Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (197)

Search Parameters:
Keywords = 11β-hydroxysteroid dehydrogenase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1038 KB  
Opinion
Proposing Bromo-Epi-Androsterone for Host-Directed Therapy Against Tuberculosis
by Coad Thomas Dow and Liam Obaid
Pathogens 2025, 14(11), 1179; https://doi.org/10.3390/pathogens14111179 - 18 Nov 2025
Viewed by 497
Abstract
Bromoepiandrosterone (BEA), a synthetic analog of the adrenal steroid DHEA, holds promise as a host-directed therapy for both active and latent tuberculosis (TB). Unlike DHEA, BEA lacks hormonal side effects yet retains potent immunomodulatory activity. It promotes a Th1-skewed immune response by enhancing [...] Read more.
Bromoepiandrosterone (BEA), a synthetic analog of the adrenal steroid DHEA, holds promise as a host-directed therapy for both active and latent tuberculosis (TB). Unlike DHEA, BEA lacks hormonal side effects yet retains potent immunomodulatory activity. It promotes a Th1-skewed immune response by enhancing interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), critical cytokines for macrophage activation and intracellular control of Mycobacterium tuberculosis (Mtb), while suppressing Th2 cytokines such as IL-4. BEA also inhibits 11β-hydroxysteroid dehydrogenase-1, lowering intracellular cortisol levels and reversing the local immunosuppression commonly seen in TB. These features enable BEA to restore immune competency in TB-infected tissues. In murine TB models, BEA halted bacterial growth, reduced pulmonary inflammation, and synergized with standard anti-TB drugs to enhance bacterial clearance. Additionally, DHEA and its analogues have demonstrated direct antimycobacterial activity, likely by interfering with Mtb mycolic acid synthesis, a property BEA is believed to share. For latent TB, BEA’s ability to sustain Th1-mediated immunity and counteract immune suppression could help maintain latency and prevent reactivation, especially in immunocompromised individuals. By boosting immune surveillance and potentially contributing to bacillary clearance, BEA offers a unique adjunctive approach that complements existing TB treatments without contributing to drug resistance. Its dual function, an immune modulator and antimicrobial agent, supports its use across the TB disease spectrum. These properties position BEA as a novel candidate for host-directed therapy aimed at improving outcomes in both drug-sensitive and drug-resistant TB, as well as therapies aimed at enhancing long-term containment of latent infection. Full article
(This article belongs to the Special Issue Mycobacterial Infection: Pathogenesis and Drug Development)
Show Figures

Figure 1

17 pages, 932 KB  
Review
The Effect of Maternal Stress on 11beta-Hydroxysteroid Dehydrogenase Activity During Pregnancy: Evidence for Potential Pregnancy Complications and Consequences on Fetal Development and Metabolism
by Polina Pavli, George Mastorakos, Makarios Eleftheriades and Georgios Valsamakis
Int. J. Mol. Sci. 2025, 26(22), 11071; https://doi.org/10.3390/ijms262211071 - 16 Nov 2025
Viewed by 1025
Abstract
Τhe intrauterine environment has a strong connection with the growing fetus and possible effects that can continue up to adulthood. Currently, stress is conceptualized as a modern teratogen. The overwhelming majority of studies indicate that maternal stress during pregnancy may have effects on [...] Read more.
Τhe intrauterine environment has a strong connection with the growing fetus and possible effects that can continue up to adulthood. Currently, stress is conceptualized as a modern teratogen. The overwhelming majority of studies indicate that maternal stress during pregnancy may have effects on pregnancy outcomes and fetal development, with long-lasting consequences on child and adult vulnerability to disease. Glucocorticoids are essential for regulating fetal development, growth, and metabolism. The two isoforms of 11beta-hydroxysteroid dehydrogenase enzyme (11β-HSD) mediate and regulate glucocorticoid actions and biological activity. It has not yet been fully elucidated whether maternal stress during pregnancy affects 11β-HSD isoenzyme activity and expression and results in possible adverse effects on fetal development, metabolism, and pregnancy outcomes. This review examines a possible pathophysiological mechanism by which maternal stress during pregnancy affects placental 11β-HSD isoenzyme activity, thereby causing adverse effects on the physiological status of pregnancy, fetal development, and metabolism. Furthermore, the main outcome of the review is the following: chronic and acute maternal stress during pregnancy affects the activity and the expression of placental 11β-HSD isoenzymes and has possible subsequent unfavorable results on preeclampsia, preterm birth, and fetuses with intrauterine growth restriction (IUGR) or small for gestational age (SGA) fetuses. Full article
(This article belongs to the Special Issue Endocrinology of Pregnancy)
Show Figures

Figure 1

1 pages, 126 KB  
Correction
Correction: Ji et al. The Impact of Bilirubin on 7α- and 7β-Hydroxysteroid Dehydrogenases: Spectra and Docking Analysis. Catalysts 2023, 13, 965
by Qingzhi Ji, Jiamin Chen, Luping Zhu, Ruiyao Wang and Bochu Wang
Catalysts 2025, 15(11), 1058; https://doi.org/10.3390/catal15111058 - 6 Nov 2025
Viewed by 431
Abstract
Following publication, concerns were raised regarding the peer-review process related to the publication of this article [...] Full article
40 pages, 3660 KB  
Review
Anti-Inflammatory Activity of 1,2-Benzothiazine 1,1-Dioxide Derivatives
by Berenika M. Szczęśniak-Sięga and Izabela Topolska
Pharmaceuticals 2025, 18(10), 1484; https://doi.org/10.3390/ph18101484 - 2 Oct 2025
Viewed by 1119
Abstract
There is an urgent need to develop new anti-inflammatory compounds due to the versatility of their applications and the side effects associated with currently used nonsteroidal anti-inflammatory drugs (NSAIDs). Compounds containing the 1,2-benzothiazine 1,1-dioxide moiety in their structure have demonstrated a broad range [...] Read more.
There is an urgent need to develop new anti-inflammatory compounds due to the versatility of their applications and the side effects associated with currently used nonsteroidal anti-inflammatory drugs (NSAIDs). Compounds containing the 1,2-benzothiazine 1,1-dioxide moiety in their structure have demonstrated a broad range of pharmacological activities, among which the anti-inflammatory effect is the most well-documented. Numerous in vivo studies have confirmed the effectiveness of these compounds in alleviating pain and inflammation. In turn, in vitro studies have shown that 1,2-benzothiazine derivatives exhibit anti-inflammatory activity not only through the classical mechanism involving the inhibition of cyclooxygenase (COX) but also through modern, more complex mechanisms. These innovative mechanisms include inhibition of microsomal prostaglandin E2 synthase-1 (mPGES-1) or 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), suppression of pro-inflammatory cytokines, and modulation of kinase activity involved in inflammatory processes. Importantly, many studies have shown that some new 1,2-benzothiazine 1,1-dioxide derivatives exhibit even stronger anti-inflammatory activity than traditional NSAIDs, making them promising candidates for new drugs targeting inflammation-related diseases. This paper presents a review of 1,2-benzothiazine 1,1-dioxide derivatives investigated for their anti-inflammatory activity in both in vivo and in vitro models, taking into account their various mechanisms of action and potential directions for further research. Full article
Show Figures

Graphical abstract

23 pages, 4453 KB  
Article
Inhibitory Effects of Bisphenol Z on 11β-Hydroxysteroid Dehydrogenase 1 and In Silico Molecular Docking Analysis
by Tomasz Tuzimski and Mateusz Sugajski
Molecules 2025, 30(19), 3941; https://doi.org/10.3390/molecules30193941 - 1 Oct 2025
Viewed by 645
Abstract
Bisphenol A (BPA) is classified as an endocrine disruptor that mainly mimics the effects of estrogen and disrupts the synthesis of male androgens. Due to the toxicity of BPA, some new analogs, such as bisphenol BPB, BPC, BPF, PBH, and BPZ, were introduced [...] Read more.
Bisphenol A (BPA) is classified as an endocrine disruptor that mainly mimics the effects of estrogen and disrupts the synthesis of male androgens. Due to the toxicity of BPA, some new analogs, such as bisphenol BPB, BPC, BPF, PBH, and BPZ, were introduced into the market. The goal of this research was to demonstrate the applicability of kinetic analysis, in particular, Lineweaver-Burk plots, in assessing the impact of bisphenol Z on enzymatic activity. This study aimed to characterize the inhibitory effects of BPZ on 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity in the transformation of 11-dehydrocorticosterone (DHC) to corticosterone (CORT). During the determination of the enzymatic reaction product, chromatographic analysis conditions were optimized using gradient elution and an Acquity UPLC BEH C18 chromatographic column. The retention time of the assayed corticosterone was approximately 2 min. Also described and compared were graphical methods of analysis and data interpretation, such as Lineweaver-Burk, Eadie-Hofstee, and Hanes-Woolf plots. The experiments demonstrated that bisphenol Z is a mixed 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) inhibitor, responsible for catalyzing the conversion of 11-dehydrocorticosterone (DHC) to corticosterone (CORT). This relationship was confirmed by analyzing Lineweaver-Burk plots, which showed an increase in apparent KM with a decrease in the constant Vmax, suggesting a mixed inhibition mechanism. Molecular docking and detailed analysis of the interaction profiles revealed that BPZ consistently occupies the active site cavities of all examined enzymes (rat and human 11β-HSD1 and Arabidopsis 11β-HSD2), forming a stabilizing network of non-covalent interactions. Our research has significant biological significance considering the role of the 11β-HSD1 enzyme in the conversion of DHC to CORT and the importance of this process and its functions in adipose tissue, the liver, and the brain. Full article
(This article belongs to the Special Issue Modern Trends and Solutions in Analytical Chemistry in Poland)
Show Figures

Figure 1

18 pages, 2545 KB  
Article
New Derivatives of 2-(Cyclohexylamino)thiazol-4(5H)-one as Strong Inhibitors of 11β-Hydroxysteroid Dehydrogenase Type 1: Synthesis, Antiproliferative and Redox-Modulating Activity
by Szymon Baumgart, Daria Kupczyk, Anita Płazińska, Oliwia Koszła, Przemysław Sołek, Aneta Archała, Wojciech Płaziński and Renata Studzińska
Int. J. Mol. Sci. 2025, 26(18), 8972; https://doi.org/10.3390/ijms26188972 - 15 Sep 2025
Viewed by 778
Abstract
In the present study, we synthesized nine new derivatives of 2-(cyclohexylamino)thiazol-4(5H)-one and evaluated their inhibitory activity against 11β-hydroxysteroid dehydrogenase type 1 and 2 (11β-HSD1 and 11β-HSD2), an enzyme responsible for the progression of metabolic disorders and cancers. All obtained derivatives showed [...] Read more.
In the present study, we synthesized nine new derivatives of 2-(cyclohexylamino)thiazol-4(5H)-one and evaluated their inhibitory activity against 11β-hydroxysteroid dehydrogenase type 1 and 2 (11β-HSD1 and 11β-HSD2), an enzyme responsible for the progression of metabolic disorders and cancers. All obtained derivatives showed inhibitory potential against 11β-HSD1, and four of them highly inhibited 11β-HSD1 activity with IC50 values in the low micromolar range. The most active compound, 3h with IC50 = 0.04 µM, became a more potent and selective inhibitor than carbenoxolone. In addition to inhibition of 11β-HSD1, we investigated the antitumor potential and effects on intracellular redox homeostasis of all newly synthesized compounds on five cancer cell lines, namely human colon cancer (Caco-2), human pancreatic cancer (PANC-1), human glioma (U-118 MG), human breast cancer (MDA-MB-231), and skin melanoma (SK-MEL-30) and on healthy fibroblasts derived from the skin of a male neonate (BJ). Among the derivatives, all tested compounds were found to cause a decrease in cell viability for the MDA-MB-231 and Caco-2 lines and for compounds 3b3i for SK-MEL-30. The redox-modulating activity was assessed by measuring the levels of reactive oxygen species (ROS), reactive nitrogen species (RNS), and reduced glutathione (GSH) using the same panel of cancer lines and normal cells. This study showed an increase in ROS levels for SK-MEL-30, Caco-2, and MDA-MB-231 lines, while in the case of GSH levels, its reduction was observed in most experimental sets. The presented data suggest that the tested compounds are promising therapeutic agents with dual action because they offer the possibility of simultaneous regulation of metabolic disorders by inhibiting 11β-HSD1 and play a key role in anticancer therapy, which makes them prospective candidates for further clinical studies. Full article
(This article belongs to the Special Issue Molecular Insights on Drug Discovery, Design, and Treatment)
Show Figures

Figure 1

19 pages, 585 KB  
Article
Brain Metabolism of Allopregnanolone and Isoallopregnanolone in Male Rat Brain
by Charlotte Öfverman, Martin Hill, Maja Johansson and Torbjörn Bäckström
Int. J. Mol. Sci. 2025, 26(17), 8559; https://doi.org/10.3390/ijms26178559 - 3 Sep 2025
Viewed by 1418
Abstract
Allopregnanolone (allo) and isoallopregnanolone (isoallo) are neuroactive steroid epimers that differ in hydroxyl orientation at carbon three. Allo is a potent GABA-A receptor agonist, while isoallo acts as an antagonist, influencing brain function through their interconversion. Their metabolism varies across brain regions due [...] Read more.
Allopregnanolone (allo) and isoallopregnanolone (isoallo) are neuroactive steroid epimers that differ in hydroxyl orientation at carbon three. Allo is a potent GABA-A receptor agonist, while isoallo acts as an antagonist, influencing brain function through their interconversion. Their metabolism varies across brain regions due to enzyme distribution, with AKR1C1–AKR1C3 active in the brain and AKR1C4 restricted to the liver. In rats, AKR1C9 (liver) and AKR1C14 (intestine) perform similar roles. Beyond AKR1Cs, HSD17Bs regulate steroid balance, with HSD17B6 active in the liver, thyroid, and lung, while HSD17B10, a mitochondrial enzyme, influences metabolism in high-energy tissues. Our current data obtained using the GC-MS/MS platform show that allo and isoallo in rats undergo significant metabolic conversion, suggesting a regulatory role in neurosteroid action. High allo levels following isoallo injection indicate brain interconversion, while isoallo clears more slowly from blood and undergoes extensive conjugation. Metabolite patterns differ between brain and plasma—allo injection leads to 5α-DHP and isoallo production, whereas isoallo treatment primarily yields allo. Human plasma contains mostly sulfate/glucuronided steroids (2.4–6% non-sulfate/glucuronided), whereas male rats exhibit much higher free steroid levels (29–56%), likely due to the absence of zona reticularis. These findings highlight tissue-specific enzymatic differences, which may impact neurosteroid regulation and CNS disorders. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

18 pages, 2892 KB  
Review
Roles of Type 10 17β-Hydroxysteroid Dehydrogenase in Health and Disease
by Xue-Ying He, Janusz Frackowiak and Song-Yu Yang
J. Pers. Med. 2025, 15(8), 346; https://doi.org/10.3390/jpm15080346 - 1 Aug 2025
Viewed by 1320
Abstract
Type 10 17β-hydroxysteroid dehydrogenase (17β-HSD10) is the HSD17B10 gene product. It plays an appreciable part in the carcinogenesis and pathogenesis of neurodegeneration, such as Alzheimer’s disease and infantile neurodegeneration. This mitochondrial, homo-tetrameric protein is a central hub in various metabolic pathways, e.g., branched-chain [...] Read more.
Type 10 17β-hydroxysteroid dehydrogenase (17β-HSD10) is the HSD17B10 gene product. It plays an appreciable part in the carcinogenesis and pathogenesis of neurodegeneration, such as Alzheimer’s disease and infantile neurodegeneration. This mitochondrial, homo-tetrameric protein is a central hub in various metabolic pathways, e.g., branched-chain amino acid degradation and neurosteroid metabolism. It can bind to other proteins carrying out diverse physiological functions, e.g., tRNA maturation. It has also previously been proposed to be an Aβ-binding alcohol dehydrogenase (ABAD) or endoplasmic reticulum-associated Aβ-binding protein (ERAB), although those reports are controversial due to data analyses. For example, the reported km value of some substrate of ABAD/ERAB was five times higher than its natural solubility in the assay employed to measure km. Regarding any reported “one-site competitive inhibition” of ABAD/ERAB by Aβ, the ki value estimations were likely impacted by non-physiological concentrations of 2-octanol at high concentrations of vehicle DMSO and, therefore, are likely artefactual. Certain data associated with ABAD/ERAB were found not reproducible, and multiple experimental approaches were undertaken under non-physiological conditions. In contrast, 17β-HSD10 studies prompted a conclusion that Aβ inhibited 17β-HSD10 activity, thus harming brain cells, replacing a prior supposition that “ABAD” mediates Aβ neurotoxicity. Furthermore, it is critical to find answers to the question as to why elevated levels of 17β-HSD10, in addition to Aβ and phosphorylated Tau, are present in the brains of AD patients and mouse AD models. Addressing this question will likely prompt better approaches to develop treatments for Alzheimer’s disease. Full article
Show Figures

Figure 1

14 pages, 7293 KB  
Article
Components of Mineralocorticoid Receptor System in Human DRG Neurons Co-Expressing Pain-Signaling Molecules: Implications for Nociception
by Shaaban A. Mousa, Xueqi Hong, Elsayed Y. Metwally, Sascha Tafelski, Jan David Wandrey, Jörg Piontek, Sascha Treskatsch, Michael Schäfer and Mohammed Shaqura
Cells 2025, 14(15), 1142; https://doi.org/10.3390/cells14151142 - 24 Jul 2025
Viewed by 1262
Abstract
The mineralocorticoid receptor (MR), traditionally associated with renal function, has also been identified in various extrarenal tissues, including the heart, brain, and dorsal root ganglion (DRG) neurons in rodents. Previous studies suggest a role for the MR in modulating peripheral nociception, with MR [...] Read more.
The mineralocorticoid receptor (MR), traditionally associated with renal function, has also been identified in various extrarenal tissues, including the heart, brain, and dorsal root ganglion (DRG) neurons in rodents. Previous studies suggest a role for the MR in modulating peripheral nociception, with MR activation in rat DRG neurons by its endogenous ligand, aldosterone. This study aimed to determine whether MR, its protective enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), its endogenous ligand aldosterone, and the aldosterone-synthesizing enzyme CYP11B2 are expressed in human DRG neurons and whether they colocalize with key pain-associated signaling molecules as potential targets for genomic regulation. To this end, we performed mRNA transcript profiling and immunofluorescence confocal microscopy on human and rat DRG tissues. We detected mRNA transcripts for MR, 11β-HSD2, and CYP11B2 in human DRG, alongside transcripts for key thermosensitive and nociceptive markers such as TRPV1, the TTX-resistant sodium channel Nav1.8, and the neuropeptides CGRP and substance P (Tac1). Immunofluorescence analysis revealed substantial colocalization of MR with 11β-HSD2 and CGRP, a marker of unmyelinated C-fibers and thinly myelinated Aδ-fibers, in human DRG. MR immunoreactivity was primarily restricted to small- and medium-diameter neurons, with lower expression in large neurons (>70 µm). Similarly, aldosterone colocalized with CYP11B2 and MR with nociceptive markers including TRPV1, Nav1.8, and TrkA in human DRG. Importantly, functional studies demonstrated that prolonged intrathecal inhibition of aldosterone synthesis within rat DRG neurons, using an aldosterone synthase inhibitor significantly downregulated pain-associated molecules and led to sustained attenuation of inflammation-induced hyperalgesia. Together, these findings identify a conserved peripheral MR signaling axis in humans and highlight its potential as a novel target for pain modulation therapies. Full article
(This article belongs to the Section Cellular Neuroscience)
Show Figures

Figure 1

14 pages, 814 KB  
Review
Menopause as a Critical Turning Point in Lipedema: The Estrogen Receptor Imbalance, Intracrine Estrogen, and Adipose Tissue Dysfunction Model
by Diogo Pinto da Costa Viana, Lucas Caseri Câmara and Robinson Borges Palau
Int. J. Mol. Sci. 2025, 26(15), 7074; https://doi.org/10.3390/ijms26157074 - 23 Jul 2025
Cited by 3 | Viewed by 10570
Abstract
Lipedema is a chronic, estrogen-sensitive adipose tissue disorder characterized by disproportionate subcutaneous fat accumulation, fibrosis, inflammation, and resistance to fat mobilization. Despite its high prevalence, lipedema remains poorly understood and frequently misdiagnosed. This narrative review proposes a novel pathophysiological model in which menopause [...] Read more.
Lipedema is a chronic, estrogen-sensitive adipose tissue disorder characterized by disproportionate subcutaneous fat accumulation, fibrosis, inflammation, and resistance to fat mobilization. Despite its high prevalence, lipedema remains poorly understood and frequently misdiagnosed. This narrative review proposes a novel pathophysiological model in which menopause acts as a critical turning point in the progression of lipedema, driven by estrogen receptor imbalance (ERβ predominance over ERα), intracrine estrogen excess, and adipose tissue dysfunction. We demonstrate how menopause amplifies adipose tissue dysfunction by suppressing ERα signaling; enhancing ERβ activity; and disrupting mitochondrial function, insulin sensitivity, and lipid oxidation. Concurrently, the upregulation of aromatase and 17β-HSD1, combined with the suppression of 17β-HSD2, sustains localized estradiol excess, perpetuating inflammation, fibrosis, and immune dysregulation. The molecular signature observed in lipedema closely mirrors that of other estrogen-driven gynecological disorders, such as endometriosis, adenomyosis, and uterine fibroids. Understanding these molecular mechanisms highlights the pivotal role of menopause as a catalyst for disease progression and provides a rationale for targeted therapeutic strategies, including hormonal modulation and metabolic interventions. This review reframes lipedema as an estrogen receptor-driven gynecological disorder, offering a new perspective to improve clinical recognition, diagnosis, and management of this neglected condition. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

22 pages, 5259 KB  
Article
Ameliorating Effect of Glehnia littoralis Extract on Periodontitis Through Regulation of 11β-Hydroxysteroid Dehydrogenase Type 1 in an Experimental Periodontitis Model
by Eun-Nam Kim, Nguyen Minh Trang, Chae Lee Park, Sang-Yoon Kim, MinKyun Na and Gil-Saeng Jeong
Molecules 2025, 30(14), 2903; https://doi.org/10.3390/molecules30142903 - 9 Jul 2025
Cited by 1 | Viewed by 735
Abstract
Glehnia littoralis Fr. Schmidt ex Miq. has been cultivated in China for a long time and used as a medicinal plant called “Beishashen” in traditional Chinese medicine and has been traditionally known to have antibacterial and anti-inflammatory effects, but its direct role in [...] Read more.
Glehnia littoralis Fr. Schmidt ex Miq. has been cultivated in China for a long time and used as a medicinal plant called “Beishashen” in traditional Chinese medicine and has been traditionally known to have antibacterial and anti-inflammatory effects, but its direct role in periodontitis has not been known. Currently used periodontal treatments require long-term administration, which causes many side effects. Therefore, in this study, we evaluated the effects of G. littoralis extract (GLE) on periodontitis in an experimental periodontitis-induced in vitro and vivo model and understood its potential molecular mechanism. The effect of GLE on periodontitis in vitro was investigated using human periodontal ligament (HPDL) cells mediated by PG-LPS. Additionally, a ligature-induced periodontitis model and a PG-LPS-induced periodontal inflammation model were used to investigate the effect of GLE in vivo. In vitro study results showed that GLE down-regulated the increased inflammatory cytokines and mediators in HPDL cells stimulated with PG-LPS, and simultaneously down-regulated the levels of 11β-HSD1 and glucocorticoid receptor (GR), thereby alleviating periodontal inflammation. At the same time, it restored the lost osteoblast differentiation potential of HPDL cells. In addition, in an in vivo model representatively used for periodontitis research, the periodontal inflammation-alleviating effect and the effect of restoring or protecting damaged periodontal tissue were confirmed. GLE can be considered as a new periodontitis treatment agent through regulating 11β-HSD1. Full article
Show Figures

Figure 1

22 pages, 107288 KB  
Article
Integration of Pseudotargeted Metabolomics and Microbiomics Reveals That Hugan Tablets Ameliorate NASH with Liver Fibrosis in Mice by Modulating Bile Acid Metabolism via the Gut Microbiome
by Wenran Dong, Ying Wang, Huajinzi Li, Huilin Ma, Yingxi Gong, Gan Luo and Xiaoyan Gao
Metabolites 2025, 15(7), 433; https://doi.org/10.3390/metabo15070433 - 24 Jun 2025
Viewed by 2166
Abstract
Background/Objectives: Non-alcoholic steatohepatitis (NASH) carries a high risk of developing hepatic fibrosis. Hugan tablets (HGTs), a traditional Chinese medicine, have exhibited potent anti-hepatic fibrosis effects, though the underlying mechanisms remain unclarified. This study aims to assess the efficacy of HGTs against NASH-related [...] Read more.
Background/Objectives: Non-alcoholic steatohepatitis (NASH) carries a high risk of developing hepatic fibrosis. Hugan tablets (HGTs), a traditional Chinese medicine, have exhibited potent anti-hepatic fibrosis effects, though the underlying mechanisms remain unclarified. This study aims to assess the efficacy of HGTs against NASH-related liver fibrosis in mice and investigate the underlying mechanisms via the integration of pseudotargeted metabolomics and microbiomics. Methods: C57BL/6 mice were fed a choline-deficient, ethionine-supplemented (CDE) diet and treated with HGTs. The therapeutic effects of HGTs in CDE mice were assessed. The underlying mechanism of HGTs was investigated by the integration of microbiomics, a pseudo-sterile model, untargeted followed by pseudotargeted metabolomics, and molecular docking. Results: HGTs alleviated NASH-related hepatic fibrosis in CDE mice and restored the composition of the gut microbiota. The depletion of the gut microbiota eliminated the anti-hepatic fibrosis effect of HGTs. HGTs increased intestinal 7-ketolithocholic acid and tauroursodeoxycholic acid via 7α/β-hydroxysteroid dehydrogenase (7α/βHSDH), while reducing deoxycholic acid (DCA) and taurodeoxycholic acid through inhibition of bile acid 7α-dehydratase (BaiE), leading to lower hepatic DCA. Six intestinal components of HGTs interacted with 7αHSDH, 7βHSDH, and BaiE, which are expressed in the bacterial genera altered by HGTs. Conclusions: HGTs alleviate NASH fibrosis by reshaping the gut microbiome, acting on microbial BA-metabolizing enzymes, and regulating the BA metabolism in the liver and gut. Full article
(This article belongs to the Section Microbiology and Ecological Metabolomics)
Show Figures

Figure 1

16 pages, 4010 KB  
Article
Lipidomic Profiling Reveals HSD17B13 Deficiency-Associated Dysregulated Hepatic Phospholipid Metabolism in Aged Mice
by Cong Zhang, Yingxin Feng, Xiaoyan Zhang, Youfei Guan and Wen Su
Metabolites 2025, 15(6), 353; https://doi.org/10.3390/metabo15060353 - 27 May 2025
Viewed by 1542
Abstract
Objectives: HSD17B13 (17β-hydroxysteroid dehydrogenase 13), a lipid droplet-associated enzyme, has emerged as a key regulator of hepatic lipid metabolism and a potential therapeutic target for metabolic-associated fatty liver disease (MAFLD). While its role in lipid homeostasis and liver inflammation has been partially revealed, [...] Read more.
Objectives: HSD17B13 (17β-hydroxysteroid dehydrogenase 13), a lipid droplet-associated enzyme, has emerged as a key regulator of hepatic lipid metabolism and a potential therapeutic target for metabolic-associated fatty liver disease (MAFLD). While its role in lipid homeostasis and liver inflammation has been partially revealed, the impact of HSD17B13 deficiency on lipid metabolism in aged mice remains poorly understood. In this study, we performed comprehensive lipidomic profiling of liver tissues from aged Hsd17b13 gene knockout (Hsd17b13 KO) mice to investigate the effects of Hsd17b13 deletion on hepatic lipid composition and metabolic pathways. Methods: Changes in hepatic lipid profiles were assessed through a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based lipidomic analysis. Results: The lipid profiles, including triglycerides (TGs), diglycerides (DGs), phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), phosphatidylglycerols (PGs), and ceramides (Cers), exhibited notable alterations in the Hsd17b13 KO mice. Conclusions: HSD17B13 plays a pivotal role in liver lipid metabolism during aging, and it is involved in the regulation of hepatic phospholipid metabolism. Our study highlights the importance of HSD17B13 in maintaining liver lipid homeostasis and its potential as a therapeutic target for age-related liver diseases. Full article
(This article belongs to the Special Issue Metabolic Dysregulation in Fatty Liver Disease)
Show Figures

Figure 1

18 pages, 1878 KB  
Article
Molecular Mechanisms Contributing to the Impairment of Steroid Hormones, Sperm Characteristics, and Testicular Architecture in Male Rabbits After Chronic Exposure to Cadmium: Role of Gallic Acid and Selenium as Antioxidants
by Salah A. Sheweita, Saleh M. Al-Qahtani, Rofida M. Ahmed, Mohamed S. Sheweita and Ahmed Atta
Toxics 2025, 13(4), 323; https://doi.org/10.3390/toxics13040323 - 21 Apr 2025
Cited by 4 | Viewed by 1324
Abstract
One hazardous material that occurs naturally in the environment and induces oxidative stress is cadmium (Cd). Epidemiological data revealed that exposure to cadmium in the workplace and environment might be linked to many illnesses and serious testicular injuries. Aims: It is taught that [...] Read more.
One hazardous material that occurs naturally in the environment and induces oxidative stress is cadmium (Cd). Epidemiological data revealed that exposure to cadmium in the workplace and environment might be linked to many illnesses and serious testicular injuries. Aims: It is taught that antioxidants can protect different organs against environmental toxic compounds. Therefore, the current investigation aims to show the role of antioxidants (gallic acid and selenium) in the protection against cadmium toxicity, including the architecture of the testes, semen properties, steroid hormones, protein expression of cytochrome P450 [CYP 19 and 11A1] contributing to the production of steroid hormones, and antioxidant enzyme activities, in male rabbits. Methods: Male rabbits were given cadmium orally three times/week [1 mg/kg BW] for twelve weeks. In addition, gallic acid (20 mg/kg) or selenium (1 mg/kg BW) was administered two hours before cadmium treatment. This investigation included a spectrophotometer, histopathology, and Western immunoblotting techniques. Results: Cadmium treatment significantly reduced sperm counts, testosterone, and estrogen levels after four, eight, and twelve weeks of treatment. In addition, after a 12-week treatment of rabbits with cadmium, the activity of 17β-hydroxysteroid dehydrogenase and antioxidant enzymes, including catalase, superoxide dismutase, glutathione reductase, glutathione peroxidase, and glutathione S-transferase, as well as the glutathione levels, were inhibited in the testes tissue. On the other hand, following cadmium treatment, rabbit’s testes showed a discernible increase in free radical levels. Interestingly, the activity of antioxidant enzymes and level of free radicals were recovered in rabbits treated with gallic acid or selenium before cadmium treatment. In addition, after 12 weeks of cadmium treatment, the steroidogenic protein expressions of CYP 11A1 and CYP 19 were upregulated and downregulated in the testes, respectively. Interestingly, after pretreatment of rabbits with either gallic acid or selenium for two hours before cadmium administration, the downregulated CYP11A1 was restored to normal levels. In the histopathological investigation, immature spermatozoids and sloughed spermatogonium cells were observed in cadmium-treated rabbits’ testes. On the other hand, pretreatments of rabbits with gallic acid or selenium mitigated and alleviated the adverse effects of cadmium on testes architecture and increased the production of healthy sperm. Conclusions: The lower levels of steroid hormones could be due to the downregulation of CYP11A1, inhibition of 17β-hydroxysteroid dehydrogenase, antioxidant enzyme activities, and the induction of free radical levels. Furthermore, the pretreatment of rabbits with gallic acid or selenium mitigated the adverse effects of cadmium on the tissue architecture of testes and steroid hormone levels. Full article
(This article belongs to the Special Issue Harmful Substances and Safety Evaluation of Herbal Medicines)
Show Figures

Figure 1

42 pages, 2758 KB  
Review
Unveiling Gestational Diabetes: An Overview of Pathophysiology and Management
by Rahul Mittal, Karan Prasad, Joana R. N. Lemos, Giuliana Arevalo and Khemraj Hirani
Int. J. Mol. Sci. 2025, 26(5), 2320; https://doi.org/10.3390/ijms26052320 - 5 Mar 2025
Cited by 25 | Viewed by 30973
Abstract
Gestational diabetes mellitus (GDM) is characterized by an inadequate pancreatic β-cell response to pregnancy-induced insulin resistance, resulting in hyperglycemia. The pathophysiology involves reduced incretin hormone secretion and signaling, specifically decreased glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), impairing insulinotropic effects. Pro-inflammatory cytokines, [...] Read more.
Gestational diabetes mellitus (GDM) is characterized by an inadequate pancreatic β-cell response to pregnancy-induced insulin resistance, resulting in hyperglycemia. The pathophysiology involves reduced incretin hormone secretion and signaling, specifically decreased glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), impairing insulinotropic effects. Pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), impair insulin receptor substrate-1 (IRS-1) phosphorylation, disrupting insulin-mediated glucose uptake. β-cell dysfunction in GDM is associated with decreased pancreatic duodenal homeobox 1 (PDX1) expression, increased endoplasmic reticulum stress markers (CHOP, GRP78), and mitochondrial dysfunction leading to impaired ATP production and reduced glucose-stimulated insulin secretion. Excessive gestational weight gain exacerbates insulin resistance through hyperleptinemia, which downregulates insulin receptor expression via JAK/STAT signaling. Additionally, hypoadiponectinemia decreases AMP-activated protein kinase (AMPK) activation in skeletal muscle, impairing GLUT4 translocation. Placental hormones such as human placental lactogen (hPL) induce lipolysis, increasing circulating free fatty acids which activate protein kinase C, inhibiting insulin signaling. Placental 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) overactivity elevates cortisol levels, which activate glucocorticoid receptors to further reduce insulin sensitivity. GDM diagnostic thresholds (≥92 mg/dL fasting, ≥153 mg/dL post-load) are lower than type 2 diabetes to prevent fetal hyperinsulinemia and macrosomia. Management strategies focus on lifestyle modifications, including dietary carbohydrate restriction and exercise. Pharmacological interventions, such as insulin or metformin, aim to restore AMPK signaling and reduce hepatic glucose output. Emerging therapies, such as glucagon-like peptide-1 receptor (GLP-1R) agonists, show potential in improving glycemic control and reducing inflammation. A mechanistic understanding of GDM pathophysiology is essential for developing targeted therapeutic strategies to prevent both adverse pregnancy outcomes and the progression to overt diabetes in affected women. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

Back to TopTop