Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (167)

Search Parameters:
Keywords = 10-HDA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 259 KiB  
Article
The Impact of Grafted Larvae and Collection Day on Royal Jelly’s Production and Quality
by Dimitrios Kanelis, Vasilios Liolios, Maria Anna Rodopoulou, Fotini Papadopoulou and Chrysoula Tananaki
Appl. Sci. 2025, 15(15), 8200; https://doi.org/10.3390/app15158200 - 23 Jul 2025
Viewed by 219
Abstract
Royal jelly (RJ), a secretion from nurse bees, is a key factor in honeybee caste differentiation and a high-value product in apitherapy. Despite its economic and biological importance, factors affecting its yield and composition remain insufficient. This study investigated the impact of grafted [...] Read more.
Royal jelly (RJ), a secretion from nurse bees, is a key factor in honeybee caste differentiation and a high-value product in apitherapy. Despite its economic and biological importance, factors affecting its yield and composition remain insufficient. This study investigated the impact of grafted larval age and sex and the collection day of RJ on its yield and physicochemical characteristics. Three independent experiments were conducted using strong Apis mellifera L. colonies. Larvae of different ages (first, second, and third) were grafted, and RJ was harvested 24, 48, and 72 h post grafting. Additionally, worker and drone larvae were used to assess the effect of larval sex. RJ was analyzed for moisture, protein, sugar, and 10-hydroxy-2-decenoic acid (10-had) content. Results showed that RJ yield significantly increased with collection day, with the third day being optimal. Protein content declined over time, while moisture content rose, although sugar levels and 10-HDA remained stable. Second-day larvae yielded the highest RJ volume without affecting composition. Larval sex did not significantly influence either RJ yield or composition. The results of this study may provide valuable insights into the quality determinants of royal jelly, enabling beekeepers to optimize production for both enhanced royal jelly yield and the rearing of higher-quality queen bees. Full article
(This article belongs to the Special Issue Advances in Honeybee and Their Biological and Environmental Threats)
15 pages, 1374 KiB  
Article
Differential Strain-Specific Responses of Trichoderma spp. in Mycoparasitism, Chitinase Activity, and Volatiles Production Against Moniliophthora spp.
by María F. Garcés-Moncayo, Christian A. Romero, Simón Pérez-Martínez, Carlos Noceda, Luís L. Galarza and Daynet Sosa del Castillo
Microorganisms 2025, 13(7), 1499; https://doi.org/10.3390/microorganisms13071499 - 27 Jun 2025
Viewed by 418
Abstract
Moniliophthora roreri (MR, frosty pod rot) and M. perniciosa (MP, witches’ broom disease) pose critical threats to cacao production in Latin America. This study explores the biocontrol potential of Trichoderma spp. strains against these pathogens through exploratory analysis of mycoparasitism, chitinolytic activity, and [...] Read more.
Moniliophthora roreri (MR, frosty pod rot) and M. perniciosa (MP, witches’ broom disease) pose critical threats to cacao production in Latin America. This study explores the biocontrol potential of Trichoderma spp. strains against these pathogens through exploratory analysis of mycoparasitism, chitinolytic activity, and volatile organic compound (VOC) production. Dual-culture assays revealed species-specific antagonism, but C2A/C4B showed a dual-pathogen efficacy (>93% of Monioliopthora inhibition). Chitinase activity revealed C4A/C1 strains as exceptional producers (72 mg/mL NAGA vs. MR and 94 mg/mL vs. MP, respectively). GC-MS analysis identified pathogen-modulated VOC dynamics: hexadecanoic acid dominated in 80% Trichoderma solo-cultures (up to 26.65% peak area in C3B). MP showed 18.4-fold higher abundance of hexadecanoic acid than MR (0.23%). In 90% of dual-culture with MR and MP, HDA was detected as the most abundant. Functional specialization was evident. C4A and C1 prioritized chitinase production growing on MR and MP cell walls (respectively), whereas C9 excelled in antifungal hexadecanoic acid synthesis in confrontation with both pathogens. Complementary strengths among strains—enzymatic activity in C4A/C4B versus volatile-mediated inhibition in C9—suggest niche partitioning, supporting a consortium-based approach for robust biocontrol. This study provides preliminary evidence for the biocontrol potential of several Trichoderma strains, showing possible complementary modes of action. Full article
(This article belongs to the Special Issue Harnessing Beneficial Microbiota in Sustainable Agriculture)
Show Figures

Figure 1

13 pages, 2164 KiB  
Review
Behind the Therapeutic Effects of Royal Jelly: Recent Advances in the Specific Properties of 10-Hydroxydecanoic Acid
by Carla Gasbarri and Guido Angelini
Molecules 2025, 30(13), 2694; https://doi.org/10.3390/molecules30132694 - 22 Jun 2025
Viewed by 1058
Abstract
Since ancient times, Royal Jelly (RJ) has been known for its remarkable properties in traditional medicine, and it is still widely recommended for mental and physical well-being. RJ consists of a unique and complex mixture of multiple constituents in different concentrations, and some [...] Read more.
Since ancient times, Royal Jelly (RJ) has been known for its remarkable properties in traditional medicine, and it is still widely recommended for mental and physical well-being. RJ consists of a unique and complex mixture of multiple constituents in different concentrations, and some of its biological activities are directly associated with specific components not found elsewhere in nature, such as (E)-10-hydroxy-2-decenoic acid (10-HDA) and its precursor 10-hydroxydecanoic acid (10-HDAA), two medium-chain fatty acids. Together, 10-HAD and 10-HDAA represent the major constituents of the total lipid fraction in RJ, but despite their structural similarity, the former has been extensively investigated over the years, while the latter has been only marginally reported. This review focuses on the promising effects of 10-HDAA that have emerged in a series of recent in vitro, in vivo, and docking simulation studies. Important bioactivities were observed for 10-HDAA, tested both as an individual compound, especially for immunoregulatory, estrogenic, and anti-inflammatory activities, and in synergic combination with other molecules. Specific anti-infective effects against endemic diseases, as well as the structural modification to synthesize biocompatible and biodegradable 10-HDAA-based amphiphiles, are also reported. Full article
(This article belongs to the Special Issue Effects of Functional Foods and Dietary Bioactives on Human Health)
Show Figures

Graphical abstract

27 pages, 1740 KiB  
Article
A Bearing Fault Diagnosis Method Based on Dual-Stream Hybrid-Domain Adaptation
by Xinze Jiao, Jianjie Zhang and Jianhui Cao
Sensors 2025, 25(12), 3686; https://doi.org/10.3390/s25123686 - 12 Jun 2025
Viewed by 508
Abstract
Bearing fault diagnosis under varying operating conditions faces challenges of domain shift and labeled data scarcity. This paper proposes a dual-stream hybrid-domain adaptation network (DS-HDA Net) that fuses CNN-extracted time-domain features with MLP-processed frequency-domain features for comprehensive fault representation. The method employs hierarchical [...] Read more.
Bearing fault diagnosis under varying operating conditions faces challenges of domain shift and labeled data scarcity. This paper proposes a dual-stream hybrid-domain adaptation network (DS-HDA Net) that fuses CNN-extracted time-domain features with MLP-processed frequency-domain features for comprehensive fault representation. The method employs hierarchical domain adaptation: marginal distribution adaptation (MDA) for global alignment and conditional domain adaptation (CDA) for class-conditional alignment. A novel soft pseudo-label generation mechanism combining Gaussian mixture models (GMMs) with the Mahalanobis distance provides reliable supervisory signals for unlabeled target domain data. Extensive experiments on the Paderborn University and Jiangnan University datasets demonstrate that DS-HDA Net achieves average accuracy values of 99.43% and 99.56%, respectively, significantly outperforming state-of-the-art methods. The approach effectively addresses bearing fault diagnosis under complex operating conditions with minimal labeled data requirements. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

21 pages, 2184 KiB  
Article
Dissecting the Molecular Mechanism of 10-HDA Biosynthesis: Role of Acyl-CoA Delta(11) Desaturase and Transcriptional Regulators in Honeybee Mandibular Glands
by Yunchang Li, Xiaojing Zhang, Zhenyu Xia and Yue Hao
Insects 2025, 16(6), 563; https://doi.org/10.3390/insects16060563 - 26 May 2025
Viewed by 743
Abstract
10-Hydroxy-2-decenoic acid (10-HDA), a major fatty acid (FA) component of royal jelly, is synthesized in the mandibular glands (MGs) of worker honeybees. Despite its well-documented nutritional and therapeutic significance, the biosynthetic pathway and regulatory mechanisms of 10-HDA production remain largely unresolved. In this [...] Read more.
10-Hydroxy-2-decenoic acid (10-HDA), a major fatty acid (FA) component of royal jelly, is synthesized in the mandibular glands (MGs) of worker honeybees. Despite its well-documented nutritional and therapeutic significance, the biosynthetic pathway and regulatory mechanisms of 10-HDA production remain largely unresolved. In this study, the molecular basis of 10-HDA biosynthesis and regulation in the MGs of newly emerged bees (NEBs), nurse bees (NBs), and forager bees (FBs) were investigated using RNA sequencing and weighted gene co-expression network analysis (WGCNA). A five-step biosynthetic pathway for 10-HDA was proposed, and cross-species analysis of Apis mellifera and A. cerana revealed the conserved expression patterns of 15 key enzymes involved. Functional validation via RNA interference (RNAi) demonstrated that knockdown of acyl-CoA Delta(11) desaturase (d11ds, LOC551527), a key enzyme in FA desaturation, led to a 50% reduction in 10-HDA levels. Protein–protein interaction (PPI) network analysis further identified transcriptional regulators Kay and Drep-2 as potential modulators of 10-HDA metabolism. This study provides the first comprehensive mechanistic model of 10-HDA biosynthesis in honeybee MGs and highlights the labor-specific regulation of FA metabolism. These findings offer promising genetic targets for improving the royal jelly quality through genetic technology. Full article
(This article belongs to the Special Issue Recent Studies on Resource Insects)
Show Figures

Figure 1

16 pages, 16242 KiB  
Article
Genes Affecting Cotton Fiber Length: A Systematic Review and Meta-Analysis
by Jiao Jiao, Shihao Chang, Fei Wang, Jiaxin Yang, Asigul Ismayil, Peng Wu, Lei Wang and Hongbin Li
Plants 2025, 14(8), 1203; https://doi.org/10.3390/plants14081203 - 12 Apr 2025
Viewed by 727
Abstract
Cotton fiber length is an important measurement for application in the textile industry, and researchers are seeking to cultivate cotton plants with longer fibers. In this study, cotton fiber genes were systematically reviewed through meta-analysis in terms of extending and shortening fiber and [...] Read more.
Cotton fiber length is an important measurement for application in the textile industry, and researchers are seeking to cultivate cotton plants with longer fibers. In this study, cotton fiber genes were systematically reviewed through meta-analysis in terms of extending and shortening fiber and the use of different research technologies for the first time. PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), and Baidu Xueshu databases were included as literature retrieval sources. A total of 21,467 articles were retrieved, and 45 articles were used in the final analysis. Data analysis was performed using RevMan 5.4 software. To shorten cotton fiber length, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology was superior to virus-induced gene silencing (VIGS) technology and RNA interference (RNAi) technology [p = 0.002, MD = −1.05, 95% CI (−1.73, −0.37), Chi2 = 39.89]. To increase cotton fiber length, CRISPR-Cas9 technology had a similar effect as VIGS technology [p = 0.12, MD = −0.59, 95% CI (−1.33, −0.15), Chi2 = 0.17]. When some genes (GhLAC15, GhALDH7B4, GhMDHAR1A/GhDHAR2A, STTM-miR396b, GhMYB44, GhFP2, GhMYB7, GhKNL1, GhTCP4, GhHDA5, GhGalT1, GhKNOX6, GhXB38D, and GhBZR3) were damaged, cotton fiber length increased. Furthermore, we found that after gene interference, the fiber-shortening genes occurred more frequently than the fiber-elongating genes. Synergistic research on these genes may better promote cotton fiber elongation. Full article
Show Figures

Figure 1

24 pages, 1666 KiB  
Review
Advancing Viral Defense: Unravelling the Potential of Host-Directed Antivirals Against SARS-CoV-2
by Zheng Yao Low, Siau Wui Chin, Sharifah Syed Hassan and Wee Sim Choo
Drugs Drug Candidates 2025, 4(2), 13; https://doi.org/10.3390/ddc4020013 - 28 Mar 2025
Viewed by 1416
Abstract
The COVID-19 pandemic, driven by the high transmissibility and immune evasion caused by SARS-CoV-2 and its variants (e.g., Alpha, Delta, Omicron), has led to massive casualties worldwide. As of November 2024, the International Committee on Taxonomy of Viruses (ICTV) has identified 14,690 viral [...] Read more.
The COVID-19 pandemic, driven by the high transmissibility and immune evasion caused by SARS-CoV-2 and its variants (e.g., Alpha, Delta, Omicron), has led to massive casualties worldwide. As of November 2024, the International Committee on Taxonomy of Viruses (ICTV) has identified 14,690 viral species across 3522 genera. The increasing infectious and resistance to FDA and EMA-approved antivirals, such as 300-fold efficacy reduction in Nirmatrelvir against the SARS-CoV-2 3CLpro, highlight the need for mutation-stable antivirals, likewise targeting the essential host proteins like kinases, heat shock proteins, lipid metabolism proteins, immunological pathway proteins, etc. Unlike direct-acting antivirals, HDAs reduce the risk of resistance by targeting conserved host proteins essential for viral replication. The proposal for repurposing current FDA-approved drugs for host-directed antiviral (HDA) approach is not new, such as the Ouabain, a sodium-potassium ATPase inhibitor for herpes simplex virus (HSV) and Verapamil, a calcium channel blocker for influenza A virus (IAV), to name a few. Given the colossal potential of the mutation-stable HDA approach to exterminate the virus infection, it has been increasingly studied on SARS-CoV-2. This review aims to unravel the interaction between viruses and human hosts and their successfully proposed host-directed antiviral approach to provide insight into an alternative treatment to the rampant mutation in SARS-CoV-2. The benefits, limitations, and potential of host protein-targeted antiviral therapies and their prospects are also covered in this review. Full article
(This article belongs to the Special Issue Fighting SARS-CoV-2 and Related Viruses)
Show Figures

Figure 1

23 pages, 12119 KiB  
Article
Chondroitin Sulfate-Based Imatinib Nanoparticles Targeting Activated Hepatic Stellate Cells Against Hepatic Fibrosis
by Xunzhi Liu, Changlong Fang, Hongling Yu, Lu Huang, Jiaxing Feng, Shiqin Luo, Li Song, Mengying Wu, Yulu Tan, Jianxia Dong, Tao Gong and Peihong Xiao
Pharmaceutics 2025, 17(3), 351; https://doi.org/10.3390/pharmaceutics17030351 - 9 Mar 2025
Viewed by 1059
Abstract
Background: Activated hepatic stellate cells (aHSCs) play a significant role during the onset of hepatic fibrosis, ultimately leading to excessive deposition of extracellular matrix (ECM) and other typical pathological features, and thus have become a popular target for the treatment of hepatic [...] Read more.
Background: Activated hepatic stellate cells (aHSCs) play a significant role during the onset of hepatic fibrosis, ultimately leading to excessive deposition of extracellular matrix (ECM) and other typical pathological features, and thus have become a popular target for the treatment of hepatic fibrosis. However, current aHSC-centric therapy strategies achieve unsatisfactory results, mainly due to the lack of approved anti-fibrosis drugs and sufficiently efficient aHSC-targeted delivery systems. In this study, our aim was to develop an Imatinib-loaded nanoparticle delivery system based on a chondroitin sulfate derivative to enhance aHSC targeting efficiency, improve the therapeutic effect for hepatic fibrosis, and investigate the underlying mechanism. Methods: The carboxyl group of chondroitin sulfate and the amino group of 1-hexadecylamine were linked by an amide bond in this study to produce the amphiphilic carrier CS-HDA. Then, the Imatinib-loaded nanoparticles (IM-CS NPs) were designed to efficiently target aHSCs through CD44-mediated endocytosis and effectively inhibit HSC overactivation via PDGF and TGF-β signaling pathways. Results: Both in vitro cellular uptake experiments and in vivo distribution experiments demonstrated that CS-HDA-modified nanoparticles (IM-CS NPs) exhibited a better targeting ability for aHSCs, which were subsequently utilized to treat carbon tetrachloride-induced hepatic fibrosis mouse models. Finally, significant fibrosis resolution was observed in the carbon tetrachloride-induced hepatic fibrosis mouse models after tail vein injection of the IM-CS NPs, along with their outstanding biocompatibility and biological safety. Conclusions: IM-loaded NPs based on an amphiphilic CS derivative have remarkable antifibrotic effects, providing a promising avenue for the clinical treatment of advanced hepatic fibrosis. Full article
(This article belongs to the Topic Advances in Controlled Release and Targeting of Drugs)
Show Figures

Figure 1

22 pages, 2182 KiB  
Article
Chiral Recognition Mechanism of Benzyltetrahydroisoquinoline Alkaloids: Cyclodextrin-Mediated Capillary Electrophoresis, Chiral HPLC, and NMR Spectroscopy Study
by Erzsébet Várnagy, Gergő Tóth, Sándor Hosztafi, Máté Dobó, Ida Fejős and Szabolcs Béni
Molecules 2025, 30(5), 1125; https://doi.org/10.3390/molecules30051125 - 28 Feb 2025
Cited by 1 | Viewed by 917
Abstract
The tetrahydroisoquinoline skeleton is a pharmacologically significant core structure containing chiral centers, making enantiomeric separation crucial due to the potentially distinct biological effects of each enantiomer. In this study, laudanosine (N-methyl-tetrahydropapaverine) and its three derivatives (6′-bromo-laudanosine, norlaudanosine, and N-propyl-norlaudanosine) were [...] Read more.
The tetrahydroisoquinoline skeleton is a pharmacologically significant core structure containing chiral centers, making enantiomeric separation crucial due to the potentially distinct biological effects of each enantiomer. In this study, laudanosine (N-methyl-tetrahydropapaverine) and its three derivatives (6′-bromo-laudanosine, norlaudanosine, and N-propyl-norlaudanosine) were synthesized and used as model compounds to investigate chiral recognition mechanisms. Screening over twenty cyclodextrins (CyDs) as chiral selectors in capillary electrophoresis (CE), we found anionic CyDs to be the most effective, with sulfated-γ-CyD (S-γ-CyD) achieving a maximum Rs of 10.5 for laudanosine. Notably, octakis-(6-deoxy-6-(2-carboxyethyl)-thio)-γ-CyD (sugammadex, SGX), heptakis-(2,3-O-diacetyl-6-O-sulfo)-β-CD (HDAS), heptakis-(2,3-O-dimethyl-6-O-sulfo)-β-CD (HDMS), and octakis-(2,3-O-dimethyl-6-O-sulfo)-γ-CD (ODMS) provided excellent enantioseparation for all four analytes. Following HPLC screening on CyD-based and polysaccharide-based chiral stationary phases, semi-preparative HPLC methods using amylose and cellulose-based columns were optimized to isolate enantiomers. The purity of the isolated enantiomers was evaluated by HPLC, and their configurations were confirmed via circular dichroism spectroscopy. The isolated enantiomers allowed us to explore enantiomer migration order reversals in CE and enantiomer elution order reversal in HPLC. Further 1H and 2D ROESY NMR experiments provided atomic-level insights into enantioselective complex formation, confirming enantiomer differentiation by SGX and elucidating the inclusion complex structure, where the ring C immersion into the CyD cavity is prevalent. Full article
Show Figures

Graphical abstract

10 pages, 1290 KiB  
Article
Effect of Curcumin Pretreatment on the Susceptibility of Cryptococcus neoformans to Photodynamic Therapy Mediated by Aluminum Phthalocyanine in Nanoemulsion
by Fabiana Chagas Costa, Lourival Carvalho Nunes, Kunal Ranjan, Ariane Pandolfo Silveira, Ingrid Gracielle Martins da Silva, André de Lima e Silva Mariano, Paulo Eduardo Narcizo de Souza, Sônia Nair Báo, Marcio Jose Poças-Fonseca and Luis Alexandre Muehlmann
Pharmaceuticals 2025, 18(2), 240; https://doi.org/10.3390/ph18020240 - 11 Feb 2025
Viewed by 959
Abstract
Background/Objectives: Curcumin has antimicrobial activity, and its mechanism of action involves changing histone acetylation. Our group has shown that histone deacetylases (HDACs) inhibitors increase the sensibility of Cryptococcus neoformans to certain antifungal treatments. Therefore, the aim of this work was to investigate whether [...] Read more.
Background/Objectives: Curcumin has antimicrobial activity, and its mechanism of action involves changing histone acetylation. Our group has shown that histone deacetylases (HDACs) inhibitors increase the sensibility of Cryptococcus neoformans to certain antifungal treatments. Therefore, the aim of this work was to investigate whether curcumin pretreatment increases the effect of photodynamic therapy (PDT) mediated by aluminum phthalocyanine in nanoemulsion (AlPc-NE) against C. neoformans. Methods: The minimum inhibitory concentrations (MIC) of AlPc-NE and curcumin, along with the 72-h growth curve of cells exposed to the combined treatments, were evaluated in the C. neoformans reference strain H99. Additionally, further analysis was performed using HDAC gene deletion mutant strains, hda1Δ and hos2Δ. Results: Curcumin reduces the effect of PDT on C. neoformans reference strain H99, likely due to its antioxidant properties. In the hda1Δ strain, 50% MIC of curcumin reduced the effect of PDT, but this effect was not observed in response to 75% MIC of curcumin. Conversely, in the hos2Δ strain, pretreatment with curcumin at 75% MIC enhanced the efficacy of PDT in combination with 50% MIC of AlPc-NE. Conclusions: These results indicate that curcumin inhibits C. neoformans. Moreover, at lower concentrations, curcumin protects cells against oxidant damage, while at higher concentrations, it may trigger epigenetic mechanisms that compromise cell viability. In conclusion, both curcumin and PDT are active against C. neoformans, with HDACs affecting their efficacy, and the effectiveness of the combined treatment depends on the concentration of both curcumin and AlPc-NE. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

12 pages, 3506 KiB  
Article
Photoluminescence and Stability of Dion–Jacobson Tin-Based Halide Perovskites with Different Spacer Cation Chain Length
by Muhammad Umair Ali, Wen Ting Sun, Aleksandr A. Sergeev, Atta Ur Rehman, Kam Sing Wong, Aleksandra B. Djurišić and Jasminka Popović
Molecules 2025, 30(3), 703; https://doi.org/10.3390/molecules30030703 - 5 Feb 2025
Viewed by 903
Abstract
Two-dimensional tin halide perovskites are of significant interest for light emitting applications. Here, we investigate the effect of organic cation A on the stability of different Dion–Jacobson tin-based halide perovskites. The ASnBr4 materials using diammonium cation A with shorter alkyl chains are [...] Read more.
Two-dimensional tin halide perovskites are of significant interest for light emitting applications. Here, we investigate the effect of organic cation A on the stability of different Dion–Jacobson tin-based halide perovskites. The ASnBr4 materials using diammonium cation A with shorter alkyl chains are found to exhibit improved stability, exhibiting dramatic stability difference between the most stable HDASnBr4, where HDA denotes 1,6-hexanediammonium, and two materials with 8- and 10-carbon alkyl chain ammonium cations. The HDASnBr4 powders were thermally stable at 100 °C in an argon environment but exhibited decreasing photoluminescence with time in ambient air at 100 °C. The sample degradation at 100 °C is accelerated compared to room temperature, but it proceeds along similar pathways, namely phase transformation followed by perovskite decomposition. Light emission from HDASnBr4 thin films could be further enhanced by methanol vapor treatment, and warm white emission with Commission Internationale de l’Eclairage (CIE) coordinates (0.37, 0.34) could be obtained by combining HDASnBr4 with a blue-emitting polymer film, while direct mixing of blue phosphor and HDASnBr4 powder yields white emission with CIE coordinates of (0.34, 0.32). Full article
Show Figures

Figure 1

20 pages, 5088 KiB  
Article
Molecular Modification of Queen Bee Acid and 10-Hydroxydecanoic Acid with Specific Tripeptides: Rational Design, Organic Synthesis, and Assessment for Prohealing and Antimicrobial Hydrogel Properties
by Song Hong, Sachin B. Baravkar, Yan Lu, Abdul-Razak Masoud, Qi Zhao and Weilie Zhou
Molecules 2025, 30(3), 615; https://doi.org/10.3390/molecules30030615 - 30 Jan 2025
Cited by 3 | Viewed by 1281
Abstract
Royal jelly and medical grade honey are traditionally used in treating wounds and infections, although their effectiveness is often variable and insufficient. To overcome their limitations, we created novel amphiphiles by modifying the main reparative and antimicrobial components, queen bee acid (hda) and [...] Read more.
Royal jelly and medical grade honey are traditionally used in treating wounds and infections, although their effectiveness is often variable and insufficient. To overcome their limitations, we created novel amphiphiles by modifying the main reparative and antimicrobial components, queen bee acid (hda) and 10-hydroxyl-decanoic acid (hdaa), through peptide bonding with specific tripeptides. Our molecular design incorporated amphiphile targets as being biocompatible in wound healing, biodegradable, non-toxic, hydrogelable, prohealing, and antimicrobial. The amphiphilic molecules were designed in a hda(hdaa)-aa1-aa2-aa3 structural model with rational selection criteria for each moiety, prepared via Rink/Fmoc-tBu-based solid-phase peptide synthesis, and structurally verified by NMR and LC–MS/MS. We tested several amphiphiles among those containing moieties of hda or hdaa and isoleucine–leucine–aspartate (ILD-amidated) or IL-lysine (ILK-NH2). These tests were conducted to evaluate their prohealing and antimicrobial hydrogel properties. Our observation of their hydrogelation and hydrogel-rheology showed that they can form hydrogels with stable elastic moduli and injectable shear-thinning properties, which are suitable for cell and tissue repair and regeneration. Our disc-diffusion assay demonstrated that hdaa-ILK-NH2 markedly inhibited Staphylococcus aureus. Future research is needed to comprehensively evaluate the prohealing and antimicrobial properties of these novel molecules modified from hda and hdaa with tripeptides. Full article
Show Figures

Graphical abstract

12 pages, 1252 KiB  
Article
The Influence of pH on Long-Range Electron Transfer and Proton-Coupled Electron Transfer in Ruthenium-Modified Azurin
by Nikta Ghazi and Jeffrey J. Warren
Molecules 2025, 30(3), 472; https://doi.org/10.3390/molecules30030472 - 22 Jan 2025
Viewed by 1006
Abstract
Long-range electron transfer (ET) is an essential component of all biological systems. Reactions of metalloproteins are important in this context. Recent work on protein “charge ladders” has revealed how the redox state of embedded metal ions can influence the ionization of amino acid [...] Read more.
Long-range electron transfer (ET) is an essential component of all biological systems. Reactions of metalloproteins are important in this context. Recent work on protein “charge ladders” has revealed how the redox state of embedded metal ions can influence the ionization of amino acid residues at protein surface sites. Inspired by these observations, we carried out a variable pH investigation of intramolecular ET reactions in a ruthenium-modified protein system built on azurin from Pseudomonas aeruginosa. We also generate a Pourbaix diagram that describes the variable pH redox behavior of a Ru model complex, Ru(2,2′-bipyridyl)2(imidazole)2(PF6)2. The intramolecular ET rate constants for the oxidation of azurin-Cu+ by flash-quench-generated Ru3+ oxidants do not follow the predictions of the semi-classical ET rate expression with fixed values of reorganization energy (λ) and electronic coupling (HDA). Based on the pH dependence of the Ru3+/2+ redox couple, we propose a model where pure ET is operative at acidic pH values (≤ 7) and the mechanism changes to proton-coupled electron transfer at pH ≥ 7.5. The implications of this mechanistic proposal are discussed in the context of biological redox reactions and with respect to other examples of intramolecular ET reactions in the literature. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Inorganic Chemistry, 2nd Edition)
Show Figures

Graphical abstract

18 pages, 6311 KiB  
Article
Herbal Waste from Filter-Tea Production as Eco-Friendly Ash for Sustainable Natural Rubber Composites
by Jelena Lubura Stošić, Oskar Bera, Teodora Vukša, Dario Balaban, Senka Vidović, Aleksandra Gavarić, Sanja B. Ostojić and Siniša Simić
Materials 2025, 18(1), 204; https://doi.org/10.3390/ma18010204 - 6 Jan 2025
Cited by 1 | Viewed by 1112
Abstract
Herbal dust, a waste byproduct from filter-tea production, was annealed to form ash that can be incorporated into natural rubber as an eco-friendly filler. Three types of herbal dust ash (HDA), green tea, hibiscus, and lemon balm, were added at two different contents, [...] Read more.
Herbal dust, a waste byproduct from filter-tea production, was annealed to form ash that can be incorporated into natural rubber as an eco-friendly filler. Three types of herbal dust ash (HDA), green tea, hibiscus, and lemon balm, were added at two different contents, 2.5 and 5 phr, into the rubber compound, while the content of carbon black, as a filler, was maintained at 50 phr in all samples. The impact of HDA type and content on the rheological and mechanical properties of rubber products was evaluated. Rheological analysis showed that HDA samples exhibited slightly lower maximum torque values (around 11.6 dNm) than ash-free samples (13.53 dNm), yet maintained vulcanization effectiveness with minimal impact on torque or cure rate metrics. Mechanical testing found that samples with 2.5 phr of lemon balm ash achieved comparable properties to samples without added ash, while samples with added hibiscus preserved crosslinking density and hardness. The addition of HDA led to decreases in tensile strength, elongation at break, and hardness values, with slight changes suggesting its applicability in similar industrial contexts. The findings highlight HDAs potential as a cost-effective, sustainable filler for rubber production, contributing to circular economy practices by repurposing significant amounts of tea waste into high-quality rubber materials. Full article
Show Figures

Graphical abstract

24 pages, 696 KiB  
Review
Regulation of Histone Acetylation Modification on Biosynthesis of Secondary Metabolites in Fungi
by Xuwen Hou, Liyao Liu, Yu Li, Pengfei Wang, Xiaoqian Pan, Dan Xu, Daowan Lai and Ligang Zhou
Int. J. Mol. Sci. 2025, 26(1), 25; https://doi.org/10.3390/ijms26010025 - 24 Dec 2024
Cited by 7 | Viewed by 1595
Abstract
The histone acetylation modification is a conservative post-translational epigenetic regulation in fungi. It includes acetylation and deacetylation at the lysine residues of histone, which are catalyzed by histone acetyltransferase (HAT) and deacetylase (HDAC), respectively. The histone acetylation modification plays crucial roles in fungal [...] Read more.
The histone acetylation modification is a conservative post-translational epigenetic regulation in fungi. It includes acetylation and deacetylation at the lysine residues of histone, which are catalyzed by histone acetyltransferase (HAT) and deacetylase (HDAC), respectively. The histone acetylation modification plays crucial roles in fungal growth and development, environmental stress response, secondary metabolite (SM) biosynthesis, and pathogenicity. One of the most important roles is to regulate the gene expression that is responsible for SM biosynthesis in fungi. This mini-review summarized the regulation of histone acetylation modification by HATs and HDACs on the biosynthesis of SMs in fungi. In most cases, histone acetylation by HATs positively regulated the biosynthesis of fungal SMs, while HDACs had their negative regulations. Some HATs and HDACs were revealed to regulate fungal SM biosynthesis. Hda1 was found to be the most efficient regulator to affect the biosynthesis of SMs in fungi. The regulated fungal species were mainly from the genera of Aspergillus, Calcarisporium, Cladosporium, Fusarium, Monascus, Penicillium, and Pestalotiopsis. With the strategy of histone acetylation modification, the biosynthesis of some harmful SMs will be inhibited, while the production of useful bioactive SMs will be promoted in fungi. The subsequent research should focus on the study of regulatory mechanisms. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

Back to TopTop