Towards Promising Platform by Using Annular Photonic Crystals to Simulate and Design Useful Mask
Abstract
:1. Introduction
2. Theoretical Analysis
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chua, M.H.; Cheng, W.; Goh, S.S.; Kong, J.; Li, B.; Lim, J.Y.; Mao, L.; Wang, S.; Xue, K.; Yang, L.; et al. Face Masks in the New COVID-19 Normal: Materials, Testing, and Perspectives. Research 2020, 2020, 1–40. [Google Scholar] [CrossRef]
- Bahl, P.; Bhattacharjee, S.; de Silva, C.; Chughtai, A.A.; Doolan, C.; MacIntyre, C.R. Face coverings and mask to minimise droplet dispersion and aerosolisation: A video case study. Thorax 2020, 75, 1024–1025. [Google Scholar] [CrossRef]
- Tang, J.W.; Liebner, T.J.; Craven, B.A.; Settles, G.S. A schlieren optical study of the human cough with and without wearing masks for aerosol infection control. J. R. Soc. Interface 2009, 6 (Suppl. 6), S727–S736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, M.M.; Weiss, P.D.; Weiss, D.E.; Weiss, J.B. Disrupting the Transmission of Influenza A: Face Masks and Ultraviolet Light as Control Measures. Am. J. Public Health 2007, 97 (Suppl. 1), S32–S37. [Google Scholar] [CrossRef]
- Wilde, J.P.; Baer, T.M.; Hesselink, L. Modeling UV-C irradiation chambers for mask decontamination using Zemax OpticStudio. Appl. Opt. 2020, 59, 7596–7605. [Google Scholar] [CrossRef] [PubMed]
- Shirbandi, K.; Barghandan, S.; Mobinfar, O.; Rahim, F. Inactivation of Coronavirus with Ultraviolet Irradiation: What? How? Why? SSRN 2020. [Google Scholar] [CrossRef]
- Pecho, P.; Škvareková, I.; Ažaltovič, V.; Hrúz, M. Design of air circuit disinfection against COVID-19 in the conditions of airliners. Transp. Res. Procedia 2020, 51, 313–322. [Google Scholar] [CrossRef]
- Center for Devices and Radiological Health. Enforcement Policy for Face Masks and Respirators During the Coronavirus Disease (COVID-19) Public Health Emergency (Revised). U.S. Food and Drug Administration. 10 July 2020. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/enforcement-policy-face-masks-and-respirators-during-coronavirus-disease-covid-19-public-health (accessed on 22 February 2021).
- Schnell, E.; Harriff, M.J.; Yates, J.E.; Karamooz, E.; Pfeiffer, C.D.; McCarthy, J.F.; Trapp, C.L.; Frazier, S.K.; Dodier, J.E.; Smith, S.M. Homegrown Ultraviolet Germicidal Irradiation for Hospital-Based N95 Decontamination during the COVID-19 Pandemic. medRxiv 2020. [Google Scholar] [CrossRef]
- Aly, H.A.; Barakat, S.; Amin, A.F. Tunable filter based on the 1D photonic crystal within ultraviolet radiations. IOP Conf. Ser. Mater. Sci. Eng. 2020, 956, 012010. [Google Scholar] [CrossRef]
- Welch, D.; Buonanno, M.; Grilj, V.; Shuryak, I.; Crickmore, C.; Bigelow, A.W.; Randers-Pehrson, G.; Johnson, G.W.; Brenner, D.J. Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases. Sci. Rep. 2018, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Detchprohm, T.; Liu, Y.S.; Mehta, K.; Wang, S.; Xie, H.; Kao, T.T.; Shen, S.C.; Yoder, P.D.; Ponce, F.A.; Dupuis, R.D. Sub 250 nm deep-UV AlGaN/AlN distributed Bragg reflectors. Appl. Phys. Lett. 2017, 110, 011105. [Google Scholar] [CrossRef] [Green Version]
- Ameen, H.; Elsayed, A.; Aly, H. Towards a highly efficient air purifier using annular photonic crystals in UV regimes. RSC Adv. 2021, 11, 14915–14921. [Google Scholar] [CrossRef]
- Joannopoulos, J.D. (Ed.) Photonic Crystals: Molding the Flow of Light, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Aly, H.; Elsayed, H.A. Defect mode properties in a one-dimensional photonic crystal. Phys. B Condens. Matter 2012, 407, 120–125. [Google Scholar] [CrossRef]
- Aly, H.; Ameen, A.A.; Elsayed, H.A.; Mohamed, S.H.; Singh, M.R. One-Dimensional Metallo-Superconductor Photonic Crystals as a Smart Window. J. Supercond. Nov. Magn. 2019, 32, 2313–2318. [Google Scholar] [CrossRef]
- Yue, Y.; Gong, J.P. Tunable one-dimensional photonic crystals from soft materials. J. Photochem. Photobiol. C Photochem. Rev. 2015, 23, 45–67. [Google Scholar] [CrossRef]
- Dai, X.; Xiang, Y.; Wen, S.; He, H. Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb. J. Appl. Phys. 2011, 109, 053104. [Google Scholar] [CrossRef]
- Moroz, A. Three-Dimensional Complete Photonic-Band-gap Structures in the Visible. Phys. Rev. Lett. 1999, 83, 5274–5277. [Google Scholar] [CrossRef]
- Kazmierczak, T.; Song, H.; Hiltner, A.; Baer, E. Polymeric One-Dimensional Photonic Crystals by Continuous Coextrusion. Macromol. Rapid Commun. 2007, 28, 2210–2216. [Google Scholar] [CrossRef]
- Graugnard, E.; Gaillot, D.P.; Dunham, S.N.; Neff, C.W.; Yamashita, T.; Summers, C.J. Photonic band tuning in two-dimensional photonic crystal slab waveguides by atomic layer deposition. Appl. Phys. Lett. 2006, 89, 181108. [Google Scholar] [CrossRef] [Green Version]
- Guo, R.; Wang, D.-N.; Wei, Y.-Y.; Zhang, Y.-Z.; Yang, C.-G.; Xu, Z.-R. Colloidal photonic crystal array chip based on nanoparticle self-assembly on patterned hydrophobic surface for signal-enhanced fluorescent assay of adenosine. Microchim. Acta 2020, 187, 194. [Google Scholar] [CrossRef]
- Qi, F.; Meng, Z.; Xue, M.; Qiu, L. Recent advances in self-assemblies and sensing applications of colloidal photonic crystals. Anal. Chim. Acta 2020, 1123, 91–112. [Google Scholar] [CrossRef]
- Aly, H.; Elsayed, H.A.; Ameen, A.A.; Mohamed, S.H. Tunable properties of one-dimensional photonic crystals that incorporate a defect layer of a magnetized plasma. Int. J. Mod. Phys. B 2017, 31, 1750239. [Google Scholar] [CrossRef]
- Aly, H.; Ameen, A.A.; Elsayed, H.A.; Mohamed, S.H. Photonic crystal defective superconductor and black body radiations. Opt. Quant. Electron. 2018, 50, 361. [Google Scholar] [CrossRef]
- Aly, H.; Elsayed, H.A. Tunability of defective one-dimensional photonic crystals based on Faraday effect. J. Mod. Opt. 2017, 64, 871–877. [Google Scholar] [CrossRef]
- King, T.-C.; Yang, Y.-P.; Liou, Y.-S.; Wu, C.-J. Tunable defect mode in a semiconductor-dielectric photonic crystal containing extrinsic semiconductor defect. Solid State Commun. 2012, 152, 2189–2192. [Google Scholar] [CrossRef]
- Fenzl, C.; Hirsch, T.; Wolfbeis, O.S. Photonic Crystals for Chemical Sensing and Biosensing. Angew. Chem. Int. Ed. 2014, 53, 3318–3335. [Google Scholar] [CrossRef]
- Mohamed, A.G.; Elsayed, H.A.; Mehaney, A.; Aly, A.H.; Sabra, W. The transmissivity of one-dimensional photonic crystals comprising three phases nanocomposite layer for optical switching purposes. Phys. Scr. 2021, 96, 115504. [Google Scholar] [CrossRef]
- Seifouri, M.; Rouini, M.A.; Olyaee, S. Design of a surface plasmon resonance biosensor based on photonic crystal fiber with elliptical holes. Opt. Rev. 2018, 25, 555–562. [Google Scholar] [CrossRef]
- Kehl, F.; Bischof, D.; Michler, M.; Keka, M.; Stanley, R. Design of a Label-Free, Distributed Bragg Grating Resonator Based Dielectric Waveguide Biosensor. Photonics 2015, 2, 124–138. [Google Scholar] [CrossRef]
- Inan, H.; Poyraz, M.; Inci, F.; Lifson, M.A.; Baday, M.; Cunningham, B.T.; Demirci, U. Photonic crystals: Emerging biosensors and their promise for point-of-care applications. Chem. Soc. Rev. 2017, 46, 366–388. [Google Scholar] [CrossRef]
- Seifouri, M.; Rouini, M.A.; Olyaee, S. A Photonic Crystal Fiber Based Surface Plasmon Resonance Biosensor with Elliptical and Circular Holes. J. Nanoelectron. Optoelectron. 2019, 14, 335–341. [Google Scholar] [CrossRef]
- Chang, T.-W.; Hsu, H.-T.; Wu, C.-J. Investigation of Photonic Band Gap in a Circular Photonic Crystal. J. Electromagn. Waves Appl. 2011, 25, 2222–2235. [Google Scholar] [CrossRef]
- Amiri, S.; Paul, B.K.; Ahmed, K.; Aly, A.H.; Zakaria, R.; Yupapin, P.; Vigneswaran, D. Tri-core photonic crystal fiber based refractive index dual sensor for salinity and temperature detection. Microw. Opt. Technol. Lett. 2019, 61, 847–852. [Google Scholar] [CrossRef]
- Kaliteevski, M.A.; Abram, R.A.; Nikolaev, V.V.; Sokolovski, G.S. Bragg reflectors for cylindrical waves. J. Mod. Opt. 1999, 46, 875–890. [Google Scholar] [CrossRef]
- Scheuer, J.; Yariv, A. Annular Bragg defect mode resonators. J. Opt. Soc. Am. B JOSAB 2003, 20, 2285–2291. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.; Xi, X.; Ma, J.; Yu, Z.; Sun, X. Parity–time-symmetric circular Bragg lasers: A proposal and analysis. Sci. Rep. 2016, 6, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheuer, J.; Green, W.M.J.; DeRose, G.A.; Yariv, A. InGaAsP annular Bragg lasers: Theory, applications, and modal properties. IEEE J. Sel. Top. Quantum Electron. 2005, 11, 476–484. [Google Scholar] [CrossRef] [Green Version]
- Brissinger, D. Complex refractive index of polycarbonate over the UV-Vis-IR region from 0.2 to 3 μm. Appl. Opt. 2019, 58, 1341–1350. [Google Scholar] [CrossRef]
- Fadare, E.D.; Okoffo, E.D. Covid-19 face masks: A potential source of microplastic fibers in the environment. Sci. Total Environ. 2020, 737, 140279. [Google Scholar] [CrossRef]
- Weber, M.J. (Ed.) CRC Handbook of Laser Science & Technology, 4: Optical Materials; Part 2; CRC Press: Boca Raton, FL, USA, 1986. [Google Scholar]
- Weber, M.J. Handbook of Optical Materials; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Buonanno, M.; Welch, D.; Shuryak, I.; Brenner, D.J. Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Claus, H. Ozone Generation by Ultraviolet Lamps. Photochem. Photobiol. 2021, 97, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, K. Design of an integrated multi-arm power splitter using photonic crystal waveguide. Optik 2017, 145, 495–502. [Google Scholar] [CrossRef]
- Chen, M.-S.; Wu, C.-J.; Yang, T.-J. Optical properties of a superconducting annular periodic multilayer structure. Solid State Commun. 2009, 149, 1888–1893. [Google Scholar] [CrossRef]
- Abadla, M.M.; Elsayed, H.A.; Mehaney, A. Thermo-Optical Properties of Binary One Dimensional Annular Photonic Crystal Including Temperature Dependent Constituents. Phys. E Low-Dimens. Syst. Nanostructures 2020, 119, 114020. [Google Scholar] [CrossRef]
15 | 206.9 | 230.6 | 218.8 | 0.89 | 23.6 |
20 | 207.7 | 229.6 | 218.69 | 0.94 | 21.8 |
25 | 208.2 | 229.0 | 218.63 | 0.96 | 20.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ameen, A.A.; Elsayed, H.A.; Alamri, S.; Matar, Z.S.; Al-Dossari, M.; Aly, A.H. Towards Promising Platform by Using Annular Photonic Crystals to Simulate and Design Useful Mask. Photonics 2021, 8, 349. https://doi.org/10.3390/photonics8090349
Ameen AA, Elsayed HA, Alamri S, Matar ZS, Al-Dossari M, Aly AH. Towards Promising Platform by Using Annular Photonic Crystals to Simulate and Design Useful Mask. Photonics. 2021; 8(9):349. https://doi.org/10.3390/photonics8090349
Chicago/Turabian StyleAmeen, Ayman A, Hussein A Elsayed, Sagr Alamri, Z.S. Matar, M. Al-Dossari, and Arafa H. Aly. 2021. "Towards Promising Platform by Using Annular Photonic Crystals to Simulate and Design Useful Mask" Photonics 8, no. 9: 349. https://doi.org/10.3390/photonics8090349
APA StyleAmeen, A. A., Elsayed, H. A., Alamri, S., Matar, Z. S., Al-Dossari, M., & Aly, A. H. (2021). Towards Promising Platform by Using Annular Photonic Crystals to Simulate and Design Useful Mask. Photonics, 8(9), 349. https://doi.org/10.3390/photonics8090349