Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (211,339)

Search Parameters:
Keywords = 14C

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1190 KB  
Article
Tropical Weathering Effects on Neat Gasoline: An Analytical Study of Volatile Organic Profiles
by Khairul Osman, Naadiah Ahmad Mazlani, Gina Francesca Gabriel, Noor Hazfalinda Hamzah, Rogayah Abu Hassan, Dzulkiflee Ismail and Wan Nur Syuhaila Mat Desa
Chemosensors 2025, 13(10), 363; https://doi.org/10.3390/chemosensors13100363 (registering DOI) - 3 Oct 2025
Abstract
Gasoline is the most common ignitable liquid used to initiate fires, making its detection and identification in fire debris crucial for determining incendiary origins. Fire debris is typically collected after extinguishment and safety clearance, often resulting in gasoline weathering, especially when delayed. Most [...] Read more.
Gasoline is the most common ignitable liquid used to initiate fires, making its detection and identification in fire debris crucial for determining incendiary origins. Fire debris is typically collected after extinguishment and safety clearance, often resulting in gasoline weathering, especially when delayed. Most research on gasoline weathering has been conducted in controlled laboratory settings in temperate climates. However, the effects of tropical conditions on the rate of gasoline weathering and the resulting chemical composition of volatiles remain largely unexplored. Understanding how tropical environmental factors alter gasoline weathering is essential for accurate fire debris interpretation in such regions. This study investigates how tropical climates impact gasoline weathering indoors and outdoors. Weathered samples were prepared by volume reduction method, gradually evaporating gasoline from 10% to 95%. Indoor samples were exposed to room temperature, while outdoor samples were left in open space under natural tropical conditions. Gas Chromatography/Mass Spectrometry (GC-MS) analysis revealed chromatographic shifts in heavier compounds (C3–C4 alkylbenzenes) compared to lighter ones like toluene as weathering progressed. Correlation between indoor and outdoor samples was high (>0.970) at 10–50% weathering but declined (<0.600) at 90–95%, indicating differing patterns. All target compounds remained detectable across all samples. Full article
(This article belongs to the Section Analytical Methods, Instrumentation and Miniaturization)
Show Figures

Graphical abstract

22 pages, 2687 KB  
Article
Machinability of Vitrified Semi-Finished Products: Chip Formation and Heat Development at the Cutting Edge
by Jannick Fuchs, Yehor Kozlovets, Jonathan Alms, Markus Meurer, Christian Hopmann, Thomas Bergs and Mustapha Abouridouane
Polymers 2025, 17(19), 2681; https://doi.org/10.3390/polym17192681 (registering DOI) - 3 Oct 2025
Abstract
Fibre-reinforced composites are facing new challenges in the context particular in sustainability and recyclability. Vitrimers could be useful as new matrices to support the increase in sustainability. Due to their high strength, which is comparable to that of thermosets often used in composites, [...] Read more.
Fibre-reinforced composites are facing new challenges in the context particular in sustainability and recyclability. Vitrimers could be useful as new matrices to support the increase in sustainability. Due to their high strength, which is comparable to that of thermosets often used in composites, and their covalent adaptive networks, which make them reshapeable for scaled-up manufacturing and recycling purposes, they are very useful. Orthogonal cutting is used for precise reshaping and functional integration into carbon fibre reinforced plastics. Vitrimers could improve processing results at the cutting edge as well as surface quality thanks to their self-healing properties compared to brittle matrices, as well as enabling the recycling of formed chips and scrap. This study showcases the manufacturing of a carbon fibre-reinforced vitrimer using 4-aminophenyl disulfide as a hardener, with vacuum-assisted resin infusion. The temperature of chip formation and the cutting parameters are then shown for different fibre orientations, cutting widths and speeds. The observed cutting forces are lower (less than 140 N) and more irregular for fibre orientations 45°/135°, increasing with cutting depth, and fluctuating periodically during machining. Despite varying cutting speeds, the forces remain relatively constant in range between 85 N and 175 N for 0°/90° fibre orientation and 50 N and 120 N for 45°/135° fibre orientation, with no significant tool wear observed and lower-damage depth and overhanging fibres observed for 0°/90° fibre orientation. Damage observation of the cutting tool shows promising results, with lower abrasion observed compared to thermoset matrices. Microscopic images of the broached surface also show good quality, which could be improved by self-healing of the matrix at higher temperatures. Temperature measurements of chip formation using a high-speed camera show a high temperature gradient as cutting speeds increase, but the temperature only ever exceeds 180 °C at cutting speeds of 150 m/min, ensuring reprocessability since this is below the degradation temperature. Therefore, orthogonal cutting of vitrimers can impact sustainable composite processing. Full article
(This article belongs to the Section Polymer Networks and Gels)
27 pages, 3266 KB  
Article
Regulatory Mechanisms of Tannins on the Decomposition Rate of Mixed Leaf Litter in Submerged Environments
by Lisha Li, Jiahao Tan, Gairen Yang, Yu Huang, Yusong Deng, Yuhan Huang, Mingxia Yang, Jizhao Cao and Huili Wang
Plants 2025, 14(19), 3064; https://doi.org/10.3390/plants14193064 (registering DOI) - 3 Oct 2025
Abstract
Terrestrial cross-boundary inputs of leaf litter serve as a critical foundation for secondary productivity in freshwater ecosystems. The regulatory mechanisms of tannins in leaf litter on degradation rates under submerged conditions remain unclear. This study employed leaf litter from low-tannin plants Osmanthus fragrans [...] Read more.
Terrestrial cross-boundary inputs of leaf litter serve as a critical foundation for secondary productivity in freshwater ecosystems. The regulatory mechanisms of tannins in leaf litter on degradation rates under submerged conditions remain unclear. This study employed leaf litter from low-tannin plants Osmanthus fragrans (A) and Canna glauca (B) as decomposition substrates, with the high-tannin species Myriophyllum verticillatum (C) incorporated to adjust tannin levels. A 140-day hydroponic degradation experiment was conducted under controlled temperature and dark conditions, which included four mixed litter treatments with a gradient of tannin additions (AB as the control, 0 g; ABC1: 0.5 g; ABC2: 2.5 g; ABC3: 4.5 g) along with two single-species treatments (A and B). The following results were found: (1) Low tannin levels (ABC1) promoted degradation rates of A and B (increased by 1.33–12.70%), whereas high tannin (ABC3) inhibited decomposition (decreased by 6.21–6.82%). (2) Tannin–protein complexes reduce nitrogen bioavailability and inhibit nitrification, thereby disrupting the nitrogen cycle in aquatic systems. In ABC3, total nitrogen content in A and B litter increased by 17.69–26.46% compared to AB, with concurrent 59.29% elevation in water NH4+-N concentration. (3) High tannin induced dominance of oligotrophic stress-resistant bacterial communities (e.g., Treponema) through nutrient limitation and toxicity stress; however, their low metabolic efficiency reduced overall decomposition efficiency. Research reveals that the ecological benefits of plant secondary metabolites outweigh their nutritional quality attributes. Full article
Show Figures

Figure 1

25 pages, 3263 KB  
Article
Combining MTCNN and Enhanced FaceNet with Adaptive Feature Fusion for Robust Face Recognition
by Sasan Karamizadeh, Saman Shojae Chaeikar and Hamidreza Salarian
Technologies 2025, 13(10), 450; https://doi.org/10.3390/technologies13100450 (registering DOI) - 3 Oct 2025
Abstract
Face recognition systems typically face actual challenges like facial pose, illumination, occlusion, and ageing that significantly impact the recognition accuracy. In this paper, a robust face recognition system that uses Multi-task Cascaded Convolutional Networks (MTCNN) for face detection and face alignment with an [...] Read more.
Face recognition systems typically face actual challenges like facial pose, illumination, occlusion, and ageing that significantly impact the recognition accuracy. In this paper, a robust face recognition system that uses Multi-task Cascaded Convolutional Networks (MTCNN) for face detection and face alignment with an enhanced FaceNet for facial embedding extraction is presented. The enhanced FaceNet uses attention mechanisms to achieve more discriminative facial embeddings, especially in challenging scenarios. In addition, an Adaptive Feature Fusion module synthetically combines identity-specific embeddings with context information such as pose, lighting, and presence of masks, hence enhancing robustness and accuracy. Training takes place using the CelebA dataset, and the test is conducted independently on LFW and IJB-C to enable subject-disjoint evaluation. CelebA has over 200,000 faces of 10,177 individuals, LFW consists of 13,000+ faces of 5749 individuals in unconstrained conditions, and IJB-C has 31,000 faces and 117,000 video frames with extreme pose and occlusion changes. The system introduced here achieves 99.6% on CelebA, 94.2% on LFW, and 91.5% on IJB-C and outperforms baselines such as simple MTCNN-FaceNet, AFF-Net, and state-of-the-art models such as ArcFace, CosFace, and AdaCos. These findings demonstrate that the proposed framework generalizes effectively between datasets and is resilient in real-world scenarios. Full article
Show Figures

Figure 1

19 pages, 2189 KB  
Article
Dissecting the Interplay Between NRF2 and BACH1 at CsMBEs
by Maria-Armineh Tossounian, Alexander Zhyvoloup, Rakesh Chatterjee and Jerome Gouge
Antioxidants 2025, 14(10), 1203; https://doi.org/10.3390/antiox14101203 (registering DOI) - 3 Oct 2025
Abstract
BACH1 (BTB And CNC Homology 1) and NRF2 (Nuclear Factor Erythroid 2-related Factor 2) are transcription factors that regulate antioxidant and iron metabolism genes by competing for binding to cis-regulatory Maf-binding elements (CsMBEs) as heterodimers with small Maf proteins (sMafs). To dissect the [...] Read more.
BACH1 (BTB And CNC Homology 1) and NRF2 (Nuclear Factor Erythroid 2-related Factor 2) are transcription factors that regulate antioxidant and iron metabolism genes by competing for binding to cis-regulatory Maf-binding elements (CsMBEs) as heterodimers with small Maf proteins (sMafs). To dissect the mechanisms underlying this competition, we developed a chimeric tethering system where the DNA-binding domains of BACH1 or NRF2 were covalently linked to sMafG via a flexible, cleavable linker. This design enables efficient heterodimer formation on DNA and circumvents kinetic barriers to partner exchange in the solution. The site-specific fluorescent labelling of proteins allowed for the tracking of complex compositions by electrophoretic mobility shift assays. Both BACH1/sMafG and NRF2/sMafG heterodimers bind CsMBEs with similar affinities. Notably, DNA binding by BACH1 was impaired in a C574-dependent, redox-sensitive manner and promoted the exchange of heterodimer partners. Competition assays demonstrated that BACH1 and NRF2 can displace each other from preformed DNA-bound complexes, with greater efficiency when presented as preassembled heterodimers with sMafG. These findings reveal a redox-sensitive mechanism for regulating transcriptional switches at CsMBEs and highlight how preformed heterodimers facilitate the rapid displacement at target promoters. Full article
(This article belongs to the Special Issue Antioxidant Systems, Transcription Factors and Non-Coding RNAs)
Show Figures

Figure 1

24 pages, 73507 KB  
Article
2C-Net: A Novel Spatiotemporal Dual-Channel Network for Soil Organic Matter Prediction Using Multi-Temporal Remote Sensing and Environmental Covariates
by Jiale Geng, Chong Luo, Jun Lu, Depiao Kong, Xue Li and Huanjun Liu
Remote Sens. 2025, 17(19), 3358; https://doi.org/10.3390/rs17193358 (registering DOI) - 3 Oct 2025
Abstract
Soil organic matter (SOM) is essential for ecosystem health and agricultural productivity. Accurate prediction of SOM content is critical for modern agricultural management and sustainable soil use. Existing digital soil mapping (DSM) models, when processing temporal data, primarily focus on modeling the changes [...] Read more.
Soil organic matter (SOM) is essential for ecosystem health and agricultural productivity. Accurate prediction of SOM content is critical for modern agricultural management and sustainable soil use. Existing digital soil mapping (DSM) models, when processing temporal data, primarily focus on modeling the changes in input data across successive time steps. However, they do not adequately model the relationships among different input variables, which hinders the capture of complex data patterns and limits the accuracy of predictions. To address this problem, this paper proposes a novel deep learning model, 2-Channel Network (2C-Net), leveraging sequential multi-temporal remote sensing images to improve SOM prediction. The network separates input data into temporal and spatial data, processing them through independent temporal and spatial channels. Temporal data includes multi-temporal Sentinel-2 spectral reflectance, while spatial data consists of environmental covariates including climate and topography. The Multi-sequence Feature Fusion Module (MFFM) is proposed to globally model spectral data across multiple bands and time steps, and the Diverse Convolutional Architecture (DCA) extracts spatial features from environmental data. Experimental results show that 2C-Net outperforms the baseline model (CNN-LSTM) and mainstream machine learning model for DSM, with R2 = 0.524, RMSE = 0.884 (%), MAE = 0.581 (%), and MSE = 0.781 (%)2. Furthermore, this study demonstrates the significant importance of sequential spectral data for the inversion of SOM content and concludes the following: for the SOM inversion task, the bare soil period after tilling is a more important time window than other bare soil periods. 2C-Net model effectively captures spatiotemporal features, offering high-accuracy SOM predictions and supporting future DSM and soil management. Full article
(This article belongs to the Special Issue Remote Sensing in Soil Organic Carbon Dynamics)
15 pages, 1743 KB  
Article
Synthesis, Dynamic NMR Characterization, and XRD Study of 2,4-Difluorobenzoyl-substituted Piperazines
by Martin Köckerling and Constantin Mamat
Chemistry 2025, 7(5), 162; https://doi.org/10.3390/chemistry7050162 (registering DOI) - 3 Oct 2025
Abstract
Five different 2,4-difluorobenzamide derivatives were synthesized and fully characterized by 1H/13C/19F/2D NMR spectroscopy using DMSO-d6 as solvent and MS. All compounds occur as rotation conformers resulting from the partial amide double bond with a solvent-dependent coalescence point. [...] Read more.
Five different 2,4-difluorobenzamide derivatives were synthesized and fully characterized by 1H/13C/19F/2D NMR spectroscopy using DMSO-d6 as solvent and MS. All compounds occur as rotation conformers resulting from the partial amide double bond with a solvent-dependent coalescence point. Temperature-dependent 1H NMR techniques, as well as EXSY, were applied to determine the rate constants of exchange, and the resulting activation energy barriers were calculated. Regarding the N,N-diacylated piperazine, both conformers (syn and anti) were found in solution, whereas only the anti-conformer was found in the crystals. This result was verified by an XRD analysis. Single crystals of N,N-bis(2,4-difluorobenzoyl)piperazine 3b (monoclinic, space group P21/c, a = 7.2687(3), b = 17.2658(8), c = 6.9738(3) Å, β = 115.393(2)°, V = 790.65(6) Å3, Z = 4, Dobs = 1.530 g/cm3) were obtained from a saturated chloroform solution. Full article
(This article belongs to the Section Molecular Organics)
Show Figures

Figure 1

15 pages, 2523 KB  
Article
Impact of Chromium Picolinate on Breast Muscle Metabolomics and Glucose and Lipid Metabolism-Related Genes in Broilers Under Heat Stress
by Guangju Wang, Xiumei Li, Miao Yu, Zhenwu Huang, Jinghai Feng and Minhong Zhang
Animals 2025, 15(19), 2897; https://doi.org/10.3390/ani15192897 (registering DOI) - 3 Oct 2025
Abstract
The aim of the present study is to evaluate the impact of chromium (Cr) supplementation on glucose and lipid metabolism in breast muscle in broilers under heat stress. A total of 220 day-old broiler chicks were reared in cages. At 29 days old, [...] Read more.
The aim of the present study is to evaluate the impact of chromium (Cr) supplementation on glucose and lipid metabolism in breast muscle in broilers under heat stress. A total of 220 day-old broiler chicks were reared in cages. At 29 days old, 180 birds were randomly assigned to three treatments (0, 400, and 800 µg Cr/kg, as chromium picolinate) and transferred to climate chambers (31 ± 1 °C, 60 ± 7% humidity) for 14 days. Growth performance, carcass traits, serum biochemical indices, fasting glucose and insulin, homeostasis model assessment of insulin resistance (HOMA-IR), as well as muscle metabolomic profiles and gene expression related to energy and lipid metabolism were analyzed. The results showed that, compared with the heat stress group, the groups supplemented with 400 and 800 µg Cr/kg showed higher dry matter intake and average daily gain, breast muscle ratio, and lower feed conversion ratio and abdominal fat ratio; chickens supplemented with 400 and 800 µg Cr/kg showed significantly lower serum corticosterone (CORT), free fatty acids, and cholesterol levels compared with the heat stress (HS) group (p < 0.05). Fasting blood glucose and HOMA-IR were also significantly reduced, while fasting insulin was significantly increased in the Cr-supplemented groups (p < 0.05). Metabolomic analysis revealed that Cr supplementation regulated lipid and amino acid metabolism by altering key metabolites such as citric acid, L-glutamine, and L-proline, and modulating pathways including alanine, aspartate, and glutamate metabolism, and glycerophospholipid metabolism. Furthermore, Cr supplementation significantly upregulated the expression of Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1 α (PGC-1α), ATP Binding Cassette Subfamily A Member 1 (ABCA1), Peroxisome Proliferator-Activated Receptor α (PPARα), and ATP Binding Cassette Subfamily G Member 1 (ABCG1) in both the hepatic and muscle tissue. This paper suggested that chromium supplementation may enhance energy metabolism and lipid transport like the findings of our study suggested. Full article
Show Figures

Figure 1

14 pages, 1012 KB  
Article
Selection Patterns and Outcomes of Kidney Transplantation Versus Dialysis in Lung Recipients with End-Stage Renal Disease: A Single-Center Retrospective-Observational Study
by Fahim Kanani, Mordechai R. Kramer, Mohamad Atamna, Abed Elrahman Dahly, Aviad Gravets, Wladimir Tennak, Sigal Eisner and Eviatar Nesher
J. Clin. Med. 2025, 14(19), 7017; https://doi.org/10.3390/jcm14197017 (registering DOI) - 3 Oct 2025
Abstract
Background: End-stage renal disease (ESRD) affects up to 25% of lung transplant recipients within 10 years. The selection process for kidney transplantation versus dialysis reflects complex clinical decision-making that has not been systematically characterized. Methods: This retrospective observational study analyzed all lung transplant [...] Read more.
Background: End-stage renal disease (ESRD) affects up to 25% of lung transplant recipients within 10 years. The selection process for kidney transplantation versus dialysis reflects complex clinical decision-making that has not been systematically characterized. Methods: This retrospective observational study analyzed all lung transplant recipients who developed ESRD at our center from 2010 to 2024 (n=32), comparing those receiving kidney transplantation (n = 18) versus those remaining on dialysis (n = 14). We developed an exploratory Clinical Selection Score to retrospectively characterize observed selection patterns and calculated E-values to assess robustness to unmeasured confounding. Results: Kidney transplant recipients were younger (35.7 ± 12.9 vs. 48.4 ± 14.8 years, p = 0.013) with better selection characteristics quantified by our Clinical Selection Score (4.1 ± 0.8 vs. 1.6 ± 1.1 points, p < 0.001). The score showed excellent discrimination (C-statistic 0.82). Living donors were available for 88.9% of transplanted patients versus 0% of dialysis patients. In our selected cohorts, mortality was 22.2% in kidney transplant recipients vs. 78.6% in dialysis patients (p = 0.002), with median survival of 161.6 vs. 126.6 months (p = 0.021). After adjustment for age, kidney transplantation was observed to be associated with 72% lower mortality risk (HR 0.28, 95% CI 0.09–0.89, p = 0.031), though selection bias limits causal interpretation. The E-value of 6.61 suggests robustness to unmeasured confounding. Conclusions: This observational study describes real-world selection patterns and their associated outcomes in lung transplant recipients with ESRD. While carefully selected patients receiving kidney transplantation experienced favorable results, many patients were appropriately managed with dialysis based on medical and non-medical factors. Our analysis provides transparency about selection criteria and outcomes to inform clinical decision-making. Larger multicenter studies are needed to validate these findings and develop prediction tools. Full article
(This article belongs to the Special Issue Advances in Kidney Transplantation)
Show Figures

Figure 1

13 pages, 921 KB  
Article
Predictive Value of Umbilical Artery Half Peak Systolic Velocity Deceleration Time for Adverse Perinatal Outcomes in Gestational Diabetes Mellitus
by Ruken Dayanan, Dilara Duygulu Bulan, Merve Ayas Ozkan, Gulsan Karabay, Zeynep Seyhanli and Ali Turhan Caglar
J. Clin. Med. 2025, 14(19), 7016; https://doi.org/10.3390/jcm14197016 (registering DOI) - 3 Oct 2025
Abstract
Objective: To evaluate the predictive value of umbilical artery half peak systolic velocity deceleration time (UA hPSV-DT) for composite adverse perinatal outcomes (CAPO) in pregnancies complicated by gestational diabetes mellitus (GDM). Methods: In this prospective observational study, 120 singleton pregnancies in the third [...] Read more.
Objective: To evaluate the predictive value of umbilical artery half peak systolic velocity deceleration time (UA hPSV-DT) for composite adverse perinatal outcomes (CAPO) in pregnancies complicated by gestational diabetes mellitus (GDM). Methods: In this prospective observational study, 120 singleton pregnancies in the third trimester were enrolled: 30 insulin-regulated GDM (IRGDM), 30 diet-regulated GDM (DRGDM), and 60 healthy controls. UA hPSV-DT and standard Doppler indices were measured using a standardized protocol by a single perinatologist. An abnormal UA hPSV-DT was defined as <5th percentile for gestational age. Maternal metabolic parameters, fetal biometry, and neonatal outcomes were recorded. The primary outcome was CAPO, defined as the presence of one or more adverse perinatal events. Results: Median UA hPSV-DT values were significantly lower in IRGDM (171 ms) and DRGDM (184 ms) compared with controls (227 ms) (p = 0.006). Abnormal UA hPSV-DT occurred in 43.3% of GDM cases and was associated with higher estimated fetal weight and abdominal circumference percentiles, increased amniotic fluid, elevated OGTT values, higher HbA1c, and more frequent insulin therapy (p < 0.01 for all). In GDM pregnancies, CAPO occurred in 73.1% of the abnormal UA hPSV-DT group versus 11.8% of the normal group (p < 0.001). ROC analysis identified a cut-off of < 181 ms for predicting CAPO (AUC 0.741, 70.3% sensitivity, 66.7% specificity). Conclusions: UA hPSV-DT is a novel, reproducible Doppler parameter that independently predicts adverse perinatal outcomes in GDM pregnancies, even when conventional UA Doppler indices are normal. Incorporating UA hPSV-DT into routine surveillance may improve risk stratification and guide management to optimize perinatal outcomes. Full article
(This article belongs to the Section Obstetrics & Gynecology)
Show Figures

Figure 1

20 pages, 3065 KB  
Article
CES1 Increases Hepatic Triacylglycerol Synthesis Through Activation of PPARγ, LXR and SREBP1c
by Rajakumar Selvaraj, Jihong Lian, Russell Watts, Randal Nelson, Michael F. Saikali, Carolyn L. Cummins and Richard Lehner
Cells 2025, 14(19), 1548; https://doi.org/10.3390/cells14191548 (registering DOI) - 3 Oct 2025
Abstract
Increased hepatic triacylglycerol (TG) storage in lipid droplets (LDs) is a hallmark of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). Human carboxylesterase 1 (CES1) regulates TG storage and secretion in hepatocytes, but the mechanism remains to be elucidated. We [...] Read more.
Increased hepatic triacylglycerol (TG) storage in lipid droplets (LDs) is a hallmark of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). Human carboxylesterase 1 (CES1) regulates TG storage and secretion in hepatocytes, but the mechanism remains to be elucidated. We performed studies in rat hepatoma McArdle RH7777 cells stably transfected with CES1 cDNA and in Ces1d-deficient mice using a variety of biochemical, pharmacological and cell biology approaches including the assessment of gene expression, confocal immunofluorescence microscopy, lipid synthesis measurements and quantitative mass spectrometry. CES1-expressing cells accrued more TG compared to cells lacking CES1 when incubated with oleic acid. CES1 increased the expression of Srebf1c, Nr1h3 and Nr1h2 encoding transcription factors (SREBP1c and LXRα and LXRβ, respectively) that regulate the expression of lipogenic genes. Additionally, CES1 increased the expression of Acsl1 encoding an enzyme catalyzing fatty acid activation and the expression of Dgat1 and Dgat2 encoding enzymes catalyzing TG synthesis. Treatment of CES1-expressing cells with PPARγ antagonist (GW9662), LXR antagonist (GSK2033) or CYP27A1 inhibitor Felodipine prevented CES1-mediated fatty acid esterification into TG. Ces1d-deficient mice fed high-fat diet (HFD) presented with decreased expression of Nr1h3, Nr1h2, Srebf1c and reduced hepatic TG content. Felodipine and GSK2033 treatment eliminated the differential effects on TG concentration between wild-type and Ces1d-deficient hepatocytes. The results suggest that CES1/Ces1d activates PPARγ, LXR and SREBP1c pathways, thereby increasing TG synthesis and LD storage by augmenting fatty acid esterification. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Liver Diseases)
Show Figures

Figure 1

25 pages, 15131 KB  
Article
Mechanistic Elucidation of the Anti-Ageing Effects of Dendrobium officinale via Network Pharmacology and Experimental Validation
by Zhilin Chen, Zhoujie Yang, Shanshan Liang, Weiwei Ze, Zhou Lin, Yuexin Cai, Lixin Yang and Tingting Feng
Foods 2025, 14(19), 3418; https://doi.org/10.3390/foods14193418 (registering DOI) - 3 Oct 2025
Abstract
Dendrobium officinale (Orchidaceae) is a commonly used medicinal and edible herb. Although its anti-ageing properties have been demonstrated, the underlying mechanisms remain unclear. We employed network pharmacology and molecular biology techniques to systematically explore its anti-ageing mechanisms. An ageing model was established using [...] Read more.
Dendrobium officinale (Orchidaceae) is a commonly used medicinal and edible herb. Although its anti-ageing properties have been demonstrated, the underlying mechanisms remain unclear. We employed network pharmacology and molecular biology techniques to systematically explore its anti-ageing mechanisms. An ageing model was established using D-galactose-induced Kunming mice. D. officinale significantly ameliorated ageing-related symptoms, including behavioural impairment and organ index reduction. It enhanced antioxidant capacity by increasing serum T-AOC levels and restoring renal activities of key antioxidant enzymes (SOD, GSH-Px, CAT) while reducing MDA; it suppressed serum TNF-α levels, indicating anti-inflammatory effects. Histopathological examination revealed that D. officinale alleviated D-galactose-induced renal damage, including tubular cell swelling and glomerular capsule widening. Network pharmacology identified 8 core active compounds (e.g., 5,7-dihydroxyflavone, naringenin) and 10 key targets (e.g., HSP90AA1, EGFR, MAPK3). KEGG analysis highlighted pathways including neuroactive ligand–receptor interaction, cAMP signalling, and calcium signalling. Molecular docking confirmed strong binding affinities between core compounds and key targets. Western blotting and immunohistochemistry validated that D. officinale upregulated EGFR, HSP90AA1, ERK, and GAPDH expression in renal tissues. In summary, D. officinale exerts anti-ageing effects by modulating oxidative stress, suppressing inflammation, and regulating multiple signalling pathways. Our findings provide a scientific rationale for its application in anti-ageing interventions. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

17 pages, 1330 KB  
Article
Insecticidal Efficacy of Satureja hortensis L. and Satureja khuzistanica Jamzad Essential Oils Against Callosobruchus maculatus (F.)
by Asgar Ebadollahi, Bahram Naseri, Aysona Aghcheli and William N. Setzer
Plants 2025, 14(19), 3062; https://doi.org/10.3390/plants14193062 (registering DOI) - 3 Oct 2025
Abstract
The cowpea weevil, Callosobruchus maculatus (F.), stands out as one of the most destructive field-to-storage pests of leguminous crops. This study investigates the potential of essential oils derived from two Satureja species, Satureja hortensis L. and Satureja khuzistanica Jamzad, for managing C. maculatus [...] Read more.
The cowpea weevil, Callosobruchus maculatus (F.), stands out as one of the most destructive field-to-storage pests of leguminous crops. This study investigates the potential of essential oils derived from two Satureja species, Satureja hortensis L. and Satureja khuzistanica Jamzad, for managing C. maculatus. Bioassay results revealed that both S. hortensis (72 h LC50 = 0.20 µL/g) and S. khuzistanica (72 h LC50 = 0.19 µL/g) essential oils exhibited significant toxicity against C. maculatus adults. The essential oils extended development time, reduced adult longevity, and decreased fecundity of the pest. Key population parameters, including intrinsic growth rate (r) and net reproductive rate (R0), were significantly lowered, particularly by S. hortensis essential oil. Age-specific survival (lx) and fecundity (mx) rates were also declined in treated groups, with delayed reproductive peaks compared to controls. Chemical analyses of S. hortensis and S. khuzistanica essential oils indicated that carvacrol (30.9% and 62.9%, respectively), γ-terpinene (25.5% and 4.3%), p-cymene (9.7% and 7.9%), and thymol (3.7% and 9.3%) were the major components. Hierarchical cluster analysis (HCA) was carried out to compare and contrast the compositions with previous works. The results demonstrated that S. hortensis and S. khuzistanica essential oils, given their lethal and sublethal effects against C. maculatus, can be introduced as natural alternatives to hazardous chemical insecticides, highlighting the need for further research in this field. Full article
(This article belongs to the Special Issue Biopesticides for Plant Protection)
Show Figures

Figure 1

35 pages, 1792 KB  
Review
Effects of High-Pressure Processing (HPP) on Antioxidant Vitamins (A, C, and E) and Antioxidant Activity in Fruit and Vegetable Preparations: A Review
by Concepción Pérez-Lamela and Ana María Torrado-Agrasar
Appl. Sci. 2025, 15(19), 10699; https://doi.org/10.3390/app151910699 (registering DOI) - 3 Oct 2025
Abstract
This work has reviewed the recently published literature (last 8 years) about the effects caused by HPP on the antioxidant properties (A, C, and E vitamins and antioxidant activity) of F&V (fruits and vegetables) preparations in comparison to thermal treatments (TP). The methodology [...] Read more.
This work has reviewed the recently published literature (last 8 years) about the effects caused by HPP on the antioxidant properties (A, C, and E vitamins and antioxidant activity) of F&V (fruits and vegetables) preparations in comparison to thermal treatments (TP). The methodology of this revision was performed mainly by using keywords related to HPP, F&V, and antioxidant compounds in the Scopus database. High-pressure technology was briefly described, considering its principles and historical milestones, and justifying that it can be applied as a green and sustainable preservation method (with pros and cons). It is also relevant for the present food market due to their growing tendency in F&V derivatives (especially juices). The main effects on vitamins and antioxidant compounds point to it as an emerging preservation method to maintain and avoid vitamin and bioactive substances loss in comparison with pasteurization by heat. Maximum efficiency, cost-effectiveness, and quality improvement are aspects to be improved in the future by HPP technologies. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

26 pages, 7006 KB  
Article
Assessment of Heavy Metal Contamination, Bioaccumulation, and Nutritional Quality in Fish from the Babina–Cernovca Romanian Sector of the Danube River
by Ioan Oroian, Bogdan Ioachim Bulete, Ecaterina Matei, Antonia Cristina Maria Odagiu, Petru Burduhos, Camelia Oroian, Ovidiu Daniel Ștefan and Daniela Bordea
Foods 2025, 14(19), 3419; https://doi.org/10.3390/foods14193419 (registering DOI) - 3 Oct 2025
Abstract
Danube Delta (DD), an ecologically vulnerable site, together with fish populations, which are significant food resources, are largely exposed to heavy metal contamination. This study was developed in the Babina–Cernovca sector of DD in September 2023. Zinc (Zn), and iron (Fe) were identified [...] Read more.
Danube Delta (DD), an ecologically vulnerable site, together with fish populations, which are significant food resources, are largely exposed to heavy metal contamination. This study was developed in the Babina–Cernovca sector of DD in September 2023. Zinc (Zn), and iron (Fe) were identified in water, while copper (Cu), iron (Fe), and manganese (Mn) were in sediments (mud). Proximate composition of the muscle tissues of eight fish species identified in the area was assessed. The muscle was also tested to identify heavy metals contamination. The contamination degree was assessed using bioaccumulation and bioconcentrations factors. The relation between nutritional parameters and metals was tested using bivariate and multivariate analyses. Samples were analyzed by specific laboratory tests, and data were processed using ANOVA, Spearman correlation, Principal Component Analysis (PCA), and hierarchical clustering. S. erythrophthalmus, C. gibelio, and A. alburnus have the highest metal bioaccumulation capacity, exhibiting species-specific accumulation patterns. PCA and clustering analysis reflect the influence of species and environmental factors on heavy metal accumulation in fish tissue. The study integrates the heavy metals content with nutritional parameters in fish muscular tissue, using bivariate and multivariate analysis for assessing fish vulnerability to heavy metals exposure in the Danube River. Full article
(This article belongs to the Special Issue Mechanism and Control of Quality Changes in Aquatic Products)
Show Figures

Figure 1

Back to TopTop