involucrin, which were reduced by UVB damage, were restored when LEVs were applied. In conclusion, LEVs are effective in enhancing various molecular markers related to the skin barrier function, and these results reveal that they hold promise as next-generation microbiome-based functional ingredients. Full article
(This article belongs to the Section Bioorganic Chemistry and Medicinal Chemistry)
Show Figures

Figure 1

22 pages, 5599 KB  
Article
Calmodulin Interaction Interface with Plasma Membrane Ca2+-ATPase Isoforms: An Integrative Bioinformatic Analysis
by Miguel Martínez-Fresneda, Esteban Lizano, Gabriela Echeverría-Garcés, Andres Herrera-Yela, Danna Feijóo, Grecia Victoria Vivas-Colmenares, Alvaro López-Zaplana, Leda Pedelini, Marta Mendoza, Juan Carlos Navarro and Jose Ruben Ramírez-Iglesias
Int. J. Mol. Sci. 2025, 26(23), 11750; https://doi.org/10.3390/ijms262311750 - 4 Dec 2025
Viewed by 273
Abstract
Plasma membrane Ca2+-ATPases (PMCA) are activated by calmodulin (CaM) via a C-terminal calmodulin-binding domain, CaMBD. Although specific mutations in this domain have been linked to disease, the broader impact of alternative substitutions across the interface remains unexplored. We applied an integrative [...] Read more.
Plasma membrane Ca2+-ATPases (PMCA) are activated by calmodulin (CaM) via a C-terminal calmodulin-binding domain, CaMBD. Although specific mutations in this domain have been linked to disease, the broader impact of alternative substitutions across the interface remains unexplored. We applied an integrative in silico workflow to test six substitutions within CaMBD positions 1–18, L5R, N6I, I8T, V14E/D, and F18S, across PMCA isoforms 1–4. CaMBD sequences were aligned across isoforms, and candidates for substitutions were selected by conservation and nucleotide feasibility, prioritizing conserved or co-evolutionarily relevant sites, with substitutions possible by single-nucleotide change. PolyPhen-2 screened the impact of the substitutions on the protein functionality, the DisGeNET database was used to contextualize ATP2B genes with clinical phenotypes, and structural models plus binding free energy changes were estimated with AlphaFold3, FoldX, and MutaBind2. Effects were isoform and subregion dependent, with the strongest weakening toward the CaMBD C-terminus. V14E/D and F18S showed the largest and consistent predicted destabilization, consistent with disruption of conserved hydrophobic anchors. I8T and L5R had mixed outcomes depending on isoform, while N6I presented various scenarios with no clear effect. PolyPhen-2 classified most tested substitutions as damaging. Gene-disease evidence linked ATP2B to neurological, endocrine, and oncologic phenotypes, consistent with roles in Ca2+ homeostasis. Overall, CaMBD appears highly sensitive to perturbation, with distal positions 14–18 particularly vulnerable to substitutions that can destabilize CaM binding and potentially impair PMCA-mediated Ca2+ clearance in susceptible tissues. Full article
(This article belongs to the Special Issue Calcium Homeostasis of Cells in Health and Disease: Third Edition)
Show Figures

Figure 1

Back to TopTop