Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (327)

Search Parameters:
Keywords = “new green deal”

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 6464 KiB  
Article
Eco-Friendly Sandwich Panels for Energy-Efficient Façades
by Susana P. B. Sousa, Helena C. Teixeira, Giorgia Autretto, Valeria Villamil Cárdenas, Stefano Fantucci, Fabio Favoino, Pamela Voigt, Mario Stelzmann, Robert Böhm, Gabriel Beltrán, Nicolás Escribano, Belén Hernández-Gascón, Matthias Tietze and Andreia Araújo
Sustainability 2025, 17(15), 6848; https://doi.org/10.3390/su17156848 - 28 Jul 2025
Viewed by 267
Abstract
To meet the European Green Deal targets, the construction sector must improve building thermal performance via advanced insulation systems. Eco-friendly sandwich panels offer a promising solution. Therefore, this work aims to develop and validate a new eco-friendly composite sandwich panel (basalt fibres and [...] Read more.
To meet the European Green Deal targets, the construction sector must improve building thermal performance via advanced insulation systems. Eco-friendly sandwich panels offer a promising solution. Therefore, this work aims to develop and validate a new eco-friendly composite sandwich panel (basalt fibres and recycled extruded polystyrene) with enhanced multifunctionality for lightweight and energy-efficient building façades. Two panels were produced via vacuum infusion—a reference panel and a multifunctional panel incorporating phase change materials (PCMs) and silica aerogels (AGs). Their performance was evaluated through lab-based thermal and acoustic tests, numerical simulations, and on-site monitoring in a living laboratory. The test results from all methods were consistent. The PCM-AG panel showed 16% lower periodic thermal transmittance (0.16 W/(m2K) vs. 0.19 W/(m2K)) and a 92% longer time shift (4.26 h vs. 2.22 h), indicating improved thermal inertia. It also achieved a single-number sound insulation rating of 38 dB. These findings confirm the panel’s potential to reduce operational energy demand and support long-term climate goals. Full article
Show Figures

Figure 1

19 pages, 677 KiB  
Article
The Effect of Corporate Environmental Performance (CEP) of an Acquirer on Post-Merger Firm Value: Evidence from the US Market
by Md Shahiduzzaman, Priyantha Mudalige, Omar Al Farooque and Mohammad Alauddin
Int. J. Financial Stud. 2025, 13(3), 125; https://doi.org/10.3390/ijfs13030125 - 3 Jul 2025
Cited by 1 | Viewed by 492
Abstract
Purpose: The acquirer’s corporate environmental performance (CEP) in mergers and acquisitions has been a subject of debate, yielding mixed results. This paper uses the US firm-level data of 1437 M&A deals from 2002–2019 to examine the impact of overall CEP, resource use, emissions, [...] Read more.
Purpose: The acquirer’s corporate environmental performance (CEP) in mergers and acquisitions has been a subject of debate, yielding mixed results. This paper uses the US firm-level data of 1437 M&A deals from 2002–2019 to examine the impact of overall CEP, resource use, emissions, and innovation on the acquirers’ post-merger market value. Design/methodology/approach: This study employs multi-level fixed effects panel regression using Ordinary Least Squares (OLS) and the instrumental variable (IV) 2SLS method to estimate the models and compare the results with those from robust estimation. Absorbing the multiple levels of fixed effects (i.e., firm, industry, and year) offers a novel and robust algorithm for efficiently accounting for unobserved heterogeneity. The results from IV (2SLS) are more convincing, as the method overcomes the problem of endogeneity due to reverse causality and sample selection bias. Findings: The authors find that CEP has a significant impact on market value, particularly in the long term. While both resource use and emissions performance have positive effects, emissions performance has a stronger impact, presumably because external stakeholders and market participants are more concerned about emissions reduction. The performance of environmental innovation is relatively weak compared to other pillars. Descriptive analysis shows low average scores in environmental innovation compared to the resource use and emissions performance of the acquirers. However, large deals yield significant returns from investing in environmental innovation in both the short and long term compared to small deals. Practical implications: This paper offers several practical implications. First, environmental performance can help improve the acquirer’s long-term market value. Second, managers can focus on the strategic side of environmental performance, based on its pillars, and benchmark their relative position against peers. Third, environmental innovation can be considered a new potential, as the market as a whole in this area is still lagging. Given the growing pressure to improve environmental technology and innovation, prospective acquirers should confidently prioritise actions on green revenue, product innovation, and capital expenditure now rather than ticking these boxes later. Originality value: The key contribution is offering valuable insights into the impact of acquirers’ environmental performance on long-term value creation in mergers and acquisitions (M&A). These results fill the gap in the literature focusing mainly on the effect of environmental pillar and sub-pillar scores on acquirer’s firm value. The authors claim that analysing sub-pillar-level granularity is crucial for accurately measuring the effects on firm-level performance. Full article
Show Figures

Figure 1

15 pages, 5442 KiB  
Review
A Global Perspective on Ecotourism Marketing Trends: A Review
by Kaitano Dube and Precious Chikezie Ezeh
Sustainability 2025, 17(13), 6035; https://doi.org/10.3390/su17136035 - 1 Jul 2025
Viewed by 953
Abstract
As various sectors of the world are grappling with various sustainability challenges, there is an urgent need to seek ways to find sustainable ways of dealing with some of these global challenges. Ecotourism has been seen as an avenue for addressing some of [...] Read more.
As various sectors of the world are grappling with various sustainability challenges, there is an urgent need to seek ways to find sustainable ways of dealing with some of these global challenges. Ecotourism has been seen as an avenue for addressing some of the sustainability challenges facing the tourism industry. Most tourism enterprises have adopted ecotourism principles. This study examines the evolution of ecotourism marketing to identify the key concepts and critical debates within this terrain. In this regard, this study also seeks to identify knowledge gaps and future research directions. Using bibliometric data from Web of Science-indexed publications between 2003 and 2025, this study found that ecotourism marketing has been a growing field of research, which is highly cited across fields. The study found that ecotourism marketing covers a wide range of aspects, including digital marketing, destination branding, sustainable marketing, and demand-side considerations in ecotourism marketing. Ecotourism marketing, in many respects, is equally concerned with how ecotourism establishments embrace the current challenges of climate change from a climate change mitigation, adaptation, and resilience perspective to ensure sustainability. There are several research gaps and directions with respect to ecotourism marketing, some of which could cover various aspects in the future, such as examining the role of new technologies, social influencers, and funding in ecotourism marketing. There is an equal need to understand how various generations view the whole concept of green tourism to inform segmentation and better market positioning. Full article
Show Figures

Figure 1

10 pages, 2159 KiB  
Communication
Beyond Green’s Functions: Inverse Helmholtz and “Om” -Potential Methods for Macroscopic Electromagnetism in Isotropy-Broken Media
by Maxim Durach
Photonics 2025, 12(7), 660; https://doi.org/10.3390/photonics12070660 - 30 Jun 2025
Viewed by 266
Abstract
The applicability ranges of macroscopic and microscopic electromagnetism are contrasting. While microscopic electromagnetism deals with point sources, singular fields, and discrete atomistic materials, macroscopic electromagnetism concerns smooth average distributions of sources, fields, and homogenized effective metamaterials. Green’s function method (GFM) involves finding fields [...] Read more.
The applicability ranges of macroscopic and microscopic electromagnetism are contrasting. While microscopic electromagnetism deals with point sources, singular fields, and discrete atomistic materials, macroscopic electromagnetism concerns smooth average distributions of sources, fields, and homogenized effective metamaterials. Green’s function method (GFM) involves finding fields of point sources and applying the superposition principle to find fields of distributed sources. When utilized to solve microscopic problems, GFM is well within the applicability range. Extension of GFM to simple macroscopic problems is convenient, but not fully logically sound, since point sources and singular fields are technically not a subject of macroscopic electromagnetism. This explains the difficulty of both finding the Green’s functions and applying the superposition principle in complex isotropy-broken media, which are very different from microscopic environments. In this manuscript, we lay out a path to the solution of macroscopic Maxwell’s equations for distributed sources, bypassing GFM by introducing an inverse approach and a method based on “Om” -potential, which we describe here. To the researchers of electromagnetism, this provides access to powerful analytical tools and a broad new space of solutions for Maxwell’s equations. Full article
(This article belongs to the Special Issue Photonics Metamaterials: Processing and Applications)
Show Figures

Figure 1

16 pages, 7214 KiB  
Article
Implementing Sustainable Transformation in the Built Environment: Evaluation of the Experimental Phase of the New European Bauhaus Academy Alliance Pilot Project
by Anetta Kepczynska-Walczak
Sustainability 2025, 17(13), 5959; https://doi.org/10.3390/su17135959 - 28 Jun 2025
Viewed by 394
Abstract
The built environment plays a critical role in achieving climate neutrality, yet the construction sector continues to contribute significantly to carbon emissions and resource depletion. This study evaluates the experimental phase of the New European Bauhaus Academy (NEBA) Alliance pilot project, which aims [...] Read more.
The built environment plays a critical role in achieving climate neutrality, yet the construction sector continues to contribute significantly to carbon emissions and resource depletion. This study evaluates the experimental phase of the New European Bauhaus Academy (NEBA) Alliance pilot project, which aims to support sustainable transformation in the built environment through the integration of circular economy principles, adaptive reuse, and nature-based solutions. Conducted at the Lodz University of Technology, the pilot study involved interdisciplinary modules combining Building Information Modeling (BIM), urban regeneration strategies, and sustainable material use. A mixed-methods approach was employed, including structured surveys and qualitative analysis of student projects, to assess the effectiveness of these interventions. The results indicate that the pilot project successfully enhanced the participants’ understanding of sustainable design practices and their application in real-world architectural and urban contexts. Participants demonstrated increased competence in using digital tools for low-carbon design and in proposing regenerative solutions for existing urban fabric. The findings suggest that targeted, design-led initiatives can contribute meaningfully to the transformation of the built environment, aligning with the goals of the European Green Deal and the New European Bauhaus. This study offers a replicable model for embedding sustainability into professional practice through applied, context-sensitive strategies. Full article
Show Figures

Figure 1

20 pages, 2544 KiB  
Article
The Possibilities of Using Non-Traditional Raw Materials for Fertilizing Products
by Goda Gudinskaitė and Rasa Paleckienė
Sustainability 2025, 17(13), 5710; https://doi.org/10.3390/su17135710 - 20 Jun 2025
Viewed by 511
Abstract
In recent years, the Green Deal has become a cornerstone of the European Union’s development strategy, aiming to establish a sustainable, innovative and environmentally friendly economy. One of its primary goals is to reduce the negative impact of intensive farming by promoting sustainable [...] Read more.
In recent years, the Green Deal has become a cornerstone of the European Union’s development strategy, aiming to establish a sustainable, innovative and environmentally friendly economy. One of its primary goals is to reduce the negative impact of intensive farming by promoting sustainable agricultural practices. These practices include replacing synthetic fertilizers with more natural alternatives and substituting chemical plant protection products with biological solutions. A noteworthy prospect in this context is the growing insect farming industry, which opens up new possibilities for the food industry via waste processing. In Lithuania, insect farming is also expanding rapidly, with companies producing several hundred tons of frass (insect excrement and residues from growing media) every year. As insect farming is projected to increase rapidly over the next decade, the amount of frass produced will also increase. Therefore, it is necessary to find sustainable ways to use this byproduct. Frass is emerging as an important area of research and practical innovation with great potential for fertilizer production. Initial studies show that frass can contain up to 6% nitrogen, 2% phosphorus and 3% potassium, making it a valuable alternative to synthetic fertilizers. The chitin content (nearly 14%) in frass not only improves the soil but also improves plant resistance to disease. In addition, its organic composition improves soil structure and microbiological activity, contributing in the long term to increasing soil fertility. This paper analyses different samples of frass, assesses their physical and chemical properties and discusses the possible applications of these products in the context of sustainable agriculture. The studies show that frass can be a valuable raw material for fertilizer production, potentially reducing the need for synthetic fertilizers and contributing to the reduction in agricultural waste. By combining economic benefits with ecological sustainability, this research contributes to wider sustainable agricultural innovation. Full article
Show Figures

Figure 1

18 pages, 733 KiB  
Review
Dredge Sediment as an Opportunity: A Comprehensive and Updated Review of Beneficial Uses in Marine, River, and Lagoon Eco-Systems
by Chiara Fratini, Serena Anselmi and Monia Renzi
Environments 2025, 12(6), 200; https://doi.org/10.3390/environments12060200 - 12 Jun 2025
Viewed by 1202
Abstract
Dredging is essential for the maintenance of ports, waterways, lakes, and lagoons to ensure their operability and economic value. Over the last few decades, scientists have focused on the significant environmental challenges associated with dredging, including habitat destruction, loss of biodiversity, sediment suspension, [...] Read more.
Dredging is essential for the maintenance of ports, waterways, lakes, and lagoons to ensure their operability and economic value. Over the last few decades, scientists have focused on the significant environmental challenges associated with dredging, including habitat destruction, loss of biodiversity, sediment suspension, and contamination with heavy metals and organic pollutants. The huge loss of sediment in coastal areas and the associated erosion processes are now forcing stakeholders to look ahead and turn potential problems into an opportunity to develop new sediment management strategies, beyond environmental protection, toward ecosystem restoration and coastal resilience. Moreover, the European and Italian strategies, such as the European Green Deal (EGD) and the Italian Ecological Transition Plan (PTE), highlight the need to reuse dredge sediment in circular economy strategies, transforming them into valuable resources for construction, agriculture, and environmental restoration projects. European legislation on dredging is fundamental to the issue of management and priorities of dredged materials, but the implementation rules are deferred to individual member states. In Italy, the Ministerial Decree 173/2016 covers the main aspects of dredge activities and dredge sediment management. Moreover, it encourages the remediation and reuse of the dredge sediment. This study starts with a comprehensive analysis of the innovative remediation techniques that minimize impacts and promote sustainable, beneficial sediment management. Different remediation methods, such as electrochemical treatments, chemical stabilization, emerging nanotechnologies, bioremediation, and phytoremediation, will be evaluated for their effectiveness in reducing pollution. Finally, we highlight new perspectives, integrated strategies, and multidisciplinary approaches that combine various technological innovations, including artificial intelligence, to enhance sediment reuse with the aim of promoting economic growth and environmental protection. Full article
Show Figures

Figure 1

22 pages, 1179 KiB  
Article
Pressurized Cyclic Solid–Liquid (PCSL) Extraction of Sea Buckthorn Leaves for Microbiologically Safe, Value-Added Kombucha Production
by Jolita Jagelavičiūtė, Juozas Girtas, Ingrida Mažeikienė, Antanas Šarkinas and Karolina Almonaitytė
Appl. Sci. 2025, 15(12), 6608; https://doi.org/10.3390/app15126608 - 12 Jun 2025
Viewed by 442
Abstract
Sea buckthorn (Hippophae rhamnoides) is a valuable plant rich in biologically active compounds, mainly found in its berries and leaves. The harvesting process, which includes pruning, freezing, and shaking, leaves behind large amounts of biomass and juice-pressing residues, typically composted. The [...] Read more.
Sea buckthorn (Hippophae rhamnoides) is a valuable plant rich in biologically active compounds, mainly found in its berries and leaves. The harvesting process, which includes pruning, freezing, and shaking, leaves behind large amounts of biomass and juice-pressing residues, typically composted. The aim of this study is to expand knowledge of the valorization of sea buckthorn secondary raw materials by applying an innovative pressure cyclic solid–liquid (PCSL) extraction method and to develop value-added functional food products. Extraction was performed in 20 and 60 cycles, each lasting from 2 to 10 min. The highest concentrations of proanthocyanidins (5.51 gCE/L) and total phenolics (12.42 gGAE/L) were obtained under prolonged conditions, but the L-4 extract (20 cycles × 2 min) was selected for kombucha production due to its favorable balance between efficiency and sustainability. Microbial safety evaluation showed that kombucha with sea buckthorn leaf extract exhibited significantly stronger antimicrobial activity against tested pathogens compared to green tea kombucha. Additionally, sensory analysis revealed higher consumer acceptability of beverages enriched with sea buckthorn extracts. Shotgun metagenomic analysis identified high microbial diversity in the M. gisevii MI-2 starter culture and fermented kombucha products (227 bacteria and 44 eukaryotes), most of which (92.5% bacteria, 77.8% eukaryotes) remain viable and contribute to fermentation dynamics. New biotechnological strategies and genetic modifications raise concerns about the safe use of microorganisms in food production. To address these issues, these findings provide a foundation for future strategies aimed at the safe application of beneficial microorganisms in food biotechnology and support the long-term goals of the European Green Deal by promoting sustainable biomass valorization and circular economy advancement in the food sector. Full article
Show Figures

Figure 1

32 pages, 8500 KiB  
Article
Risks, Obstacles and Challenges of the Electrical Energy Transition in Europe: Greece as a Case Study
by Georgios Fotis, Theodoros I. Maris and Valeri Mladenov
Sustainability 2025, 17(12), 5325; https://doi.org/10.3390/su17125325 - 9 Jun 2025
Cited by 1 | Viewed by 702
Abstract
The European Union’s 2030 target of decreasing net greenhouse gas emissions by at least 55% has resulted in a significant uptake of renewable energy sources (RESs) in the European power system, primarily wind and solar power, as well as the closure of conventional [...] Read more.
The European Union’s 2030 target of decreasing net greenhouse gas emissions by at least 55% has resulted in a significant uptake of renewable energy sources (RESs) in the European power system, primarily wind and solar power, as well as the closure of conventional power plants that mostly used fossil fuels. The European Union’s members have accelerated the process of energy transition driven by climate change, and public authorities’ involvement in this process is impressive. The goal of this study is to present a broad overview of the existing challenges for the energy transition in Europe and how they can affect the reliability and stability of the interconnected power system in Europe and future investments, focusing especially on Greece. Unfortunately, this environmentally friendly transition is taking place without the required amount of investment in electrical energy storage technology, which raises the risk of a blackout due to the high predicted variability of RES. The gradual abandonment of conventional energy production units such as natural gas in the coming decades will intensify the problem of frequency regulation, which will become even more acute due to the particularly increased installed capacity in RESs across Europe and Greece. The European Power System, being partially unprepared for the energy transition, frequently faces a paradox: it rejects green power originating from high-RES production because of low demand, a lack of transmission line interconnections, or extremely low energy storage capacity. This paper examines all the prerequisites, including how the European electrical transmission system will be developed in the future and how new energy storage technologies will be used. Lastly, Greece’s energy future and potential risks associated with realizing the environmental goals of the European Green Deal is studied using a PESTEL analysis. Full article
Show Figures

Figure 1

20 pages, 6416 KiB  
Article
Effect of an Innovative Solarization Method on Crops, Soil-Borne Pathogens, and Living Fungal Biodiversity
by Massimo Rippa, Ernesto Lahoz, Pasquale Mormile, Maria Cristina Sorrentino, Erica Errico, Mariateresa Frattolillo, Milena Petriccione, Federica Maione, Elvira Ferrara and Valerio Battaglia
Agronomy 2025, 15(6), 1391; https://doi.org/10.3390/agronomy15061391 - 5 Jun 2025
Viewed by 587
Abstract
Recently, a new solarization method gained a great deal of attention thanks to various advantages in comparison with both the traditional one and soil fumigation (alternative soil treatment based on the use of chemical agents). This method implements traditional solarization by spraying a [...] Read more.
Recently, a new solarization method gained a great deal of attention thanks to various advantages in comparison with both the traditional one and soil fumigation (alternative soil treatment based on the use of chemical agents). This method implements traditional solarization by spraying a biodegradable black liquid over the soil surface before the application of a thermic film. This creates a thin black film that acts like a “black body”, significantly increasing soil temperatures at various depths. Thanks to higher temperatures, it is possible to eliminate most of the pathogens in shorter times compared to traditional solarization. In the present paper, the results of different trials carried out on green beans, Romanesco broccoli, and lettuce were reported. The aims of this work were to demonstrate the efficacy on soil borne pathogens, its lower impact on living soil fungal biodiversity and the agronomical performance of the new solarization method. All crops tested showed a significant yield increase when grown in soil treated with the innovative solarization method. Romanesco broccoli also exhibited improved inflorescence quality. Solarization had a positive impact on overall crop productivity: green beans showed a maximum yield increase of 165.3%, lettuce yields rose by 47.5%, and Romanesco broccoli yields were 111.5% higher compared to the non-solarized control. These results confirm that the new solarization method is more effective, as well as environmentally, economically, and socially sustainable compared to traditional methods. Full article
(This article belongs to the Special Issue Sustainable Agriculture: Plant Protection and Crop Production)
Show Figures

Figure 1

27 pages, 1679 KiB  
Review
Insect Pest Control from Chemical to Biotechnological Approach: Constrains and Challenges
by Stefano Civolani, Massimo Bariselli, Riccardo Osti and Giovanni Bernacchia
Insects 2025, 16(5), 528; https://doi.org/10.3390/insects16050528 - 15 May 2025
Cited by 1 | Viewed by 1422
Abstract
The large growth in the global population requires new solutions for the control of harmful insects that compete for our food. Changing regulatory requirements and public perception, together with the continuous evolution of resistance to conventional insecticides, also require, in addition to innovative [...] Read more.
The large growth in the global population requires new solutions for the control of harmful insects that compete for our food. Changing regulatory requirements and public perception, together with the continuous evolution of resistance to conventional insecticides, also require, in addition to innovative molecules with different modes of action, new non-chemical control strategies that can help maintain efficient integrated pest management programs. The last 30 years have inaugurated a new era characterised by the discovery of new mechanisms of action and new chemical families. Although European programs also promote a green deal in the crop protection sector, the existing thorough regulations slow down its spread and the adoption of new products. In light of these changes, this review will describe in more detail the dynamics of discovery and registration of new conventional insecticides and the difficulties that the agrochemical industries encounter. Subsequently, the different innovative control strategies alternative to conventional insecticides based on natural substances of different origin, entomopathogenic microorganisms, semiochemical and semiophysical compounds, and classical and augmentative biological control will be described. The advantages of these green strategies will be illustrated and also the constrains to their diffusion and commercialisation. Finally, the main biotechnological discoveries will be described, from transgenic plants to symbiotic control, classical genetic control, and, more recently, control based on insect genomic transformation or on RNAi. These new biotechnologies can revolutionise the sector despite some constrains related to the regulatory restrictions present in different countries. Full article
(This article belongs to the Special Issue Chemical Toxicology and Insecticide Resistance on Insect Pests)
Show Figures

Figure 1

31 pages, 3667 KiB  
Article
Analysis of the Life Cycle and Circular Economy Strategies for Batteries Adopted by the Main Electric Vehicle Manufacturers
by Rodrigo Sampaio Cintra, Lucas Veiga Avila, Marceli Adriane Schvartz, Walter Leal Filho, Rosley Anholon, Gustavo Hermínio Salati Marcondes de Moraes, Julio Cezar Mairesse Siluk, Gustavo da Silva Lisboa and Nisrin Naiel Dib Khaled
Sustainability 2025, 17(8), 3428; https://doi.org/10.3390/su17083428 - 11 Apr 2025
Viewed by 1512
Abstract
In response to escalating environmental concerns and the imperative for a transition to a more sustainable economy, the European Union enacted a new regulation on the electric battery market in July 2023. This regulation integrates the principles of the circular economy, as outlined [...] Read more.
In response to escalating environmental concerns and the imperative for a transition to a more sustainable economy, the European Union enacted a new regulation on the electric battery market in July 2023. This regulation integrates the principles of the circular economy, as outlined in the European Green Deal, addressing all phases of the battery life cycle, including the mining of raw materials, product design, production processes, reuse, and recycling. In light of this development, the principal manufacturers of electric vehicles (EVs) and hybrid electric vehicles (HEVs) have undertaken various circular economy (CE) and life cycle (LC) strategies. Their objective is to align their operations with these new regulatory requirements and enhance their sustainability credentials. The global automotive industry, encompassing thousands of entities with an annual turnover exceeding USD 3 trillion, is a significant economic sector. Within this industry, it is estimated that more than 50 manufacturers are involved in the production of EVs, ranging from established automakers to emerging startups. This study applies content analysis to obtain qualitative and quantitative information from data disclosed by companies and organizations, with a specific focus on entities that currently feature EVs or HEVs. The methodology involves examining publicly available reports and corporate disclosures to assess industry trends and regulatory compliance. For this purpose, the analysis selected the 10 largest EV manufacturers in the world, based on sales reports provided by the manufacturers themselves and their respective market shares, as reported by automotive news portals and blogs. The evaluation of their actions was derived from the annual sustainability reports of these companies, with the aim of identifying the practices already implemented and their anticipated contributions to extending battery life and minimizing environmental impact. Full article
Show Figures

Figure 1

18 pages, 8929 KiB  
Article
Concept of Adapting the Liquidated Underground Mine Workings into High-Temperature Sand Thermal Energy Storage
by Kamil Szewerda, Dariusz Michalak, Piotr Matusiak and Daniel Kowol
Appl. Sci. 2025, 15(7), 3868; https://doi.org/10.3390/app15073868 - 1 Apr 2025
Viewed by 513
Abstract
In Europe, renewable energy sources such as photovoltaic panels and wind power plants are developing dynamically. The growth of renewable energy is driven by rising energy prices, greenhouse gas emission restrictions, the European Union’s Green Deal policy, and decarbonization efforts. Photovoltaic farms generate [...] Read more.
In Europe, renewable energy sources such as photovoltaic panels and wind power plants are developing dynamically. The growth of renewable energy is driven by rising energy prices, greenhouse gas emission restrictions, the European Union’s Green Deal policy, and decarbonization efforts. Photovoltaic farms generate energy intermittently, depending on weather conditions. Given the increasing number of new installations, ensuring the power balance and transmission capacity of the electrical grid has become a major challenge. To address this issue, the authors propose a technical solution that allows the energy generated by photovoltaic systems to be stored in the form of heat. Thermal energy from solar power and wind energy offers significant potential for energy storage. It can be accumulated during summer in specially designed sand-based heat storage systems and then used for heating purposes in winter. This approach not only reduces heating costs but also decreases greenhouse gas emissions and helps balance the power grid during sunny periods. Post-industrial areas, often located near city centers, are suitable locations for large-scale heat storage facilities supplying, among others, public utility buildings. Therefore, this article presents a concept for utilizing high-temperature sand-based heat storage systems built in decommissioned underground mining excavations. Full article
(This article belongs to the Special Issue Surface and Underground Mining Technology and Sustainability)
Show Figures

Figure 1

25 pages, 7433 KiB  
Review
Decarbonizing the Transportation Sector: A Review on the Role of Electric Vehicles Towards the European Green Deal for the New Emission Standards
by Dimitrios Rimpas, Dimitrios E. Barkas, Vasilios A. Orfanos and Ioannis Christakis
Air 2025, 3(2), 10; https://doi.org/10.3390/air3020010 - 1 Apr 2025
Cited by 3 | Viewed by 1440
Abstract
The transportation sector has a significant impact on climate change, as it is responsible for 20% of the global greenhouse gas (GHG) emissions. This paper evaluates the role of electric vehicles (EVs) in achieving Europe’s ambitious target of carbon neutrality by 2050. The [...] Read more.
The transportation sector has a significant impact on climate change, as it is responsible for 20% of the global greenhouse gas (GHG) emissions. This paper evaluates the role of electric vehicles (EVs) in achieving Europe’s ambitious target of carbon neutrality by 2050. The limitations of internal combustion engines (ICEs) along with the recent advancements, such as Euro 6 standards, are examined with a pseudo–lifecycle analysis (pseudo-LCA). While ICEs remain cost-effective initially, their higher long-term cost and environmental impact make them unsustainable. The benefits of EVs, including high energy efficiency, minimal maintenance, and reduced GHG emissions, are stated. However, challenges such as range limitations, charging infrastructure, and the environmental cost of battery production persist. Hybrid electric vehicles (HEVs) are highlighted as transitional technologies, offering improved thermal efficiency and reduced emissions, enhancing air quality in both urban and rural areas. The analysis extends to the use of alternative fuels, such as bioethanol, biodiesel, and hydrogen. These provide interim solutions but face scalability and sustainability issues. Policy interventions, including subsidies, tax incentives, and investments in renewable energy, are crucial factors for EV adoption. As EVs are pivotal to decarbonization, integrating renewable energy and addressing systemic challenges are essential for a sustainable transition. Full article
Show Figures

Figure 1

29 pages, 4660 KiB  
Article
The Rural Village Regeneration for the European Built Environment: From Good Practices Towards a Conceptual Model
by Francesca Ciampa, Giulia Marchiano, Luigi Fusco Girard and Mariarosaria Angrisano
Sustainability 2025, 17(7), 2787; https://doi.org/10.3390/su17072787 - 21 Mar 2025
Cited by 2 | Viewed by 1290
Abstract
In the European Green Deal and Renovation Wave framework, cities should be more self-sufficient and sustainable, promoting investment in the regeneration and maintenance of the built and natural heritage. The New European Bauhaus reinforces this vision, promoting the value of beauty as a [...] Read more.
In the European Green Deal and Renovation Wave framework, cities should be more self-sufficient and sustainable, promoting investment in the regeneration and maintenance of the built and natural heritage. The New European Bauhaus reinforces this vision, promoting the value of beauty as a product of environmental harmony/sustainability and participation. Many cities are already working to improve infrastructure and public services, with the aim of creating better socio-economic and environmental conditions in urbanised areas. At the same time, they aim to increase and relocate attractiveness and competitiveness to less densified rural areas, and to reduce overcrowding problems in cities. The aim is to propose a virtuous model of circular regeneration, by identifying virtuous strategies of the regeneration of rural villages capable of aligning the transformation of the built environment with climate objectives, social cohesion and local economy strengthening, and the integration of historical and identity values. Rural villages in marginal areas are left behind places. They require new economic development strategies, grounded in a circular bio-economy model for reducing/avoiding spiraled down processes. The application of European evaluation criteria to the main topic literature background allowed for the construction of a virtuous practices observatory about regenerated rural villages, which is elaborated using registry, systemic, and analytical/analysis forms. From the ex-post evaluation analysis of the case studies, it was possible to identify a number of dimensions/clusters in which investment is being made today for the regeneration of rural villages. By reasoning on the investment clusters, it was possible to identify a circular regeneration model for rural villages, transferable to other realities in order to implement the broader vision of circular settlement development. The “Rural Village Regeneration Model” represents an operational tool for regional transformation, suitable for reactivating lost connections between rural villages and larger towns in functional areas, characterised by greater self-sufficiency and exploration of the potential of digital tools to improve services, connections, infrastructure, and cooperation. Full article
(This article belongs to the Special Issue Circular Economy and Circular City for Sustainable Development)
Show Figures

Figure 1

Back to TopTop