Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,499)

Search Parameters:
Keywords = 1/N expansion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5611 KB  
Article
Changes in Surface Soil Organic Carbon Fractions and Their Pool Management Indices Along an Altitudinal Gradient in Karst Mountains in Relation to the Expansion Degrees of Chimonobambusa utilis
by Long Tong, Qingping Zeng, Lijie Chen, Xiaoying Zeng, Ling Shen, Fengling Gan, Minglan Liang, Lixia Chen, Xiaoyan Zhang and Lianghua Qi
Biology 2026, 15(1), 25; https://doi.org/10.3390/biology15010025 - 23 Dec 2025
Abstract
Soil organic carbon fractions and pool management indices are critical for the ecosystem function of bamboo forests; however, their response to varying degrees of expansion of Chimonobambusa utilis (EDCU) and altitudinal gradients remains poorly understood in high-altitude karst regions. In this study, 225 [...] Read more.
Soil organic carbon fractions and pool management indices are critical for the ecosystem function of bamboo forests; however, their response to varying degrees of expansion of Chimonobambusa utilis (EDCU) and altitudinal gradients remains poorly understood in high-altitude karst regions. In this study, 225 samples (three replicate soil samples, each with five duplicate samples) were collected from 45 typical soil sites in the Jinfo high-altitude karst mountains, China. This study investigated the effects of three EDCUs (low, moderate, and high expansion) and five altitudinal gradients (1300–1500 m, 1500–1700 m, 1700–900 m, 1900–2100 m, and 2100–2300 m) on root elemental composition, soil properties, soil organic fractions, and pool management indices. The results revealed that root total C, N, RC:P, and RN:P decreased with increasing altitude, whereas root total C, N, P, and RC:N also increased significantly with increasing EDCU. Compared with those at low and moderate EDCU, the POC:SOC (34.12%), HFOC (32.73 g kg−1), and HFOC:SOC (37.07%) ratios were highest at high EDCU along the altitudinal gradient of 1700–1900 m. Meanwhile, the L (2.38), LI (2.01), and CMI (174.55) ratios reached their highest values at moderate expansion degrees of Chimonobambusa utilis within the altitudinal gradient of 1900–2100 m. Moreover, redundancy discriminant analysis (RDA) and structural equation modeling (SEM) revealed that the soil carbon pool management index was significantly positively associated with soil properties through direct pathways and negatively correlated with root elemental composition through indirect pathways. In general, the quality of the carbon pool in Chimonobambusa utilis is optimal within the moderate expansion degrees of Chimonobambusa utilis within the altitudinal gradient of 1900–2100 m. The findings of this study establish a theoretical basis for the expansion of Chimonobambusa utilis in high-altitude karst regions and provide scientific evidence to support the increase in the carbon sequestration capacity of bamboo forest ecosystems in these mountainous areas. Full article
(This article belongs to the Section Ecology)
Show Figures

Figure 1

18 pages, 414 KB  
Article
Electromagnetic Sources Teleparallel Robertson–Walker F(T)-Gravity Solutions
by Alexandre Landry
Mathematics 2026, 14(1), 48; https://doi.org/10.3390/math14010048 - 23 Dec 2025
Abstract
We investigate the teleparallel Robertson–Walker (TRW) F(T)-gravity solutions for a cosmological electromagnetic source in the current paper. We use and solve the TRW F(T)-gravity field equations (FEs) for each value of the k-parameter [...] Read more.
We investigate the teleparallel Robertson–Walker (TRW) F(T)-gravity solutions for a cosmological electromagnetic source in the current paper. We use and solve the TRW F(T)-gravity field equations (FEs) for each value of the k-parameter (1,0,+1) and the electromagnetic equivalent of the equation of state (EoS), leading to new teleparallel F(T) solutions. For the k=0 cosmological case, we find new teleparallel F(T) solutions for any scale factor n. For k=±1 cosmological cases, we find exact and far-future approximated new teleparallel F(T) solutions for slow, linear, fast and infinitely fast universe expansion summarized by analytical functions. All the new solutions are relevant for future cosmological applications, implying any electromagnetic source processes, such as the cosmological plasma models. Full article
(This article belongs to the Special Issue Applied Mathematics in Astrophysics and Space Science)
Show Figures

Figure 1

15 pages, 5269 KB  
Article
Study on the Influence Mechanism of Load on the Mechanical Properties of Concrete Under Stress–Seepage–Chemical Coupling
by Qixian Wu, Guanghao Zhang, Zhihao Zhao, Yuan Liu and Fujian Yang
Buildings 2026, 16(1), 55; https://doi.org/10.3390/buildings16010055 - 23 Dec 2025
Abstract
The durability of concrete in immersed tunnels is critically influenced by the coupled effects of stress, seepage, and chemical erosion, particularly in inland water environments. However, the spatio-temporal evolution of mechanical property degradation under such multi-field coupling remains insufficiently quantified. Unlike previous studies [...] Read more.
The durability of concrete in immersed tunnels is critically influenced by the coupled effects of stress, seepage, and chemical erosion, particularly in inland water environments. However, the spatio-temporal evolution of mechanical property degradation under such multi-field coupling remains insufficiently quantified. Unlike previous studies focused on “load-ion” or “hydraulic pressure-ion” dual coupling, this work introduces a complete stress–seepage–chemical tri-coupling that incorporates the critical seepage effect, representing a fundamental expansion of the experimental scope to better simulate real-world conditions. This study investigates the degradation mechanisms of concrete in the Shunde Lungui Road inland immersed tunnel subjected to such coupled erosion. A novel aspect of our approach is the application of the micro-indentation technique to quantitatively characterize the spatio-temporal evolution of the local elastic modulus at an unprecedented spatial resolution (0.5 mm intervals), a dimension of analysis not achievable by conventional macro-scale testing. Key findings reveal that the mechanical properties of concrete exhibit an initial enhancement followed by deterioration. This behavior is attributed to the filling of pores by reaction products (gypsum, ettringite, and Friedel’s salt) in the short term, which subsequently induces microcracking as the volume of products exceeds the pore capacity. Furthermore, increasing hydro-mechanical loading significantly accelerates the erosion process. When the load increases from 1.596 kN to 3.718 kN, the influence range of elastic modulus variation expands by 9.2% (from 5.186 mm to 5.661 mm). To quantitatively describe this acceleration effect, a novel load-acceleration erosion coefficient is proposed. The erosion rate increases from 0.0688 mm/d to 0.0778 mm/d, yielding acceleration coefficients between 1.100 and 1.165, quantifying a 10–16.5% acceleration effect beyond what is typically captured in dual-coupling models. These quantitative results provide critical parameters for employing laboratory accelerated tests to evaluate the ionic erosion durability of concrete structures under various loading conditions, thereby contributing to more accurate service life predictions for engineering structures. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 2389 KB  
Article
Evaluating the Suitability of Four Plant Functional Groups in Green Roofs Under Nitrogen Deposition
by Nan Yang, Hechen Li, Runze Wu, Yihan Wang, Meiyang Li, Lei Chen, Hongyuan Li and Guang Hao
Plants 2026, 15(1), 43; https://doi.org/10.3390/plants15010043 - 23 Dec 2025
Abstract
The rapid urban expansion in the past few decades has resulted in a deficit of urban green space, and green roofs have become an effective way to expand urban green spaces. High nitrogen (N) deposition induced by urban development has threatened the health [...] Read more.
The rapid urban expansion in the past few decades has resulted in a deficit of urban green space, and green roofs have become an effective way to expand urban green spaces. High nitrogen (N) deposition induced by urban development has threatened the health and sustainability of plants. The aim of this study was to evaluate the responses of plant growth performance and aesthetic value to N deposition in green roofs. Eleven species from four plant functional groups were grown under control, low N addition, and high N addition conditions to assess the effects of N addition on their growth performance, aesthetic value, soil properties, and plant functional traits. Different plant functional groups exhibited distinct traits, and their response to N addition was different. Under high N addition, the growth performance of sod-forming graminoids and tall forbs decreased by 47.0% and 23.7%, and their aesthetic value decreased by 24.4% and 16.2%, respectively. Growth performance of plant functional groups was mainly determined by plant functional traits rather than soil properties. The poor growth performance and aesthetic value of sod-forming graminoids and tall forbs challenged their widespread use under high N addition. This study highlighted the importance of selecting environmentally adaptive species from the perspective of plant functional groups, especially in the context of future high N deposition. Full article
(This article belongs to the Special Issue Sustainable Plants and Practices for Resilient Urban Greening)
Show Figures

Figure 1

23 pages, 1227 KB  
Review
Genetics of Waardenburg Syndrome in Africa: A Systematic Review
by Elvis Twumasi Aboagye, Ramses Peigou Wonkam, Carmen de Kock, Collet Dandara and Ambroise Wonkam
Int. J. Mol. Sci. 2026, 27(1), 127; https://doi.org/10.3390/ijms27010127 - 22 Dec 2025
Abstract
Waardenburg syndrome (WS) represents a group of genetic conditions characterized by auditory and pigmentation defects. Pathogenic variants in PAX3, MITF, SOX10, EDN3, EDNRB, SNAI2, and KITLG genes have been associated with WS across multiple populations; a comprehensive [...] Read more.
Waardenburg syndrome (WS) represents a group of genetic conditions characterized by auditory and pigmentation defects. Pathogenic variants in PAX3, MITF, SOX10, EDN3, EDNRB, SNAI2, and KITLG genes have been associated with WS across multiple populations; a comprehensive study of WS in Africa has not yet been reported. We conducted a systematic review of clinical expressions and genetics of WS across Africa. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines were followed, and the study protocol was registered on PROSPERO, the International Prospective Register of Systematic Reviews (2025 CRD420250655744). A literature search was performed on Google Scholar, PubMed, Scopus, Directory of Open Access Journals (DOAJ), Global Index Medicus, African-Wide Information, ScienceDirect, Connecting Repositories (CORE), and the Web of Science databases. We reviewed a total of 15 articles describing 84 WS cases, which showed no gender bias and a mean age at reporting of 17.5 years. Congenital, sensorineural, and profound hearing loss was described in most cases (66.7%; n = 56/84). WS type 2 (WS2), with characteristically no dystopia canthorum, is the predominant subtype (36.9%; n = 31/84). Pathogenic variants in four WS known genes, i.e., PAX3 (13 families), SOX10 (7 families), EDNRB (4 families), and EDN3 (1 family), were reported in Morocco, Tunisia, and South Africa. One candidate gene (PAX8) was described in one family in Ghana. Two non-syndromic hearing loss (NSHL) genes (BDP1 and MYO6) were reported in two separate families in South Africa, suggesting a possible phenotypic expansion. The highest number of WS cases was described in South Africa (38.1%; n = 32/84) and Tunisia (26.2%; n = 22/84). Gene variants were missense (27/43), deletion (7/43), splicing (5/43), nonsense (2/43), indel (1/43), and duplication (1/43), chiefly segregating in an autosomal dominant inheritance mode. There was no functional data to support the pathogenicity of putative causative variants. This review showed that WS2 is the most common in Africa. Variants in PAX3 and SOX10 were the predominant genetic causes. This study emphasizes the need to further investigate in-depth clinical characterization, molecular landscape, and the pathobiology of WS in Africa. Full article
(This article belongs to the Special Issue Hearing Loss: Recent Progress in Molecular Genomics)
Show Figures

Figure 1

18 pages, 292 KB  
Article
Exponential Tail Estimates for Lacunary Trigonometric Series
by Maria Rosaria Formica, Eugeny Ostrovsky and Leonid Sirota
Axioms 2026, 15(1), 5; https://doi.org/10.3390/axioms15010005 - 22 Dec 2025
Abstract
We establish precise exponential tail estimates for lacunary trigonometric sums of the form fN(x)=k=1Nckcos(2πnkx), under the Hadamard gap condition. Using cumulant expansions [...] Read more.
We establish precise exponential tail estimates for lacunary trigonometric sums of the form fN(x)=k=1Nckcos(2πnkx), under the Hadamard gap condition. Using cumulant expansions and moment-generating function techniques, we obtain non-asymptotic upper bounds for the tail probabilities, including third-order corrections that refine the classical central limit theorem estimates. Furthermore, several examples illustrate these bounds for various choices of coefficients, highlighting the transition from subgaussian to stretched-exponential tail behavior. Full article
(This article belongs to the Special Issue Applications in Functional Analysis)
23 pages, 5771 KB  
Article
F3M: A Frequency-Domain Feature Fusion Module for Robust Underwater Object Detection
by Tianyi Wang, Haifeng Wang, Wenbin Wang, Kun Zhang, Baojiang Ye and Huilin Dong
J. Mar. Sci. Eng. 2026, 14(1), 20; https://doi.org/10.3390/jmse14010020 - 22 Dec 2025
Abstract
In this study, we propose the Frequency-domain Feature Fusion Module (F3M) to address the challenges of underwater object detection, where optical degradation—particularly high-frequency attenuation and low-frequency color distortion—significantly compromises performance. We critically re-evaluate the need for strict invertibility in detection-oriented frequency modeling. Traditional [...] Read more.
In this study, we propose the Frequency-domain Feature Fusion Module (F3M) to address the challenges of underwater object detection, where optical degradation—particularly high-frequency attenuation and low-frequency color distortion—significantly compromises performance. We critically re-evaluate the need for strict invertibility in detection-oriented frequency modeling. Traditional wavelet-based methods incur high computational redundancy to maintain signal reconstruction, whereas F3M introduces a lightweight “Separate–Project–Fuse” paradigm. This mechanism decouples low-frequency illumination artifacts from high-frequency structural cues via spatial approximation, enabling the recovery of fine-scale details like coral textures and debris boundaries without the overhead of channel expansion. We validate F3M’s versatility by integrating it into both Convolutional Neural Networks (YOLO) and Transformer-based detectors (RT-DETR). Evaluations on the SCoralDet dataset show consistent improvements: F3M enhances the lightweight YOLO11n by 3.5% mAP50 and increases RT-DETR-n’s localization accuracy (mAP50–95) from 0.514 to 0.532. Additionally, cross-domain validation on the deep-sea TrashCan-Instance dataset shows F3M achieving comparable accuracy to the larger YOLOv8n while requiring 13% fewer parameters and 20% fewer GFLOPs. This study confirms that frequency-domain modulation provides an efficient and widely applicable enhancement for real-time underwater perception. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 5573 KB  
Article
Assessing the Impact of Land Use and Landscape Patterns on Water Quality in Yilong Lake Basin (1993–2023)
by Yue Huang, Ronggui Wang, Jie Li and Yuhan Jiang
Water 2026, 18(1), 30; https://doi.org/10.3390/w18010030 - 22 Dec 2025
Viewed by 92
Abstract
To investigate the influence of land use landscape patterns on lake water quality in the basin, the land use and water quality data of the Yilong Lake Basin from 1993 to 2023 were analyzed with a geographic information system, remote sensing, and landscape [...] Read more.
To investigate the influence of land use landscape patterns on lake water quality in the basin, the land use and water quality data of the Yilong Lake Basin from 1993 to 2023 were analyzed with a geographic information system, remote sensing, and landscape ecology methods in this research. The results show that (1) the land use landscape pattern and water quality of the Yilong Lake Basin had significant changes: the lake surface area, farmland, and shrubland declined, with grassland showing the sharpest decrease and serving as the main source of conversion to other land types, while forest land expanded and built-up land increased by five times. The landscape pattern analysis showed that the aggregation degree of the core habitat in the basin increased and the landscape had decreased patch density and increased heterogeneity. Regarding water quality, the concentrations of total nitrogen (TN), total phosphorus (TP), and ammonium nitrogen (NH4+-N); permanganate index (IMn); and biochemical oxygen demand over 5 days (BOD5) decreased. Furthermore, the concentration of dissolved oxygen (DO) increased and the concentration of chlorophyll-a (Chl-a) fluctuated for a long time but did not decrease dramatically at the end of the period compared with the beginning. In general, the eutrophication degree of Yilong Lake slightly decreased. (2) The landscape configuration strongly shaped the water quality: the redundancy analysis (RDA) revealed that the edge density (ED), landscape shape index (LSI), largest patch index (LPI), and patch density (PD) were negatively associated with the eutrophication of Yilong Lake (TN, TP, NH4+-N, Chl-a), whereas the contagion index (CONTAG) was positively associated; the Shannon’s diversity index (SHDI) was closely linked with TN and IMn but negatively with DO; and the patch cohesion index (COHESION) had a low interpretation power for water quality changes. In particular, larger and more cohesive ecological patches supported a higher DO, while an increased patch density was linked to an elevated IMn and reduced DO. These results indicate that the restoration of key ecological patches and enhanced landscape cohesion helped to improve the water quality, whereas increased patch density and landscape heterogeneity negatively affected it. (3) In the past 30 years, the ecological management and protection work on Yilong Lake, such as returning farmland to forests and lakes, wetland restoration, and sewage pipe network construction, achieved remarkable results that were reflected in the change in the relationship between land use landscape pattern and water quality in the basin. However, human activities still affected the dynamic evolution of water quality: the expansion of built-up land increased the patch density, the reduction in shrubland and grassland weakened natural filtration, and the rapid urbanization process introduced more pollution sources. Although the increase in forest land helped to improve the water quality, the effect was not fully developed. These findings provide a scientific basis for the management and ecological restoration of plateau lakes. Strengthening land use planning, controlling urban expansion, and maintaining ecological patches are essential for sustaining water quality and promoting the coordinated development of the ecology and economy in the Yilong Lake Basin. Full article
(This article belongs to the Special Issue Advances in Plateau Lake Water Quality and Eutrophication)
Show Figures

Figure 1

16 pages, 844 KB  
Article
Land Tenure, Socio-Economic Drivers, and Multi-Decadal Land Use and Land Cover Change in the Taita Hills, Kenya
by Hamisi Tsama Mkuzi, Maarifa Ali Mwakumanya, Tobias Bendzko, Norbert Boros and Nelly Kichamu
Wild 2026, 3(1), 1; https://doi.org/10.3390/wild3010001 - 22 Dec 2025
Viewed by 57
Abstract
Understanding how land tenure and socio-economic pressures shape landscape transformation is critical for sustainable management in biodiversity-rich regions. This study examines three decades (1987–2017) of land use and land cover (LU&LC) change in the Ngerenyi area of the Taita Hills, Kenya, by integrating [...] Read more.
Understanding how land tenure and socio-economic pressures shape landscape transformation is critical for sustainable management in biodiversity-rich regions. This study examines three decades (1987–2017) of land use and land cover (LU&LC) change in the Ngerenyi area of the Taita Hills, Kenya, by integrating multispectral Landsat analysis with household survey data. Harmonized pre-processing and supervised classification of four LU&LC classes, agriculture, built-up areas, high-canopy vegetation, and low-canopy vegetation, achieved overall accuracies above 80% and Kappa values exceeding 0.75. Transition modeling using the Minimum Information Loss Transition Estimation (MILTE) approach, combined with net-versus-swap metrics, revealed persistent decline and fragmentation of high-canopy vegetation, cyclical transitions between agriculture and low-canopy vegetation, and the near-irreversible expansion of built-up areas. Low-canopy vegetation exhibited the highest dynamism, reflecting both degradation from canopy loss and natural regeneration from fallowed cropland. Household surveys (n = 141) identified agricultural expansion, charcoal production, fuelwood extraction, and population growth as the dominant perceived drivers, with significant variation across tenure categories. The population in Taita Taveta County increased from 205,334 in 2009 to 340,671 in 2019, reinforcing documented pressures on land resources and woody biomass. As part of the Eastern Arc biodiversity hotspot, the landscape’s diminishing high-canopy patches underscore the importance of conserving undisturbed vegetation remnants as ecological baselines and biodiversity refuges. The findings highlight the need for tenure-sensitive, landscape-scale planning that integrates private landowners, regulates subdivision, promotes agroforestry and alternative energy options, and safeguards remaining high-canopy vegetation to enhance ecological resilience while supporting local livelihoods. Full article
Show Figures

Figure 1

23 pages, 6502 KB  
Article
UCST-Activated Network Reinforcement in Hybrid Microgels for Smart Plugging
by Mingliang Du, Huifeng He, Qingchen Wang, Keming Sheng, Guancheng Jiang and Yinbo He
Gels 2026, 12(1), 8; https://doi.org/10.3390/gels12010008 - 21 Dec 2025
Viewed by 61
Abstract
Conventional polymer-based plugging materials often fail in deep-well environments due to passive thermal softening and network relaxation, which significantly compromise mechanical integrity and interfacial retention. To address this challenge, a novel smart Upper Critical Solution Temperature (UCST)-responsive hybrid microgel (SUPA) was synthesized for [...] Read more.
Conventional polymer-based plugging materials often fail in deep-well environments due to passive thermal softening and network relaxation, which significantly compromise mechanical integrity and interfacial retention. To address this challenge, a novel smart Upper Critical Solution Temperature (UCST)-responsive hybrid microgel (SUPA) was synthesized for adaptive plugging in complex formations. The distinctive UCST responsiveness was conferred by incorporating N-(2-amino-2-oxoethyl)acrylamide (NAGA) and N-(2-hydroxypropyl) methacrylamide (HPMA) functional units into a robust dual-crosslinked network. Particle size analysis and oscillatory rheology in saline solution revealed the thermal activation mechanism: surpassing the critical temperature triggers the dissociation of intramolecular hydrogen bonds, driving polymer chain extension and volumetric expansion. This conformational transition induces dynamic network reinforcement, quantified by a significant ~7.5-fold increase in the storage modulus (G′). Consequently, the SUPA-enhanced fluid exhibited superior rheological performance, including a 4.4-fold increase in low-shear viscosity and rapid thixotropic recovery (ratio of 1.06). Crucially, lost circulation tests confirmed reliable and highly efficient sealing performance under harsh conditions of 150 °C and 5 MPa, even in fractured models. This study validates a design strategy centered on UCST-activated network reinforcement, offering a robust, mechanism-driven solution for severe lost circulation control in deep-well drilling. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Graphical abstract

13 pages, 6179 KB  
Review
G-Quadruplexes Abet Neuronal Burnout in ALS and FTD
by Alan Herbert
Antioxidants 2026, 15(1), 5; https://doi.org/10.3390/antiox15010005 - 19 Dec 2025
Viewed by 220
Abstract
Expansion of d(GGGGC)n repeat in the C9ORF72 gene is causal for Amyotrophic Lateral Sclerosis (ALS) and Frontal Temporal Dementia (FTD). Proposed mechanisms include Repeat-Associated Non-AUG translation or the formation of G-quadruplexes (GQ) that disrupt translation, induce protein aggregation, sequester RNA processing factors, [...] Read more.
Expansion of d(GGGGC)n repeat in the C9ORF72 gene is causal for Amyotrophic Lateral Sclerosis (ALS) and Frontal Temporal Dementia (FTD). Proposed mechanisms include Repeat-Associated Non-AUG translation or the formation of G-quadruplexes (GQ) that disrupt translation, induce protein aggregation, sequester RNA processing factors, or alter RNA editing. Here, I show, using AlphaFold V3 (AF3) modeling, that the TAR DNA-binding protein (TDP-43) docks to a complex of GQ and hemin. TDP-43 methionines lie over hemin and likely squelch the generation of superoxide by the porphyrin-bound Fe. These TDP-43 methionines are frequently altered in ALS patients. Tau protein, a variant of which causes ALS, also binds to GQ and heme and positions methionines to detoxify peroxides. Full-length Tau, which is often considered prone to aggregation and a prion-like disease agent, can bind to an array composed of multiple GQs as a fully folded protein. In ALS and FTD, loss-of-function variants cause an uncompensated surplus of superoxide, which sparks neuronal cell death. In Alzheimer’s Disease (AD) patients, GQ and heme complexes bound by β-amyloid 42 (Aβ4) are also likely to generate superoxides. Collectively, these neuropathologies have proven difficult to treat. The current synthesis provides a framework for designing future therapeutics. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

29 pages, 3634 KB  
Article
Human–AI Complementarity in Peer Review: Empirical Analysis of PeerJ Data and Design of an Efficient Collaborative Review Framework
by Zhihe Yang, Xiaoyu Zhou, Yuxin Jiang, Xinjie Zhang, Qihui Gao, Yanzhu Lu and Anqi Yang
Publications 2026, 14(1), 1; https://doi.org/10.3390/publications14010001 - 19 Dec 2025
Viewed by 277
Abstract
In response to the persistent imbalance between the rapid expansion of scholarly publishing and the constrained availability of qualified reviewers, an empirical investigation was conducted to examine the feasibility and boundary conditions of employing Large Language Models (LLMs) in journal peer review. A [...] Read more.
In response to the persistent imbalance between the rapid expansion of scholarly publishing and the constrained availability of qualified reviewers, an empirical investigation was conducted to examine the feasibility and boundary conditions of employing Large Language Models (LLMs) in journal peer review. A parallel corpus of 493 pairs of human expert reviews and GPT-4o-generated reviews was constructed from the open peer-review platform PeerJ Computer Science. Analytical techniques, including keyword co-occurrence analysis, sentiment and subjectivity assessment, syntactic complexity measurement, and n-gram distributional entropy analysis, were applied to compare cognitive patterns, evaluative tendencies, and thematic coverage between human and AI reviewers. The results indicate that human and AI reviews exhibit complementary functional orientations. Human reviewers were observed to provide integrative and socially contextualized evaluations, while AI reviews emphasized structural verification and internal consistency, especially regarding the correspondence between abstracts and main texts. Contrary to the assumption of excessive leniency, GPT-4o-generated reviews demonstrated higher critical density and functional rigor, maintaining substantial topical alignment with human feedback. Based on these findings, a collaborative human–AI review framework is proposed, in which AI systems are positioned as analytical assistants that conduct structured verification prior to expert evaluation. Such integration is expected to enhance the efficiency, consistency, and transparency of the peer-review process and to promote the sustainable development of scholarly communication. Full article
(This article belongs to the Special Issue AI in Academic Metrics and Impact Analysis)
Show Figures

Figure 1

15 pages, 3214 KB  
Article
Transfer Irreversibilities in the Lenoir Cycle: FTT Design Criteria with εNTU
by Ricardo T. Páez-Hernández, Juan Carlos Pacheco-Paez, Juan Carlos Chimal-Eguía, Delfino Ladino-Luna and Javier Contreras-Sánchez
Entropy 2025, 27(12), 1262; https://doi.org/10.3390/e27121262 - 18 Dec 2025
Viewed by 82
Abstract
This work extends the steady flow Lenoir cycle within finite-time thermodynamics (FTT) by incorporating heat transfer irreversibilities through the εNTU formalism and a non-isentropic expansion modeled via the expander isentropic efficiency ηE. The total conductance UT [...] Read more.
This work extends the steady flow Lenoir cycle within finite-time thermodynamics (FTT) by incorporating heat transfer irreversibilities through the εNTU formalism and a non-isentropic expansion modeled via the expander isentropic efficiency ηE. The total conductance UT (sum for the two heat exchangers) is partitioned between hot and cold units using uL=UL/UT, with UT=UH+UL. For each triplet (τ=TH/TL, UL, UT), we closed the cycle by determining T1, the working fluid temperature at the cooler outlet and heater inlet, T2, the heater outlet and expander inlet, and T3, the expander outlet and cooler inlet. Using these states, we compute the heat rates Q˙12, Q˙31 and the net power P. In addition to the thermal efficiency η, the following extended objective functions are evaluated: the efficient power EF, the ecological efficiency ϕ, and the second law efficiency ηII. Parametric sweeps on uL for τ ϵ 3.25,3.75 and UT ϵ 2.5,5.0,7.5,10 kW show unimodal curves for P(uL) and maxima. A robust result places the optima of P, η, EF, ϕ, and ηII in a distribution band at uL~0.6. This guideline offers clear design guidance for allocating exchange area in heat recovery and microgeneration, maximizing power, high η, and exergetic utilization with contained entropic penalty. Full article
(This article belongs to the Special Issue The First Half Century of Finite-Time Thermodynamics)
Show Figures

Figure 1

22 pages, 1432 KB  
Article
Fifteen Years of Myotonic Dystrophy Type 1 in Mexico: Clinical, Molecular, and Socioeconomic Insights from a National Reference Cohort
by César M. Cerecedo-Zapata, Araceli Guerra-Grajeda, Luz C. Márquez-Quiróz, Paola Arciga-Portela, Rosa E. Escobar-Cedillo, Guadalupe E. Jiménez-Gutiérrez, Óscar A. Pérez-Méndez, Jorge S. Velasco-Flores, Blanca A. Barredo-Prieto, Norberto Leyva-García, Bulmaro Cisneros, Nadia M. Murillo-Melo and Jonathan J. Magaña
Genes 2025, 16(12), 1515; https://doi.org/10.3390/genes16121515 - 17 Dec 2025
Viewed by 187
Abstract
Background/Objectives: Myotonic dystrophy type 1 (DM1) is a rare, multisystemic disorder caused by an expanded (CTG)n repeat in the DMPK gene. Although DM1 has been studied in several populations, access to molecular diagnosis and comprehensive care remains limited in many low- and [...] Read more.
Background/Objectives: Myotonic dystrophy type 1 (DM1) is a rare, multisystemic disorder caused by an expanded (CTG)n repeat in the DMPK gene. Although DM1 has been studied in several populations, access to molecular diagnosis and comprehensive care remains limited in many low- and middle-income countries. This study provides an updated overview of DM1 in Mexico, from diagnostic implementation to patient management, describing key clinical and genetic findings. Methods: We conducted a nationwide, 15-year prospective study at Mexico’s National Reference Center for neuromuscular diseases. A total of 853 individuals at risk were subjected to clinical and molecular evaluation using PCR, TP-PCR, and SP-PCR, encompassing symptomatic, pre-symptomatic, prenatal, and preimplantation genetic diagnosis. Socioeconomic, clinical, and molecular variables were analyzed. Results: A total of 488 individuals were confirmed as DM1 carriers, with the most prevalent phenotypes being classic (36.5%) and juvenile (28.5%). Genomic analysis revealed a correlation between CTG tract sizes and phenotypes. Intriguingly, interrupted CTG repeat tracts were identified in 2.8% of DM1 carriers, who exhibited milder clinical phenotypes and a reduced degree of somatic and intergenerational instability. Survival analysis revealed a reduction in symptom-free survival in patients with larger expansions, while interrupted CTG tracts were associated with delayed onset. Conclusions: The centralization of diagnostic services in Mexico resulted in regional disparities, impacting early diagnosis and family planning. This study highlights the clinical and molecular diversity of DM1 in a Latin American population and underscores the urgent need for decentralized diagnostic services, integrated care models, and tailored prognostic tools in underserved settings. Full article
(This article belongs to the Special Issue Diagnosis, Management and Therapy of Rare Diseases)
Show Figures

Figure 1

18 pages, 3083 KB  
Article
Optical Analysis Based on UV Absorption Spectrum for Monitoring Total Organic Carbon and Nitrate Nitrogen in River Water
by Minhan Kim, Seongwook Park, Byoungsun Park, Hongseok Kim, Taeyong Woo, Sangyoun Kim, Junghee Jang and Changkyoo Yoo
Water 2025, 17(24), 3586; https://doi.org/10.3390/w17243586 - 17 Dec 2025
Viewed by 280
Abstract
The global deterioration of water quality due to climate change and industrialization has intensified the need for real-time monitoring systems. In South Korea’s automated water quality monitoring networks, measuring total organic carbon (TOC) and nitrate nitrogen (NO3-N) as a proxy for [...] Read more.
The global deterioration of water quality due to climate change and industrialization has intensified the need for real-time monitoring systems. In South Korea’s automated water quality monitoring networks, measuring total organic carbon (TOC) and nitrate nitrogen (NO3-N) as a proxy for total nitrogen (TN) is critical; however, conventional analytical instruments face limitations such as high costs, long analysis times, and the need for chemical reagents. In this study, we developed and evaluated a simultaneous TOC and NO3-N measurement method using HASM-4000, a domestically developed optical sensor based on ultraviolet (UV) absorption spectroscopy. The sensor measures absorbance at 254 nm (TOC) and 220 nm (NO3-N) based on the Beer–Lambert law, with signal processing techniques including optical power compensation (OPC) and Binning–Interpolation (BinInterp) applied to enhance measurement accuracy. Calibration using standard solutions demonstrated excellent linear correlations (R2 > 0.99) between actual and estimated concentrations for both TOC and NO3-N, with accuracy and reproducibility validated against standard methods under laboratory conditions. However, performance degradation was observed in turbid mixed samples due to the optical limitations of the 10 mm pathlength, suggesting the need for future improvements such as adopting a 5 mm pathlength and upgrading optical components. The HASM-4000 sensor enables real-time measurement without a reagent, and preliminary testing with river water samples demonstrates its potential to advance Korea’s water quality monitoring infrastructure by reducing dependence on foreign technologies and facilitating network expansion with cost-effective domestic solutions. Full article
Show Figures

Figure 1

Back to TopTop