Insecticidal Efficacy of Satureja hortensis L. and Satureja khuzistanica Jamzad Essential Oils Against Callosobruchus maculatus (F.)
Abstract
1. Introduction
2. Results
2.1. Chemical Profile of Commercial Essential Oils
2.2. Acute Toxicity of Essential Oils
2.3. Effects on Biological and Life Table Parameters
3. Discussion
4. Materials and Methods
4.1. Essential Oils and Their Chemical Profile
4.2. Insect Pest Rearing
4.3. Acute Toxicity of Essential Oils
4.4. Effects on Biological and Life Table Parameters
4.5. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Phillips, T.W.; Throne, J.E. Biorational approaches to managing stored-product insects. Annu. Rev. Entomol. 2010, 55, 375–397. [Google Scholar] [CrossRef]
- Kébé, K.; Alvarez, N.; Tuda, M.; Arnqvist, G.; Fox, C.W.; Sembène, M.; Espíndola, A. Global phylogeography of the insect pest Callosobruchus maculatus (Coleoptera: Bruchinae) relates to the history of its main host, Vigna unguiculata. J. Biogeogr. 2017, 44, 2515–2526. [Google Scholar] [CrossRef]
- Kalpna; Hajam, Y.A.; Kumar, R. Management of stored grain pest with special reference to Callosobruchus maculatus, a major pest of cowpea: A review. Heliyon 2022, 8, e08703. [Google Scholar] [CrossRef]
- Daraban, G.M.; Hlihor, R.; Suteu, D. Pesticides vs. biopesticides: From pest management to toxicity and impacts on the environment and human health. Toxics 2023, 11, 983. [Google Scholar] [CrossRef] [PubMed]
- Jayaprakas, C.A.; Tom, J.; Sreejith, S. Impact of insecticides on man and environment. In Biomedical Applications and Toxicity of Nanomaterials; Mohanan, P.V., Kappalli, S., Eds.; Springer: Singapore, 2023; pp. 783–801. [Google Scholar] [CrossRef]
- Zongo, S.; Coulibaly, A.Y.; Drabo, S.F.; Gnankiné, O.; Kiendrebeogo, M.; Doumma, A.; Sembene, M.; Sanon, A. Metabolic resistance to pyrethroids (Py) and organophosphates (Op) in Callosobruchus maculatus (Fab.) (Coleoptera: Chrysomelidae: Bruchinae) a major pest of stored cowpeas in West Africa. Int. J. Pest Manag. 2020, 67, 338–345. [Google Scholar] [CrossRef]
- Seiber, J.N.; Coats, J.; Duke, S.O.; Gross, A.D. Biopesticides: State of the art and future opportunities. J. Agric. Food Chem. 2014, 62, 11613–11619. [Google Scholar] [CrossRef]
- Nooshkam, A.; Mumivand, H.; Hadian, J.; Alemardan, A.; Morshedloo, M.R. Drug yield and essential oil and carvacrol contents of two species of Satureja (S. khuzistanica Jamzad and S. rechingeri Jamzad) cultivated in two different locations. J. Appl. Res. Med. Aromat. Plants 2017, 6, 126–130. [Google Scholar] [CrossRef]
- Chambre, D.R.; Moisa, C.; Lupitu, A.; Copolovici, L.; Pop, G.; Copolovici, D.-M. Chemical composition, antioxidant capacity, and thermal behavior of Satureja hortensis essential oil. Sci. Rep. 2020, 10, 21322. [Google Scholar] [CrossRef] [PubMed]
- Rashidipour, M.; Ashrafi, B.; Nikbakht, M.R.; Veiskarami, S.; Taherikalani, M.; Soroush, S. Encapsulation of Satureja khuzistanica Jamzad essential oil in chitosan nanoparticles with enhanced antibacterial and anticancer activities. Prep. Biochem. Biotechnol. 2021, 51, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, S.R.; Ebrahimi, S.N.; Rezadoost, H. Simultaneous ultrasound-assisted hydrodistillation of essential oil from aerial parts of the Satureja khuzistanica Jamzad and its antibacterial activity. J. Med. Plants 2021, 20, 47–59. [Google Scholar] [CrossRef]
- Heydarzade, A.; Moravvej, G. Contact toxicity and persistence of essential oils from Foeniculum vulgare, Teucrium polium and Satureja hortensis against Callosobruchus maculatus (Fabricius) adults (Coleoptera: Bruchidae). Türk. Entomol. Derg. 2012, 36, 507–519. [Google Scholar]
- Ebadollahi, A.; Jalali Sendi, J.; Ziaee, M.; Krutmuang, P. Acaricidal, insecticidal, and nematicidal efficiency of essential oils isolated from the Satureja genus. Int. J. Environ. Res. Public Health 2021, 18, 6050. [Google Scholar] [CrossRef] [PubMed]
- Naseri, B.; Ebadollahi, A.; Ebadi, A.; Elahi, M.; Afshari, F.; Pourabad, R.F. The possibility of using plant essential oils to enhance the insecticidal properties of spinosad against Callosobruchus maculatus (F.). J. Stored Prod. Res. 2025, 114, 102748. [Google Scholar] [CrossRef]
- Ebadollahi, A. Estragole-rich essential oil of summer savory (Satureja hortensis L.) as an eco-friendly alternative to the synthetic insecticides in management of two stored-products insect pests. Acta Agric. Slov. 2020, 115, 307–314. [Google Scholar] [CrossRef]
- Taghizadeh Saroukolai, A.; Nouri-Ganbalani, G.; Rafiee-Dastjerdi, H.; Hadian, J. Antifeedant activity and toxicity of some plant essential oils to Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). Plant Prot. Sci. 2014, 50, 207–216. [Google Scholar] [CrossRef]
- Ebadollahi, A.; Jalali Sendi, J.; Setzer, W.N.; Changbunjong, T. Encapsulation of Eucalyptus largiflorens essential oil by mesoporous silicates for effective control of the cowpea weevil, Callosobruchus maculatus (Fabricius) (Coleoptera: Chrysomelidae). Molecules 2022, 27, 3531. [Google Scholar] [CrossRef]
- Mssillou, I.; Saghrouchni, H.; Saber, M.; Zannou, A.J.; Balahbib, A.; Bouyahya, A.; Allali, A.; Lyoussi, B.; Derwich, E. Efficacy and role of essential oils as bio-insecticide against the pulse beetle Callosobruchus maculatus (F.) in post-harvest crops. Ind. Crops Prod. 2022, 189, 115786. [Google Scholar] [CrossRef]
- Izakmehri, K.; Saber, M.; Mehrvar, A.; Hassanpouraghdam, M.B.; Vojoudi, S. Lethal and sublethal effects of essential oils from Eucalyptus camaldulensis and Heracleum persicum against the adults of Callosobruchus maculatus. J. Insect Sci. 2013, 13, 152. [Google Scholar] [CrossRef]
- Matos, L.F.; Barbosa, D.R.E.S.; Lima, E.D.C.; Dutra, K.D.A.; Navarro, D.M.D.A.F.; Alves, J.L.R.; Silva, G.N. Chemical composition and insecticidal effect of essential oils from Illicium verum and Eugenia caryophyllus on Callosobruchus maculatus in cowpea. Ind. Crops Prod. 2020, 145, 112088. [Google Scholar] [CrossRef]
- Aimad, A.; Bourhia, M.; Hana, H.; Sanae, R.; Salamatullah, A.M.; Soufan, W.; Rihan, H.Z.; Ouahmane, L.; Youness, E.A.; Noureddine, E.; et al. Essential oils from Artemisia herba-alba Asso., Matricaria recutita L., and Dittrichia viscosa L. (Asteraceae): A promising source of eco-friendly agents to control Callosobruchus maculatus Fab. warehouse pest. J. Chem. 2022, 2022, 2373460. [Google Scholar] [CrossRef]
- Et-tazy, L.; Lamiri, A.; Krimi Bencheqroun, S.; Errati, H.; Hashem, A.; Dolores, G.; Fathi, E.; Satrani, B.; Essahli, M.; Satia, L. Exploring synergistic insecticidal effects of binary mixtures of major compounds from six essential oils against Callosobruchus maculatus. Sci. Rep. 2025, 15, 98566. [Google Scholar] [CrossRef]
- Stark, J.D.; Banks, J.E. Population-level effects of pesticides and other toxicants on arthropods. Annu. Rev. Entomol. 2003, 48, 505–519. [Google Scholar] [CrossRef]
- Pedigo, L.P.; Rice, M.E. Entomology and Pest Management, 6th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007. [Google Scholar]
- Satyal, P. Development of GC-MS Database of Essential Oil Components by the Analysis of Natural Essential Oils and Synthetic Compounds and Discovery of Biologically Active Novel Chemotypes in Essential Oils. Ph.D. Dissertation, University of Alabama in Huntsville, Huntsville, AL, USA, 2015. [Google Scholar]
- Mondello, L. FFNSC 3; Shimadzu Scientific Instruments: Columbia, MD, USA, 2016. [Google Scholar]
- NIST20; NIST/EPA/NIH Mass Spectral Library (NIST20). National Institute of Standards and Technology: Gaithersburg, MD, USA, 2020.
- Valizadeh, B.; Jalali Sendi, J.; Oftadeh, M.; Ebadollahi, A.; Krutmuang, P. Ovicidal and physiological effects of essential oils extracted from six medicinal plants on the elm leaf beetle, Xanthogaleruca luteola (Mull.). Agronomy 2021, 11, 2015. [Google Scholar] [CrossRef]
- Fierascu, I.; Dinu-Pirvu, C.E.; Fierascu, R.C.; Velescu, B.S.; Anuta, V.; Ortan, A.; Jinga, V. Phytochemical profile and biological activities of Satureja hortensis L.: A review of the last decade. Molecules 2018, 23, 2458. [Google Scholar] [CrossRef]
- Hadian, J.; Ebrahimi, S.N.; Salehi, P. Variability of morphological and phytochemical characteristics among Satureja hortensis L. accessions of Iran. Ind. Crops Prod. 2010, 32, 62–69. [Google Scholar] [CrossRef]
- Azaz, A.D.; Kürkcüoglu, M.; Satil, F.; Baser, K.H.C.; Tümen, G. In vitro antimicrobial activity and chemical composition of some Satureja essential oils. Flavour Fragr. J. 2005, 20, 587–591. [Google Scholar] [CrossRef]
- Alizadeh, A.; Khoshkhui, M.; Javidnia, K.; Firuzi, O.; Tafazoli, E.; Khalighi, A. Effects of fertilizer on yield, essential oil composition, total phenolic content and antioxidant activity in Satureja hortensis L. (Lamiaceae) cultivated in Iran. J. Med. Plants Res. 2010, 4, 33–40. [Google Scholar] [CrossRef]
- Abou Baker, D.H.; Al-Moghazy, M.; ElSayed, A.A.A. The in vitro cytotoxicity, antioxidant and antibacterial potential of Satureja hortensis L. essential oil cultivated in Egypt. Bioorg. Chem. 2020, 95, 103559. [Google Scholar] [CrossRef] [PubMed]
- Baher, Z.F.; Mirza, M.; Ghorbanli, M.; Rezaii, M.B. The influence of water stress on plant height, herbal and essential oil yield and composition in Satureja hortensis L. Flavour Fragr. J. 2002, 17, 275–277. [Google Scholar] [CrossRef]
- Deans, S.G.; Svoboda, K.P. Antibacterial activity of summer savory (Satureja hortensis L.) essential oil and its constituents. J. Hortic. Sci. 1989, 64, 205–210. [Google Scholar] [CrossRef]
- Estaji, A.; Roosta, H.R.; Rezaei, S.A.; Hosseini, S.S.; Niknam, F. Morphological, physiological and phytochemical response of different Satureja hortensis L. accessions to salinity in a greenhouse experiment. J. Appl. Res. Med. Aromat. Plants 2018, 10, 25–33. [Google Scholar] [CrossRef]
- Farzaneh, M.; Kiani, H.; Sharifi, R.; Reisi, M.; Hadian, J. Chemical composition and antifungal effects of three species of Satureja (S. hortensis, S. spicigera, and S. khuzistanica) essential oils on the main pathogens of strawberry fruit. Postharvest Biol. Technol. 2015, 109, 145–151. [Google Scholar] [CrossRef]
- Gursoy, U.K.; Gursoy, M.; Gursoy, O.V.; Cakmakci, L.; Könönen, E.; Uitto, V.J. Anti-biofilm properties of Satureja hortensis L. essential oil against periodontal pathogens. Anaerobe 2009, 15, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Hajhashemi, V.; Sadraei, H.; Ghannadi, A.R.; Mohseni, M. Antispasmodic and anti-diarrhoeal effect of Satureja hortensis L. essential oil. J. Ethnopharmacol. 2000, 71, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Hazrati, H.; Saharkhiz, M.J.; Niakousari, M.; Moein, M. Natural herbicide activity of Satureja hortensis L. essential oil nanoemulsion on the seed germination and morphophysiological features of two important weed species. Ecotoxicol. Environ. Saf. 2017, 142, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Heidarpour, O.; Esmaielpour, B.; Soltani, A.A.; Khorramdel, S. Effect of vermicompost on essential oil composition of (Satureja hortensis L.) under water stress condition. J. Essent. Oil-Bear. Plants 2019, 22, 484–492. [Google Scholar] [CrossRef]
- Ilić, Z.S.; Milenković, L.; Stanojević, L.; Danilović, B.; Šunić, L.; Milenković, A.; Kevrešan, Ž.; Stanojević, J.; Cvetković, D. Phytochemical composition and antimicrobial activities of the essential oils from summer savory (Satureja hortensis L.) growing in shading condition. J. Essent. Oil-Bear. Plants 2023, 26, 1397–1409. [Google Scholar] [CrossRef]
- Karimi, N.; Yari, M.; Ghasmpour, H.R. Identification and comparison of essential oil composition and mineral changes in different phenological stages of Satureja hortensis L. Iran. J. Plant Physiol. 2012, 3, 577–582. [Google Scholar]
- Katar, D.; Kacar, O.; Kara, N.; Aytaç, Z.; Göksu, E.; Kara, S.; Katar, N.; Erbaş, S.; Telci, İ.; Elmastaş, M. Ecological variation of yield and aroma components of summer savory (Satureja hortensis L.). J. Appl. Res. Med. Aromat. Plants 2017, 7, 131–135. [Google Scholar] [CrossRef]
- Kizil, S.; Turk, M.; Özguven, M.; Khawar, K.M. Full blooming stage is suitable for herbage yield and essential oil content of summer savory (Satureja hortensis L.). J. Essent. Oil-Bear. Plants 2009, 12, 620–629. [Google Scholar] [CrossRef]
- Magierowicz, K.; Górska-Drabik, E.; Sempruch, C. The insecticidal activity of Satureja hortensis essential oil and its active ingredient -carvacrol against Acrobasis advenella (Zinck.) (Lepidoptera, Pyralidae). Pestic. Biochem. Physiol. 2019, 153, 122–128. [Google Scholar] [CrossRef]
- Mahboubi, M.; Kazempour, N. Chemical composition and antimicrobial activity of Satureja hortensis and Trachyspermum copticum essential oil. Iran. J. Microbiol. 2011, 3, 194–200. [Google Scholar]
- Mihajilov-Krstev, T.; Radnović, D.; Kitić, D.; Zlatković, B.; Ristić, M.; Branković, S. Chemical composition and antimicrobial activity of Satureja hortensis L. essential oil. Cent. Eur. J. Biol. 2009, 4, 411–416. [Google Scholar] [CrossRef]
- Mohammadhosseini, M.; Beiranvand, M. Chemical composition of the essential oil from the aerial parts of Satureja hortensis as a potent medical plant using traditional hydrodistillation. J. Chem. Health Risks 2013, 3, 43–54. [Google Scholar]
- Omidbaigi, R.; Hejazi, M. Essential oil content and compositions of Satureja hortensis of two different origins. J. Essent. Oil-Bear. Plants 2004, 7, 175–178. [Google Scholar] [CrossRef]
- Pfefferkorn, A.; Krüger, H.; Pank, F. Chemical composition of Satureja hortensis L essential oils depending on ontogenetic stage and season. J. Essent. Oil Res. 2008, 20, 303–305. [Google Scholar] [CrossRef]
- Popovici, R.; Vaduva, D.; Pinzaru, I.; Dehelean, C.; Farcas, C.; Coricovac, D.; Danciu, C.; Popescu, I.; Alexa, E.; Lazureanu, V.; et al. A comparative study on the biological activity of essential oil and total hydro-alcoholic extract of Satureja hortensis L. Exp. Ther. Med. 2019, 18, 932–942. [Google Scholar] [CrossRef]
- Saharkhiz, M.J.; Zomorodian, K.; Rezaei, M.R.; Saadat, F.; Rahimi, M.J. Influence of growth phase on the essential oil composition and antimicrobial activities of Satureja hortensis. Nat. Prod. Commun. 2011, 6, 1173–1178. [Google Scholar] [CrossRef] [PubMed]
- Sefidkon, F.; Jamzad, Z. Chemical composition of the essential oil of three Iranian Satureja species (S. mutica, S. macrantha and S. intermedia). Food Chem. 2005, 91, 1–4. [Google Scholar] [CrossRef]
- Sharifzadeh, A.; Khosravi, A.R.; Ahmadian, S. Chemical composition and antifungal activity of Satureja hortensis L. essentiall oil against planktonic and biofilm growth of Candida albicans isolates from buccal lesions of HIV+ individuals. Microb. Pathog. 2016, 96, 1–9. [Google Scholar] [CrossRef]
- Wesolowska, A.; Grzeszczuk, M.; Jadczak, D. Influence of distillation method on the content and composition of essential oil isolated from summer savory (Satureja hortensis L.). J. Essent. Oil-Bear. Plants 2015, 18, 215–221. [Google Scholar] [CrossRef]
- Abbasloo, E.; Amiresmaili, S.; Shirazpour, S.; Khaksari, M.; Kobeissy, F.; Thomas, T.C. Satureja khuzistanica Jamzad essential oil and pure carvacrol attenuate TBI-induced inflammation and apoptosis via NF-κB and caspase-3 regulation in the male rat brain. Sci. Rep. 2023, 13, 4780. [Google Scholar] [CrossRef] [PubMed]
- Abbasloo, E.; Dehghan, F.; Khaksari, M.; Najafipour, H.; Vahidi, R.; Dabiri, S.; Sepehri, G.; Asadikaram, G. The anti-inflammatory properties of Satureja khuzistanica Jamzad essential oil attenuate the effects of traumatic brain injuries in rats. Sci. Rep. 2016, 6, 31866. [Google Scholar] [CrossRef] [PubMed]
- Davazdahemami, S.; Sefidcon, F.; Rezaei, M.; Naderi, M. The effect of drought stress on quantitative and qualitative characters of essential oil and carvacrol yield in two endemic species of savory (Satureja bachtiarica and S. khuzistarica) in Iran. Tech. J. Eng. Appl. Sci. 2014, 4, 143–146. [Google Scholar]
- Davazdahemami, S.; Sefidcon, F.; Rezaei, M.; Naderi, M. Chemical composition of the essential oils of five cultivated savory species in Iran: Satureja bachtiarica, S. khuzistanica, S. sahandica, S. spicigera and S. hortensis. Int. J. Biosci. 2014, 5, 47–50. [Google Scholar] [CrossRef]
- Darabad, A.H.; Rahimi, M.; Rafati, H. Continuous hydrodistillation-ultrasonication flow batch-mode operation system to enhance essential oil extraction from Satureja khuzistanica and evaluation of in vitro anti-inflammatory activity. Ind. Crops Prod. 2022, 188, 115540. [Google Scholar] [CrossRef]
- Alizadeh, A. Essential oil constituents, phenolic content and antioxidant activity of two endemic Satureja species from Iran. Bangladesh J. Bot. 2017, 46, 925–931. [Google Scholar]
- Eftekhar, F.; Ashoori, N.; Yousefzadi, M. In-vitro antimicrobial activity and chemical composition of Satureja khuzistanica Jamzad essential oils against multidrug-resistant Acinetobacter baumannii. Avicenna J. Clin. Microbiol. Infect. 2017, 4, e45601. [Google Scholar] [CrossRef]
- Ezatpour, B.; Dorosti, N.; Rezaee, E.; Ghaziani, F. Comparison of the chemical composition and biological activities of essential oils from two Satureja species: Molecular docking studies. J. Mex. Chem. Soc. 2023, 67, 70–81. [Google Scholar] [CrossRef]
- Fallahi, S.; Beyranvand, M.; Mahmoudvand, H.; Nayebzadeh, H.; Kheirandish, F.; Jahanbakhsh, S. Chemical composition, acute and sub-acute toxicity of Satureja khuzistanica essential oil in mice. Marmara Pharm. J. 2017, 21, 515–523. [Google Scholar] [CrossRef]
- Farsam, H.; Amanlou, M.; Radpour, M.R.; Salehinia, A.N.; Shafiee, A. Composition of the essential oils of wild and cultivated Satureja khuzistanica Jamzad from Iran. Flavour Fragr. J. 2004, 19, 308–310. [Google Scholar] [CrossRef]
- Ghodrati, L.; Alizadeh, A.; Ketabchi, S. Essential oil constituents and antimicrobial activities of Iranian Satureja khuzistanica Jamzad. Int. J. Biosci. 2015, 6, 249–257. [Google Scholar] [CrossRef]
- Hadian, J.; Mirjalili, M.H.; Reza Kanani, M.; Salehnia, A.; Ganjipoor, P. Phytochemical and morphological characterization of Satureja khuzistanica Jamzad populations from Iran. Chem. Biodivers. 2011, 8, 902–915. [Google Scholar] [CrossRef] [PubMed]
- Hadian, J.; Akramian, M.; Heydari, H.; Mumivand, H.; Asghari, B. Composition and in vitro antibacterial activity of essential oils from four Satureja species growing in Iran. Nat. Prod. Res. 2012, 26, 98–108. [Google Scholar] [CrossRef]
- Khakzad, S.; Rahmani, F.; Hojjati, M.; Tabandeh, M.R. Anti-carcinogenic effects of Satureja khuzistanica and Zataria multiflora essential oils on K562 cell line proliferation. J. Food Bioprocess Eng. 2019, 2, 127–132. [Google Scholar]
- Kheirandish, F.; Chegeni, R.; Delfan, B.; Jabari, M.; Ebrahimzadeh, F.; Rashidipour, M. The cytotoxic and antileishmanial effects of Satureja khuzistanica essential oil. Herbal Med. J. 2016, 1, 11–17. [Google Scholar]
- Khosravinia, H.; Ghasemi, S.; Alavi, E.R. The effect of savory (Satureja khuzistanica) essential oils on performance, liver and kidney functions in broiler chickens. J. Anim. Feed Sci. 2013, 22, 50–55. [Google Scholar] [CrossRef]
- Kouravand, F.; Jooyandeh, H.; Barzegar, H.; Hojjati, M. Characterization of cross-linked whey protein isolate-based films containing Satureja khuzistanica Jamzad essential oil. J. Food Process. Preserv. 2017, 42, e13557. [Google Scholar] [CrossRef]
- Mahboubi, M.; Attaran, B. Satureja khuzistanica Jamzad essential oil and its anti-candidal activities against clinical isolates of Candida albicans isolated from women with candidiasis. Rev. Infectio. 2019, 23, 16–21. [Google Scholar] [CrossRef]
- Mahboubi, M.; Kazempour, N. The antibacterial activity of Satureja khuzistanica essential oil against clinical isolates of E. coli. Jundishapur J. Nat. Pharm. Prod. 2016, 11, e30034. [Google Scholar] [CrossRef]
- Mazarei, Z.; Rafati, H. Nanoemulsification of Satureja khuzistanica essential oil and pure carvacrol; comparison of physicochemical properties and antimicrobial activity against food pathogens. LWT 2019, 100, 328–334. [Google Scholar] [CrossRef]
- Rahimifard, M.; Sefidkon, F.; Fekri, S.; Azimi, R.; Ahmadi, S. Comparison of chemical composition and physical properties of Satureja khuzistanica essential oil in different growing conditions (wild and cultivated) in Lorestan Province. J. Med. Plants By-Products 2024, 13, 577–581. [Google Scholar] [CrossRef]
- Sadeghian, F.; Hadian, J.; Hadavi, M.; Mohamadi, A.; Ghorbanpour, M.; Ghafarzadegan, R. Effects of exogenous salicylic acid application on growth, metabolic activities and essential oil composition of Satureja khuzistanica Jamzad. J. Med. Plants 2013, 12, 70–82. [Google Scholar]
- Saharkhiz, M.J.; Zomorodian, K.; Taban, A.; Pakshir, K.; Heshmati, K.; Rahimi, M.J. Chemical composition and antimicrobial activities of three Satureja species against food-borne pathogens. J. Essent. Oil-Bear. Plants 2016, 19, 1984–1992. [Google Scholar] [CrossRef]
- Saidi, M. Antioxidant activities and chemical composition of essential oils from Satureja khuzistanica, Oliveria decumbens and Thymus daenensis. J. Essent. Oil-Bear. Plants 2014, 17, 513–521. [Google Scholar] [CrossRef]
- Sefidkon, F.; Ahmadi, S. Essential oil of Satureja khuzistanica Jamzad. J. Essent. Oil Res. 2000, 12, 427–428. [Google Scholar] [CrossRef]
- Shariat, A.; Sefidkon, F. Tetraploid induction in savory (Satureja khuzistanica): Cytological, morphological, phytochemical and physiological changes. Plant Cell Tissue Organ Cult. 2021, 146, 137–148. [Google Scholar] [CrossRef]
- Taban, A.; Rahimi, M.J.; Saharkhiz, M.J.; Hadian, J.; Zomorodian, K. The efficacy of Satureja khuzistanica essential oil treatment in reducing Escherichia coli O157: H7 load on alfalfa seeds prior to sprouting. J. Food Saf. 2013, 33, 121–127. [Google Scholar] [CrossRef]
- Vozhdehnazari, M.S.; Shirazi, Z.; Samavat, S. Differentiative assessment between Satureja rechingeri Jamzad and Satureja khuzistanica Jamzad using morphological, phytochemical, and molecular traits. Iran. J. Med. Aromat. Plants Res. 2023, 39, 163–174. [Google Scholar]
- Yousefzadi, M.; Riahi-Madvar, A.; Hadian, J.; Rezaee, F.; Rafiee, R.; Biniaz, M. Toxicity of essential oil of Satureja khuzistanica: In vitro cytotoxicity and anti-microbial activity. J. Immunotoxicol. 2014, 11, 50–55. [Google Scholar] [CrossRef]
- Zandi-Sohani, N. A comparative study on fumigant toxicity of Zataria multiflora and Satureja hortensis (Lamiaceae) to Callosobruchus maculatus (Coleoptera: Chrysomelidae). Int. J. Trop. Insect Sci. 2012, 32, 142–147. [Google Scholar] [CrossRef]
- Park, J.; Jeon, Y.; Lee, C.; Chung, N.; Lee, H. Insecticidal toxicities of carvacrol and thymol derived from Thymus vulgaris Lin. Against Pochazia shantungensis Chou & Lu., newly recorded pest. Sci. Rep. 2017, 7, 40902. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Han, C.; Zhang, C.; Kuchkarova, N.; Wei, C.; Zhang, C.; Shao, H. Allelopathic, phytotoxic, and insecticidal effects of Thymus proximus Serg. essential oil and its major constituents. Front. Plant Sci. 2021, 12, 689875. [Google Scholar] [CrossRef] [PubMed]
- Afrazeh, Z.; Sendi, J.J. Eco-friendly control of Helicoverpa armigera using synergistic mixtures of thymol and eucalyptol. Sci. Rep. 2025, 15, 1–11. [Google Scholar] [CrossRef]
- Eltalawy, H.M.; El-Fayoumi, H.; Aboelhadid, S.M.; Al-Quraishy, S.; El-Mallah, A.M.; Abo El-Ela, F.I.; Awad, E.M.; Abdel-Baki, A.S. Insecticidal activity and systematic insights of carvacrol against Tribolium castaneum: Acetylcholinesterase inhibition, oxidative stress, and molecular docking. J. Stored Prod. Res. 2025, 112, 102638. [Google Scholar] [CrossRef]
- Diksh Singh, S.; Mahajan, E.; Sohal, S.K. Growth inhibitory, immunosuppressive, cytotoxic, and genotoxic effects of γ-terpinene on Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae). Sci. Rep. 2023, 13, 16472. [Google Scholar] [CrossRef]
- Naseri, B.; Abedi, Z.; Abdolmaleki, A.; Jafary-Jahed, M.; Borzoui, E.; Mansouri, S.M. Fumigant toxicity and sublethal effects of Artemisia khorassanica and Artemisia sieberi on Sitotroga cerealella (Lepidoptera: Gelechiidae). J. Insect Sci. 2017, 17, 100. [Google Scholar] [CrossRef] [PubMed]
- Fatiha, R.A.; Kada, R.; Khelil, M.A.; Pujade-Villar, J. Biological control against the cowpea weevil (Callosobruchus chinensis L., Coleoptera: Bruchidae) using essential oils of some medicinal plants. J. Plant Prot. Res. 2014, 54, 211–217. [Google Scholar] [CrossRef]
- Elhourri, M.; Amechrouq, A.; Riffi, O.; Fliou, J.; Sabiri, M. Study of the impact of the essential oil of Chenopodium ambrosioides (L.) (Chenopodiaceae) on Callosobruchus maculatus (Coleoptera: Bruchidae). Int. J. Environ. Stud. 2021, 78, 1044–1057. [Google Scholar] [CrossRef]
- El-Enine, A.; Habeba, M.O.; Metwally, E.M.; El-Deeb, M.A.; Mohamed, Z.A. Biological and lethal effects of some volatile plant oils, aloe aqueous extract and spinosad on cowpea beetle, Callosobruchus maculatus (F.). Zagazig J. Agric. Res. 2016, 43, 977–988. [Google Scholar] [CrossRef]
- Nouri Ganbalani, G.; Abedi, Z.; Mottaghinia, L.; Nouri, A. Lethal and sublethal effects of essential oils of ajwain (Carum copticum L.) and fennel (Foeniculum vulgare Mill) along with diatomaceous earth on some life table parameters of the lesser grain borer (Rhyzopertha dominica F.). Iran. J. Plant Prot. Sci. 2023, 53, 209–224. [Google Scholar] [CrossRef]
- El Kasimi, R.; Douiri, F.; Haddi, K.; Boughdad, A. Bioactivity of essential oil from Citrus aurantium peel against the pulse beetle Callosobruchus maculatus F. on chickpea. Agriculture 2023, 13, 232. [Google Scholar] [CrossRef]
- van den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Ebadi, A.; Naseri, B.; Besheli, B.A.; Razmjou, J.; Ebadollahi, A.; Pourabad, R.F.; Elahi, M.; Afshari, F. Resistance of some lentil cultivars against the cowpea beetle, Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae). J. Stored Prod. Res. 2025, 111, 102546. [Google Scholar] [CrossRef]
- Chi, H. TIMING-MSChart: A Computer Program for Population Project Based on Age-Stage, Two-Sex Life Table; National Chung Hsing University: Taichung, Taiwan, 2020. [Google Scholar]
- Chi, H.; Liu, H. Two new methods for the study of insect population ecology. Bull. Inst. Zool. Acad. Sin. 1985, 24, 225–240. [Google Scholar]
- Chi, H.; Kavousi, A.; Gharekhani, G.; Atlihan, R.; Ozgokçe, M.S.; Güncan, A.; Desneux, N. Advances in theory, data analysis, and application of the age-stage, two-sex life table for demographic research, biological control, and pest management. Entomol. Gen. 2023, 43, 705–735. [Google Scholar] [CrossRef]
RIcalc | RIdb | Compound | Percent Composition | |
---|---|---|---|---|
S. hortensis | S. khuzistanica | |||
839 | 837 | Furfural | - | tr |
851 | 842 | Ethyl 2-methylbutyrate | - | 0.4 |
923 | 924 | α-Thujene | 0.4 | tr |
929 | 933 | α-Pinene | 3.5 | 1.2 |
942 | 950 | Camphene | - | 0.3 |
977 | 974 | β-Pinene | 0.7 | 0.1 |
981 | 982 | 1-Octen-3-ol | 0.2 | 0.1 |
991 | 988 | Myrcene | 2.4 | 1.7 |
1003 | 1002 | α-Phellandrene | 0.3 | 0.2 |
1013 | 1008 | δ-3-Carene | - | 0.2 |
1016 | 1014 | α-Terpinene | 3.9 | 1.4 |
1026 | 1025 | p-Cymene | 9.7 | 7.9 |
1028 | 1030 | Limonene | 1.9 | - |
1028 | 1031 | β-Phellandrene | - | 0.2 |
1030 | 1032 | 1,8-Cineole | 1.9 | - |
1062 | 1057 | γ-Terpinene | 25.5 | 4.3 |
1086 | 1086 | Terpinolene | 0.5 | 0.5 |
1104 | 1101 | Linalool | - | 0.7 |
1116 | 1113 | p-Mentha-1,3,8-triene | - | tr |
1165 | 1172 | Borneol | 0.2 | 0.1 |
1174 | 1174 | Terpinen-4-ol | 1.5 | 0.9 |
1185 | 1186 | α-Terpineol | 0.2 | 0.5 |
1197 | 1195 | Methyl chavicol (=Estragol) | 0.4 | - |
1236 | 1239 | Thymyl methyl ether | 0.1 | - |
1241 | 1238 | Cuminal | 0.3 | - |
1243 | 1244 | Carvacryl methyl ether | 0.9 | 0.5 |
1288 | 1289 | Thymol | 3.7 | 9.3 |
1298 | 1298 | Carvacrol | 30.9 | 62.9 |
1356 | 1356 | Eugenol | 0.1 | 0.1 |
1369 | 1365 | Carvacryl acetate | 0.1 | 0.4 |
1384 | 1380 | (E)-β-Damascenone | 0.1 | - |
1422 | 1424 | (E)-β-Caryophyllene | 2.1 | 0.5 |
1433 | 1432 | trans-α-Bergamotene | tr | 0.1 |
1440 | 1439 | Aromadendrene | 0.4 | - |
1448 | 1447 | Geranyl acetone | tr | 0.1 |
1452 | 1454 | (E)-β-Farnesene | tr | tr |
1455 | 1454 | α-Humulene | 0.1 | tr |
1462 | 1458 | Alloaromadendrene | 0.1 | - |
1477 | 1478 | γ-Curcumene | - | tr |
1480 | 1482 | ar-Curcumene | - | tr |
1485 | 1486 | Phenylethyl 2-methyl butanoate | - | tr |
1489 | 1490 | Phenylethyl 3-methyl butanoate | - | tr |
1496 | 1491 | Viridiflorene | 0.4 | - |
1500 | 1501 | (Z)-α-Bisabolene | - | 0.1 |
1505 | 1505 | (E,E)-α-Farnesene | - | 0.4 |
1507 | 1505 | β-Bisabolene | 1.9 | 1.6 |
1513 | 1511 | Sesquicineole | - | tr |
1521 | 1521 | β-Sesquiphellandrene | - | tr |
1532 | 1524 | Dihydroactinidiolide | - | tr |
1539 | 1541 | (E)-α-Bisabolene | 0.2 | 0.3 |
1558 | 1555 | Elemicin | - | tr |
1580 | 1578 | Spathulenol | 1.0 | - |
1587 | 1587 | Caryophyllene oxide | 0.5 | 0.2 |
1594 | 1600 | Rosifoliol | - | 0.1 |
1611 | 1608 | Humulene epoxide II | - | tr |
1634 | 1630 | γ-Eudesmol | - | tr |
1640 | 1639 | Caryophylla-4(12),8(13)-dien-5β-ol | - | tr |
1641 | 1640 | τ-Cadinol | tr | - |
1643 | 1656 | Valerianol | - | tr |
1669 | 1668 | 14-Hydroxy-9-epi-(E)-caryophyllene | 0.1 | 0.1 |
1675 | 1671 | β-Bisabolol | - | tr |
1679 | 1679 | epi-α-Bisabolol | tr | 0.1 |
1739 | 1729 | iso-Bicyclogermacrenal | 0.1 | - |
1839 | 1841 | Phytone | 0.3 | 0.1 |
1920 | 1921 | Methyl palmitate | 0.1 | - |
1924 | 1916 | (5E,9E)-Farnesyl acetone | - | tr |
1960 | 1958 | Palmitic acid | 1.0 | - |
2002 | 2000 | 9β-Isopimara-7,15-diene | 0.1 | - |
2050 | 2046 | Kaur-16-ene | - | tr |
2108 | 2109 | Phytol | 0.2 | tr |
2135 | 2134 | Linolenic acid | 0.1 | - |
Monoterpene hydrocarbons | 48.9 | 18.2 | ||
Oxygenated monoterpenoids | 39.7 | 75.2 | ||
Sesquiterpene hydrocarbons | 5.2 | 2.9 | ||
Oxygenated sesquiterpenoids | 1.6 | 0.5 | ||
Diterpenoids | 0.3 | tr | ||
Benzenoid aromatics | 0.6 | 0.1 | ||
Others | 1.8 | 0.6 | ||
Total identified | 98.1 | 97.5 |
Essential Oil | Time (h) | Lethal Concentrations with 95% Confidence Limits (μL/g) | 2 (df = 4) | Slope ± SE | Sig. | R2 | RP | ||
---|---|---|---|---|---|---|---|---|---|
LC30 | LC50 | LC90 | |||||||
S. hortensis | 24 | 0.13 (0.04–0.22) | 0.44 (0.27–0.64) | 8.31 (3.65–51.83) | 0.66 | 1.00 ± 0.20 | 0.96 | 0.97 | 1.00 |
48 | 0.12 (0.06–0.18) | 0.26 (0.18–0.35) | 1.91 (1.28–3.74) | 0.60 | 1.49 ± 0.23 | 0.96 | 0.99 | 1.69 | |
72 | 0.11 (0.07–0.16) | 0.20 (0.14–0.26) | 0.83 (0.63–1.25) | 1.54 | 2.09 ± 0.30 | 0.76 | 0.97 | 2.20 | |
S. khuzistanica | 24 | 0.15 (0.07–0.22) | 0.36 (0.25–0.47) | 3.18 (1.83–9.34) | 0.19 | 1.35 ± 0.24 | 0.10 | 0.99 | 1.22 |
48 | 0.12 (0.07–0.27) | 0.24 (0.17–0.31) | 1.30 (0.92–2.28) | 0.21 | 1.75 ± 0.27 | 0.10 | 0.99 | 1.83 | |
72 | 0.10 (0.05–0.14) | 0.19 (0.13–0.24) | 0.90 (0.67–1.44) | 1.27 | 1.88 ± 0.29 | 0.87 | 0.97 | 2.32 |
Parameter | Control | S. hortensis | S. khuzistanica | ||
---|---|---|---|---|---|
LC30 | LC50 | LC30 | LC50 | ||
Development period (day) | 24.37 ± 0.15 b | 24.37 ± 0.12 b | 24.41 ± 0.12 b | 24.66 ± 0.12 b | 26.8 ± 0.19 a |
Immature survival (%) | 80.00 ± 8.94 a | 80.00 ± 8.95 a | 85.00 ± 7.97 a | 75.00 ± 9.67 a | 75.00 ± 9.64 a |
Male adult longevity (day) | 5.50 ± 0.32 a | 3.62 ± 0.36 b | 3.12 ± 0.22 b | 4.00 ± 0.31 ab | 5.50 ± 1.15 a |
Female adult longevity (day) | 6.00 ± 0.32 a | 3.87 ± 0.22 b | 3.88 ± 0.19 b | 3.9 ± 0.22 b | 3.54 ± 0.15 b |
Fecundity (egg per female) | 88.00 ± 3.89 a | 30.87 ± 1.63 c | 19.05 ± 0.83 d | 40.00 ± 3.42 b | 40.27 ± 2.03 b |
TPOP (day) | 24.50 ± 0.26 b | 24.12 ± 0.12 b | 24.44 ± 0.17 b | 24.60 ± 0.15 b | 27.00 ± 0.13 a |
Parameter | Control | S. hortensis | S. khuzistanica | ||
---|---|---|---|---|---|
LC30 | LC50 | LC30 | LC50 | ||
r (day−1) | 0.130 ± 0.011 a | 0.095 ± 0.011 bc | 0.080 ± 0.010 c | 0.112 ± 0.009 ab | 0.106 ± 0.007 b |
R0 (offspring) | 35.20 ± 9.76 a | 12.35 ± 3.44 bc | 8.57 ± 2.14 c | 20.00 ± 4.75 ab | 22.15 ± 4.57 ab |
GRR (offspring) | 58.06 ± 12.65 a | 17.50 ± 4.66 c | 15.32 ± 3.21 c | 30.38 ± 6.37 b | 33.89 ± 6.57 b |
λ (day−1) | 1.13 ± 0.01 a | 1.10 ± 0.01 bc | 1.08 ± 0.01 c | 1.11 ± 0.01 ab | 1.11 ± 0.008 ab |
T (day) | 27.37 ± 0.34 b | 26.24 ± 0.17 c | 26.60 ± 0.23 bc | 26.64 ± 0.17 bc | 28.95 ± 0.19 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebadollahi, A.; Naseri, B.; Aghcheli, A.; Setzer, W.N. Insecticidal Efficacy of Satureja hortensis L. and Satureja khuzistanica Jamzad Essential Oils Against Callosobruchus maculatus (F.). Plants 2025, 14, 3062. https://doi.org/10.3390/plants14193062
Ebadollahi A, Naseri B, Aghcheli A, Setzer WN. Insecticidal Efficacy of Satureja hortensis L. and Satureja khuzistanica Jamzad Essential Oils Against Callosobruchus maculatus (F.). Plants. 2025; 14(19):3062. https://doi.org/10.3390/plants14193062
Chicago/Turabian StyleEbadollahi, Asgar, Bahram Naseri, Aysona Aghcheli, and William N. Setzer. 2025. "Insecticidal Efficacy of Satureja hortensis L. and Satureja khuzistanica Jamzad Essential Oils Against Callosobruchus maculatus (F.)" Plants 14, no. 19: 3062. https://doi.org/10.3390/plants14193062
APA StyleEbadollahi, A., Naseri, B., Aghcheli, A., & Setzer, W. N. (2025). Insecticidal Efficacy of Satureja hortensis L. and Satureja khuzistanica Jamzad Essential Oils Against Callosobruchus maculatus (F.). Plants, 14(19), 3062. https://doi.org/10.3390/plants14193062