Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = 207 nm

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 4768 KB  
Article
Enhancing the Valorization of Spent Pleurotus Substrate Through Anaerobic Digestion by Extracted Enzymes
by Diana Constantinescu-Aruxandei, Alexandru Vlaicu, Daria Gabriela Popa, Ștefan-Ovidiu Dima, Mălina Deșliu-Avram, Alin Cristian Nicolae Vintilă, Marius Ghiurea, Mihaela Cilțea-Udrescu, Ioana Popa-Tudor, Naomi Tritean, Georgeta Ramona Ivan, Cristian-Andi Nicolae, Mihaela Ganciarov, Gabriel Vasilievici and Florin Oancea
Agronomy 2025, 15(11), 2663; https://doi.org/10.3390/agronomy15112663 - 20 Nov 2025
Viewed by 675
Abstract
Spent mushroom substrate (SMS) could be used as a substrate in anaerobic digestion (AD), but some studies have reported modest production and yield of methane. Several solutions have been proposed to mitigate this issue, such as co-digestion with other substrates, various pretreatments, and [...] Read more.
Spent mushroom substrate (SMS) could be used as a substrate in anaerobic digestion (AD), but some studies have reported modest production and yield of methane. Several solutions have been proposed to mitigate this issue, such as co-digestion with other substrates, various pretreatments, and the use of additives. In this study we report for the first time the possibility of enhancing the process of methane production from spent Pleurotus substrate (SPS) using a pretreatment with enzymes recovered by a simple aqueous extraction from SPS. This represents an alternative to harsher chemical and physical pretreatment methods. The pretreatment increased the methane production from SPS by 16% at saturation, and a 25% faster anaerobic digestion process was obtained. After 2 days of AD, the methane volume for SPS + enzyme was 287 ± 9 NmL, approaching the maximum of 295 ± 14 NmL obtained for this variant, and was 39% more than SPS without pretreatment (207 ± 16 NmL). Pleurotus cultivation, AD, and the enzymes increased the crystallinity of the substrate. The enzymes increased the chemical oxygen demand, total carbon, and the concentration of pentanoic acid and 2-methyl-butanoic acid and decreased the concentration of hexanoic acid in the liquid digestate. The pretreatment increased, in general, the P and K content in the liquid and solid digestates. All data were compared with the hay used for Pleurotus cultivation. Full article
Show Figures

Figure 1

17 pages, 2559 KB  
Article
Multilayer Plasmonic Nanodisk Arrays for Enhanced Optical Hydrogen Sensing
by Junyi Jiang, Mingyu Cheng, Xinyi Chen and Bin Ai
Technologies 2025, 13(10), 466; https://doi.org/10.3390/technologies13100466 - 14 Oct 2025
Viewed by 694
Abstract
Plasmonic metasurfaces that convert hydrogen-induced dielectric changes into optical signals hold promise for next-generation hydrogen sensors. Here, we employ simulations and theoretical analysis to systematically assess single-layer, bilayer, and trilayer nanodisk arrays comprising magnesium, palladium, and noble metals. Although monolithic Mg nanodisks show [...] Read more.
Plasmonic metasurfaces that convert hydrogen-induced dielectric changes into optical signals hold promise for next-generation hydrogen sensors. Here, we employ simulations and theoretical analysis to systematically assess single-layer, bilayer, and trilayer nanodisk arrays comprising magnesium, palladium, and noble metals. Although monolithic Mg nanodisks show strong optical contrast after hydrogenation, the corresponding surface plasmon resonance disappears completely, preventing quantitative spectral tracking. In contrast, bilayer heterostructures, particularly those combining Mg and Au, achieve a resonance red-shift of Δλ = 62 nm, a narrowed full width at half maximum (FWHM) of 207 nm, and a figure of merit (FoM) of 0.30. Notably, the FoM is boosted by up to 15-fold when tuning both material choice and stacking sequence (from Mg-Ag to Au-Mg), underscoring the critical role of interface engineering. Trilayer “sandwich” architectures further amplify performance, achieving a max 10-fold and 13-fold enhancement in Δλ and FoM, respectively, relative to its bilayer counterpart. Particularly, the trilayer Mg-Au-Mg reaches Δλ = 120 nm and FoM = 0.41, outperforming most previous plasmonic hydrogen sensors. These enhancements arise from maximized electric-field overlap with dynamically changing dielectric regions at noble-metal–hydride interfaces, as confirmed by first-order perturbation theory. These results indicate that multilayer designs combining Mg and noble metals can simultaneously maximize hydrogen-induced spectral shifts and signal quality, providing a practical pathway toward high-performance all-optical hydrogen sensors. Full article
(This article belongs to the Special Issue New Technologies for Sensors)
Show Figures

Figure 1

18 pages, 4733 KB  
Systematic Review
Meta-Analysis of the Impact of Far-Red Light on Vegetable Crop Growth and Quality
by Minggui Zhang, Jun Ju, Youzhi Hu, Rui He, Jiali Song and Houcheng Liu
Plants 2024, 13(17), 2508; https://doi.org/10.3390/plants13172508 - 6 Sep 2024
Cited by 3 | Viewed by 3006
Abstract
Far-red lights (FRs), with a wavelength range between 700 and 800 nm, have substantial impacts on plant growth, especially horticultural crops. Previous studies showed conflicting results on the effects of FRs on vegetable growth and quality. Therefore, we conducted a meta-analysis on the [...] Read more.
Far-red lights (FRs), with a wavelength range between 700 and 800 nm, have substantial impacts on plant growth, especially horticultural crops. Previous studies showed conflicting results on the effects of FRs on vegetable growth and quality. Therefore, we conducted a meta-analysis on the influence of FRs on vegetable growth, aiming to provide a comprehensive overview of their effects on the growth and nutritional indicators of vegetables. A total of 207 independent studies from 55 literature sources were analyzed. The results showed that FR treatment had significant effects on most growth indicators, including increasing the fresh weight (+25.27%), dry weight (+21.99%), plant height (+81.87%), stem diameter (+12.91%), leaf area (+18.57%), as well as reducing the content of chlorophyll (−11.88%) and soluble protein (−11.66%), while increasing soluble sugar content (+19.12%). Further subgroup analysis based on various factors revealed significant differences in the effects of FR on different physiological indicators, such as FR intensity, plant species, duration of FR exposure, and the ratio of red light to FR. In general, moderate FR treatment is beneficial for vegetable growth. This study provides important references and guidelines for optimizing the application of FR in the future. Full article
(This article belongs to the Special Issue Light and Plant Nutrition)
Show Figures

Figure 1

25 pages, 18745 KB  
Article
Novel Polyamide/Chitosan Nanofibers Containing Glucose Oxidase and Rosemary Extract: Fabrication and Antimicrobial Functionality
by Ghazaleh Chizari Fard, Mazeyar Parvinzadeh Gashti, Seyed Ahmad Dehdast, Mohammad Shabani, Ehsan Zarinabadi, Negin Seifi and Ali Berenjian
Coatings 2024, 14(4), 411; https://doi.org/10.3390/coatings14040411 - 29 Mar 2024
Cited by 8 | Viewed by 2288
Abstract
In recent years, the synthesis of nanofibers using plant extracts and bioactive materials has been extensively studied and recognized as a suitable and efficient method applicable in the food packaging field. In this research, an antimicrobial material was introduced by the immobilization of [...] Read more.
In recent years, the synthesis of nanofibers using plant extracts and bioactive materials has been extensively studied and recognized as a suitable and efficient method applicable in the food packaging field. In this research, an antimicrobial material was introduced by the immobilization of glucose oxidase (GOx) in Nylon–Ag masterbatch/chitosan/Rosmarinus officinalis extract nanofiber via electrospinning technology. Nylon–Ag masterbatch/chitosan/Rosmarinus officinalis composite nanofibrous membranes with an average diameter of 207 ± 18 nm were successfully prepared using the electrospinning technique. The chemical properties of membranes were analyzed by Fourier transform infrared spectroscopy (FTIR) and the morphological characterization of nanofibers was evaluated with field emission scanning electron microscopy (FE-SEM). Moreover, enzymatic activity of GOx was determined by the Carmine method. FTIR results showed the successful incorporation of glucose oxidase and Rosmarinus officinalis into the nanofiber composite. Immobilized GOx showed high (79.5%) enzymatic activity in the optimum sample. The Rosmarinus officinalis, glucose oxidase-incorporated Nylon–Ag masterbatch/chitosan nanofibrous exhibited excellent antimicrobial activity on both gram-negative bacterium Escherichia coli (97.5%) and gram-positive bacterium Staphylococcus aureus (99.5%). The antibacterial and antioxidant Nylon–Ag masterbatch/chitosan/Rosmarinus officinalis/GOx nanofibrous membrane showed higher potential, compared to the control sample, to be used as food packaging by improving the shelf life and maintaining the quality of food stuffs. Therefore, this research recommends it as a promising candidate for food preservation applications. Full article
(This article belongs to the Special Issue Fabrication and Properties of Bio-Coatings and Their Applications)
Show Figures

Graphical abstract

22 pages, 12744 KB  
Article
Resonance-Based Sensing of Magnetic Nanoparticles Using Microfluidic Devices with Ferromagnetic Antidot Nanostructures
by Reyne Dowling, Ryszard Narkowicz, Kilian Lenz, Antje Oelschlägel, Jürgen Lindner and Mikhail Kostylev
Nanomaterials 2024, 14(1), 19; https://doi.org/10.3390/nano14010019 - 20 Dec 2023
Cited by 4 | Viewed by 2297
Abstract
We demonstrated resonance-based detection of magnetic nanoparticles employing novel designs based upon planar (on-chip) microresonators that may serve as alternatives to conventional magnetoresistive magnetic nanoparticle detectors. We detected 130 nm sized magnetic nanoparticle clusters immobilized on sensor surfaces after flowing through PDMS microfluidic [...] Read more.
We demonstrated resonance-based detection of magnetic nanoparticles employing novel designs based upon planar (on-chip) microresonators that may serve as alternatives to conventional magnetoresistive magnetic nanoparticle detectors. We detected 130 nm sized magnetic nanoparticle clusters immobilized on sensor surfaces after flowing through PDMS microfluidic channels molded using a 3D printed mold. Two detection schemes were investigated: (i) indirect detection incorporating ferromagnetic antidot nanostructures within microresonators, and (ii) direct detection of nanoparticles without an antidot lattice. Using scheme (i), magnetic nanoparticles noticeably downshifted the resonance fields of an antidot nanostructure by up to 207 G. In a similar antidot device in which nanoparticles were introduced via droplets rather than a microfluidic channel, the largest shift was only 44 G with a sensitivity of 7.57 G/ng. This indicated that introduction of the nanoparticles via microfluidics results in stronger responses from the ferromagnetic resonances. The results for both devices demonstrated that ferromagnetic antidot nanostructures incorporated within planar microresonators can detect nanoparticles captured from dispersions. Using detection scheme (ii), without the antidot array, we observed a strong resonance within the nanoparticles. The resonance’s strength suggests that direct detection is more sensitive to magnetic nanoparticles than indirect detection using a nanostructure, in addition to being much simpler. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

13 pages, 2881 KB  
Article
Filter-Free, Harmless, and Single-Wavelength Far UV-C Germicidal Light for Reducing Airborne Pathogenic Viral Infection
by Cao-Sang Truong, Palaniyandi Muthukutty, Ho Kyung Jang, Young-Ho Kim, Dong Hoon Lee and So Young Yoo
Viruses 2023, 15(7), 1463; https://doi.org/10.3390/v15071463 - 28 Jun 2023
Cited by 3 | Viewed by 3437
Abstract
Germicidal lamps that primarily emit 254 nm ultraviolet (UV) radiation have been effectively utilized for surface sterilization, but they cannot be used on human skin and eyes due to their harmful and genotoxic activity. Recent reports have shown that far UV-C light (207–222 [...] Read more.
Germicidal lamps that primarily emit 254 nm ultraviolet (UV) radiation have been effectively utilized for surface sterilization, but they cannot be used on human skin and eyes due to their harmful and genotoxic activity. Recent reports have shown that far UV-C light (207–222 nm) can efficiently kill pathogens with potentially no harm to exposed human tissues. However, these methods still require additional filtering and/or further protective equipment. In this study, we demonstrate a filter-free, harmless, and single-wavelength far UV-C 207 nm germicidal light source that can be used to inactivate different respiratory viruses. It can be exploited as a safe and effective disinfection tool for various airborne viruses. We successfully developed a single-wavelength far UV-C source that produces an exact wavelength of 207 nm. We examined its safety on human skin and corneal cell lines, as well as its effects on inactivating different airborne viruses, such as coronavirus, adenovirus, and vaccinia virus. We expect that our far UV-C lamps can be safely and conveniently used to reduce COVID-19 infections and protect both our living spaces and hospitals from the threat of contamination by possible new or mutant viruses. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

18 pages, 4282 KB  
Article
Investigation of Physiochemical Impact of Organic Molecule L-Lysine on Ammonium Dihydrogen Phosphate Single Crystal for Optoelectronics Applications
by Shruti Patle, Dinesh Rotake and Kishor Rewatkar
Electrochem 2023, 4(2), 255-272; https://doi.org/10.3390/electrochem4020017 - 24 Apr 2023
Cited by 4 | Viewed by 4066
Abstract
Ammonium dihydrogen phosphate (ADP) single crystals along with the incorporated 0.5 and 1% L-lysine, an organic molecule which possesses a good nonlinear response, were grown with the vision to meet the requirements of the optoelectronic industry. The inclusion of the L-lysine molecule in [...] Read more.
Ammonium dihydrogen phosphate (ADP) single crystals along with the incorporated 0.5 and 1% L-lysine, an organic molecule which possesses a good nonlinear response, were grown with the vision to meet the requirements of the optoelectronic industry. The inclusion of the L-lysine molecule in the crystal was confirmed by the XRD and EDX. The experiment not only confirms the inclusion level of the impurity but also the capability of the amino acid molecule to bond hydrogen within the crystal facet. A minor decrease in lattice parameters was reported for all ADP: L-lysine crystals compared with pure ADP. The structures of the grown crystals were identified as tetragonal with the space group I42d by the single-crystal XRD analysis. Vibrational signatures and functional groups were confirmed using FTIR spectroscopy. The thermal stability and decomposition temperatures of 0.5 and 1% L-lysine-added crystals were measured by TG/DTA and found to be 203 °C and 207 °C, respectively. The UV–visible transmission spectra prove a higher transparency for doped crystals as compared to pure crystals; therefore, these doped crystals can be considered the best option for the frequency doubling process in a broad range of visible and near-IR spectra. The improved hardness of the doped crystals was confirmed by the Vickers hardness data. The nonlinear optical (NLO) behaviour investigated using a second-harmonic generation (SHG) technique, indicating an efficient quadratic nonlinear coefficient of ADP: Lysine crystals at a 1064 nm initial wavelength, shows about 1.5-fold higher efficiency compared with undoped ADP. Full article
Show Figures

Figure 1

15 pages, 3530 KB  
Article
Application of Quantum–Chemical Methods in the Forensic Prediction of Psychedelic Drugs’ Spectra (IR, NMR, UV–VIS, and MS): A Case Study of LSD and Its Analogs
by Jelica Džodić, Dejan Milenković, Milica Marković, Zoran Marković and Dušan Dimić
Appl. Sci. 2023, 13(5), 2984; https://doi.org/10.3390/app13052984 - 25 Feb 2023
Cited by 28 | Viewed by 8348
Abstract
Lysergic acid diethylamide (LSD) and its analogs are commonly encountered substances at crime scenes due to their misuse as hallucinogenic compounds. Modern methods have led to synthesizing different LSD analogs with pronounced physiological effects. Theoretical methods can be a valuable tool for predicting [...] Read more.
Lysergic acid diethylamide (LSD) and its analogs are commonly encountered substances at crime scenes due to their misuse as hallucinogenic compounds. Modern methods have led to synthesizing different LSD analogs with pronounced physiological effects. Theoretical methods can be a valuable tool for predicting the spectra and stability of novel substances, especially when experimental data are partially available. The current work describes the application of theoretical methods in predicting IR, NMR, UV–VIS, and MS spectra of LSD based on the optimized structure at the M05-2X/6-311++G(d,p) level of theory. A suitable functional has been determined by comparison of the theoretically obtained geometrical parameters with the experimental ones based on the crystallographic structure. The MAE values for the structure optimized at M05-2X/6-311++G(d,p) level of theory were 0.0436 Å (bond lengths) and 2.70° (bond angles). The IR spectra of LSD and LSD tartrate have been described in detail, with the prominent bands being well reproduced (the difference between experimental and theoretical C=O stretching vibration wavenumbers was lower than 11 cm−1). Detailed assignment of 13C NMR spectra led to a high correlation factor (0.999) and low mean absolute error (2.0 ppm) between experimental and theoretical chemical shifts. Optimizing the ground and excited states allowed for the calculation of the energy difference of 330 nm, which reproduced the observed band position in the UV–VIS spectrum of LSD. The most abundant fragments in the experimental mass spectrum (at 323, 221, 207, 181, and 72 m/z) have been optimized, and their stability has been discussed from the structural point of view. This methodology has been validated by comparison with the experimental GC-MS spectra of sample seized at the crime screen and by structure optimization and computation of NMR spectra of common LSD analogs. The theoretical methods for the structure determination and prediction of spectra show great potential in the fast-developing world of new psychedelics. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

13 pages, 4758 KB  
Communication
A Multi-Layered Borophene-Silica-Silver Based Refractive Index Sensor for Biosensing Applications Operated at the Infrared Frequency Spectrum
by Abdullah G. Alharbi, Vishal Sorathiya and Sunil Lavadiya
Photonics 2022, 9(5), 279; https://doi.org/10.3390/photonics9050279 - 20 Apr 2022
Cited by 9 | Viewed by 2985
Abstract
We have presented the borophene based refractive index sensor for the infrared frequency spectrum of 188 to 250 THz (1.2–1.6 µm) range. The proposed structure was formed by using the Silver-borophene-silica-Ag layered structure. The behaviour of the different analyte (with a different refractive [...] Read more.
We have presented the borophene based refractive index sensor for the infrared frequency spectrum of 188 to 250 THz (1.2–1.6 µm) range. The proposed structure was formed by using the Silver-borophene-silica-Ag layered structure. The behaviour of the different analyte (with a different refractive index) material is numerically calculated by placing it on the top of the structure. The behaviour of the structure is identified in terms of absorption, reflectance, physical parameter variation, and oblique angle incident conditions. The presented results provide the basic idea of selecting optimized structure dimensions to get the specific resonating response. This sensor offers the Figure of Merit (FOM) of 444 RIU−1 with high sensitivity of 660 THz/RIU (4471 nm/RIU). The refractive index sensor also provides wide-angle stability for (0° to 80°) for the wide frequency range (239 to 245 THz and 207 to 209 THz). This sensor is developed on the silver metal layer (not required to separate borophene from its origin metal deposition process) and easily fabricated using standard boron fabrication and layered deposition techniques. The results of the proposed structure make it possible to design a basic biosensor structure. This device is also applicable for various THz and biomedical applications. Full article
(This article belongs to the Special Issue Light-Based Smart Technologies for Biomedical Sensing and Imaging)
Show Figures

Figure 1

24 pages, 6926 KB  
Article
Antibody Conjugated PLGA Nanocarriers and Superparmagnetic Nanoparticles for Targeted Delivery of Oxaliplatin to Cells from Colorectal Carcinoma
by Alma Lucia Villela Zumaya, Silvie Rimpelová, Markéta Štějdířová, Pavel Ulbrich, Jarmila Vilčáková and Fatima Hassouna
Int. J. Mol. Sci. 2022, 23(3), 1200; https://doi.org/10.3390/ijms23031200 - 21 Jan 2022
Cited by 35 | Viewed by 6920
Abstract
Anti-CD133 monoclonal antibody (Ab)-conjugated poly(lactide-co-glycolide) (PLGA) nanocarriers, for the targeted delivery of oxaliplatin (OXA) and superparamagnetic nanoparticles (IO-OA) to colorectal cancer cells (CaCo-2), were designed, synthesized, characterized, and evaluated in this study. The co-encapsulation of OXA and IO-OA was achieved in two types [...] Read more.
Anti-CD133 monoclonal antibody (Ab)-conjugated poly(lactide-co-glycolide) (PLGA) nanocarriers, for the targeted delivery of oxaliplatin (OXA) and superparamagnetic nanoparticles (IO-OA) to colorectal cancer cells (CaCo-2), were designed, synthesized, characterized, and evaluated in this study. The co-encapsulation of OXA and IO-OA was achieved in two types of polymeric carriers, namely, PLGA and poly(lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) by double emulsion. PLGA_IO-OA_OXA and PEGylated PLGA_IO-OA_OXA nanoparticles displayed a comparable mean diameter of 207 ± 70 nm and 185 ± 119 nm, respectively. The concentration of the released OXA from the PEGylated PLGA_IO-OA_OXA increased very rapidly, reaching ~100% release after only 2 h, while the PLGA_IO-OA_OXA displayed a slower and sustained drug release. Therefore, for a controlled OXA release, non-PEGylated PLGA nanoparticles were more convenient. Interestingly, preservation of the superparamagnetic behavior of the IO-OA, without magnetic hysteresis all along the dissolution process, was observed. The non-PEGylated nanoparticles (PLGA_OXA, PLGA_IO-OA_OXA) were selected for the anti-CD133 Ab conjugation. The affinity of Ab-coated nanoparticles for CD133-positive cells was examined using fluorescence microscopy in CaCo-2 cells, which was followed by a viability assay. Full article
(This article belongs to the Special Issue Quo Vadis Cancer Research? On Molecular Mechanisms and Drug Discovery)
Show Figures

Graphical abstract

12 pages, 3573 KB  
Article
Upconversion Visible Light Emission in Yb/Pr Co-Doped Yttria-Stabilized Zirconia (YSZ) Single Crystals
by Daini Wang, Wenxia Wu, Xiaojun Tan, Bernard A. Goodman, Shoulei Xu and Wen Deng
Crystals 2021, 11(11), 1328; https://doi.org/10.3390/cryst11111328 - 31 Oct 2021
Cited by 9 | Viewed by 2957
Abstract
As a development on previous research on single crystals of Pr3+-doped yttria-stabilized zirconia (YSZ), we report here the preparation and optical properties of Yb/Pr co-doped YSZ single crystals with different Yb2O3 concentrations. Results from X-ray diffraction (XRD) and [...] Read more.
As a development on previous research on single crystals of Pr3+-doped yttria-stabilized zirconia (YSZ), we report here the preparation and optical properties of Yb/Pr co-doped YSZ single crystals with different Yb2O3 concentrations. Results from X-ray diffraction (XRD) and Raman spectroscopy indicated that all of the crystal samples had a cubic phase structure, and transmission was ≥88% in the 550–780 nm range. Photoluminescence (PL) under excitation with a 980 nm laser showed upconversion emission, and several peaks were observed centered on 448 nm, 508 nm, 525 nm, 542 nm, 617 nm and 656 nm. The effects of excited state absorption (ESA), energy transfer upconversion (ETU), cross relaxation (CR), and cooperative energy transfer (CET) on the upconversion luminescence and energy transition mechanism in YSZ crystals were further studied. The fluorescence lifetime of the 3P03H5 transition at 542 nm reached 207 μs, which shows that the samples are of potential use for laser and fluorescence output. Full article
Show Figures

Graphical abstract

12 pages, 3681 KB  
Article
Towards Promising Platform by Using Annular Photonic Crystals to Simulate and Design Useful Mask
by Ayman A Ameen, Hussein A Elsayed, Sagr Alamri, Z.S. Matar, M. Al-Dossari and Arafa H. Aly
Photonics 2021, 8(9), 349; https://doi.org/10.3390/photonics8090349 - 25 Aug 2021
Cited by 11 | Viewed by 2674
Abstract
Human masks are considered the mainstay in air filtration and purification technologies and against the spreading of bacterial and viral infections. This paper introduces a novel design of a human mask to increase the ultraviolet germicidal irradiation effect on pathogens. The proposed design [...] Read more.
Human masks are considered the mainstay in air filtration and purification technologies and against the spreading of bacterial and viral infections. This paper introduces a novel design of a human mask to increase the ultraviolet germicidal irradiation effect on pathogens. The proposed design consists of a tube with an annular photonic crystal (APC) attached to the mask’s orifice, and a UV source is located in the tube’s center. The main role of this study is the enhancement of UV doses based on the reflectivity of the proposed APC. Therefore, increasing pathogens’ inactivation level in the incoming air to the mask’s orifice could be investigated. The numerical investigations demonstrated that the proposed APC could provide a complete photonic bandgap with a high reflectivity in the wavelength regime from 207 to 230 nm. In addition, we have considered the roles of the thickness of layers, inner core radius, and the azimuthal number. Meanwhile, the results showed the ability to use a wide range of core radius values without almost any variations in the optical properties of the proposed design. Such results could grant the advantage of using this design by the manufacturing of human masks with different sizes besides the inclusions in other ultraviolet germicidal irradiation applications. Full article
(This article belongs to the Special Issue Design and Application of Modern Evanescent Wave Photonic Sensors)
Show Figures

Figure 1

22 pages, 6097 KB  
Article
Silica@zirconia Core@shell Nanoparticles for Nucleic Acid Building Block Sorption
by Livia Naszályi Nagy, Evert Dhaene, Matthias Van Zele, Judith Mihály, Szilvia Klébert, Zoltán Varga, Katalin E. Kövér, Klaartje De Buysser, Isabel Van Driessche, José C. Martins and Krisztina Fehér
Nanomaterials 2021, 11(9), 2166; https://doi.org/10.3390/nano11092166 - 25 Aug 2021
Cited by 4 | Viewed by 3647
Abstract
The development of delivery systems for the immobilization of nucleic acid cargo molecules is of prime importance due to the need for safe administration of DNA or RNA type of antigens and adjuvants in vaccines. Nanoparticles (NP) in the size range of 20–200 [...] Read more.
The development of delivery systems for the immobilization of nucleic acid cargo molecules is of prime importance due to the need for safe administration of DNA or RNA type of antigens and adjuvants in vaccines. Nanoparticles (NP) in the size range of 20–200 nm have attractive properties as vaccine carriers because they achieve passive targeting of immune cells and can enhance the immune response of a weakly immunogenic antigen via their size. We prepared high capacity 50 nm diameter silica@zirconia NPs with monoclinic/cubic zirconia shell by a green, cheap and up-scalable sol–gel method. We studied the behavior of the particles upon water dialysis and found that the ageing of the zirconia shell is a major determinant of the colloidal stability after transfer into the water due to physisorption of the zirconia starting material on the surface. We determined the optimum conditions for adsorption of DNA building blocks, deoxynucleoside monophosphates (dNMP), the colloidal stability of the resulting NPs and its time dependence. The ligand adsorption was favored by acidic pH, while colloidal stability required neutral-alkaline pH; thus, the optimal pH for the preparation of nucleic acid-modified particles is between 7.0–7.5. The developed silica@zirconia NPs bind as high as 207 mg dNMPs on 1 g of nanocarrier at neutral-physiological pH while maintaining good colloidal stability. We studied the influence of biological buffers and found that while phosphate buffers decrease the loading dramatically, other commonly used buffers, such as HEPES, are compatible with the nanoplatform. We propose the prepared silica@zirconia NPs as promising carriers for nucleic acid-type drug cargos. Full article
(This article belongs to the Special Issue Metal Oxide Nanomaterials: From Fundamental to Applications)
Show Figures

Figure 1

14 pages, 7706 KB  
Article
Phase Separation within a Thin Layer of Polymer Solution as Prompt Technique to Predict Membrane Morphology and Transport Properties
by Tatiana Anokhina, Ilya Borisov, Alexey Yushkin, Gleb Vaganov, Andrey Didenko and Alexey Volkov
Polymers 2020, 12(12), 2785; https://doi.org/10.3390/polym12122785 - 25 Nov 2020
Cited by 19 | Viewed by 3696
Abstract
In this work, the precipitation of a thin layer of a polymer solution was proposed to imitate the process of asymmetric membrane formation by a non-solvent induced phase separation (NIPS) technique. The phase inversion within the thin (<500 μm) and bulk (~2 cm) [...] Read more.
In this work, the precipitation of a thin layer of a polymer solution was proposed to imitate the process of asymmetric membrane formation by a non-solvent induced phase separation (NIPS) technique. The phase inversion within the thin (<500 μm) and bulk (~2 cm) layer of polyamic-acid (PAA) in N-methyl-2-pyrrolidone (NMP) by using water as non-solvent was considered. It was shown that polymer films formed within the “limited” layer of polymer solution showed a good agreement with the morphology of corresponded asymmetric flat-sheet membranes even in the case of three-component casting solution (PAA/NMP/EtOH). At the same time, the polymer films formed on the interface of two bulk phases (“infinite” regime) did not fully correspond to the membrane structure. It was shown that up to 50% of NMP solvent in PAA solution can be replaced by ethanol, which can have a renewable origin. By changing the ethanol content in the casting solution, the average size of transport pores can be varied in the range of 12–80 nm, and the liquid permeance from 16.6 up to 207 kg/m2∙h∙bar. To summarize, the precipitation of polymer solution within the thin layer can be considered a prompt technique and a powerful tool for fast screening and optimization of the complex composition of casting solutions using its small quantity. Furthermore, the prediction of membrane morphology can be done without casting the membrane, further post-treatment procedures, and scanning electron microscopy (SEM) analysis. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials for Membrane Technology)
Show Figures

Graphical abstract

14 pages, 2382 KB  
Article
Pea Protein for Hempseed Oil Nanoemulsion Stabilization
by Maciej Jarzębski, Farahnaz Fathordoobady, Yigong Guo, Minghuan Xu, Anika Singh, David D. Kitts, Przemysław Łukasz Kowalczewski, Paweł Jeżowski and Anubhav Pratap Singh
Molecules 2019, 24(23), 4288; https://doi.org/10.3390/molecules24234288 - 25 Nov 2019
Cited by 47 | Viewed by 6643
Abstract
In this paper, we present the possibility of using pea protein isolates as a stabilizer for hempseed oil (HSO)-based water/oil emulsions in conjunction with lecithin as a co-surfactant. A Box-Behnken design was employed to build polynomial models for optimization of the ultrasonication process [...] Read more.
In this paper, we present the possibility of using pea protein isolates as a stabilizer for hempseed oil (HSO)-based water/oil emulsions in conjunction with lecithin as a co-surfactant. A Box-Behnken design was employed to build polynomial models for optimization of the ultrasonication process to prepare the emulsions. The stability of the system was verified by droplet size measurements using dynamic light scattering (DLS) as well as centrifugation and thermal challenge tests. The z-ave droplet diameters of optimized emulsion were 209 and 207 nm after preparation and 1 week storage, respectively. The concentration of free Linoleic acid (C18:2; n-6) was used for calculation of entrapment efficiency in prepared nanoemulsions. At optimum conditions of the process, up to 98.63% ± 1.95 of entrapment was achieved. FTIR analysis and rheological tests were also performed to evaluate the quality of oil and emulsion, and to verify the close-to-water like behavior of the prepared samples compared to the viscous nature of the original oil. Obtained results confirmed the high impact of lecithin and pea protein concentrations on the emulsion droplet size and homogeneity confirmed by microscopic imaging. The presented results are the first steps towards using hempseed oil-based emulsions as a potential food additive carrier, such as flavor. Furthermore, the good stability of the prepared nanoemulsion gives opportunities for potential use in biomedical and cosmetic applications. Full article
(This article belongs to the Special Issue BioOrg: From Biomolecules to Biomaterials)
Show Figures

Figure 1

Back to TopTop