Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,617)

Search Parameters:
Keywords = “SmartMonitor”

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1511 KiB  
Article
Impact of Selected Starter-Based Sourdough Types on Fermentation Performance and Bio-Preservation of Bread
by Khadija Atfaoui, Sara Lebrazi, Anas Raffak, Youssef Chafai, Karima El Kabous, Mouhcine Fadil and Mohammed Ouhssine
Fermentation 2025, 11(8), 449; https://doi.org/10.3390/fermentation11080449 (registering DOI) - 1 Aug 2025
Abstract
The aim of this study is to evaluate the effects of different types of sourdough (I to IV), developed with a specific starter culture (including Lactiplantibacillus plantarum, Levilactobacillus brevis, and Candida famata), on bread fermentation performance and shelf-life. Real-time tracking of multiple [...] Read more.
The aim of this study is to evaluate the effects of different types of sourdough (I to IV), developed with a specific starter culture (including Lactiplantibacillus plantarum, Levilactobacillus brevis, and Candida famata), on bread fermentation performance and shelf-life. Real-time tracking of multiple parameters (pH, dough rising, ethanol release, and total titratable acidity) was monitored by a smart fermentation oven. The impact of the different treatments on the lactic acid, acetic acid, and ethanol content of the breads were quantified by high performance liquid chromatography analysis. In addition, the bio-preservation capacity of the breads contaminated with fungi was analyzed. The results show that liquid sourdough (D3: Type 2) and backslopped sourdough (D4: Type 3) increased significantly (p < 0.05) in dough rise, dough acidification (lower pH, higher titratable acidity), production of organic acids (lactic and acetic), and presented the optimal fermentation quotient. These findings were substantiated by chemometric analysis, which successfully clustered the starters based on performance and revealed a strong positive correlation between acetic acid production and dough-rise, highlighting the superior heterofermentative profile of D3 and D4. These types of sourdough also stood out for their antifungal capacity, preventing the visible growth of Aspergillus niger and Penicillium commune for up to 10 days after inoculation. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

26 pages, 1033 KiB  
Article
Internet of Things Platform for Assessment and Research on Cybersecurity of Smart Rural Environments
by Daniel Sernández-Iglesias, Llanos Tobarra, Rafael Pastor-Vargas, Antonio Robles-Gómez, Pedro Vidal-Balboa and João Sarraipa
Future Internet 2025, 17(8), 351; https://doi.org/10.3390/fi17080351 (registering DOI) - 1 Aug 2025
Abstract
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and [...] Read more.
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and autonomous IoT solutions. To help overcome this gap, this paper presents the Smart Rural IoT Lab, a modular and reproducible testbed designed to replicate the deployment conditions in rural areas using open-source tools and affordable hardware. The laboratory integrates long-range and short-range communication technologies in six experimental scenarios, implementing protocols such as MQTT, HTTP, UDP, and CoAP. These scenarios simulate realistic rural use cases, including environmental monitoring, livestock tracking, infrastructure access control, and heritage site protection. Local data processing is achieved through containerized services like Node-RED, InfluxDB, MongoDB, and Grafana, ensuring complete autonomy, without dependence on cloud services. A key contribution of the laboratory is the generation of structured datasets from real network traffic captured with Tcpdump and preprocessed using Zeek. Unlike simulated datasets, the collected data reflect communication patterns generated from real devices. Although the current dataset only includes benign traffic, the platform is prepared for future incorporation of adversarial scenarios (spoofing, DoS) to support AI-based cybersecurity research. While experiments were conducted in an indoor controlled environment, the testbed architecture is portable and suitable for future outdoor deployment. The Smart Rural IoT Lab addresses a critical gap in current research infrastructure, providing a realistic and flexible foundation for developing secure, cloud-independent IoT solutions, contributing to the digital transformation of rural regions. Full article
Show Figures

Figure 1

25 pages, 2515 KiB  
Article
Solar Agro Savior: Smart Agricultural Monitoring Using Drones and Deep Learning Techniques
by Manu Mundappat Ramachandran, Bisni Fahad Mon, Mohammad Hayajneh, Najah Abu Ali and Elarbi Badidi
Agriculture 2025, 15(15), 1656; https://doi.org/10.3390/agriculture15151656 - 1 Aug 2025
Abstract
The Solar Agro Savior (SAS) is an innovative solution that is assisted by drones for the sustainable utilization of water and plant disease observation in the agriculture sector. This system integrates an alerting mechanism for humidity, moisture, and temperature variations, which affect the [...] Read more.
The Solar Agro Savior (SAS) is an innovative solution that is assisted by drones for the sustainable utilization of water and plant disease observation in the agriculture sector. This system integrates an alerting mechanism for humidity, moisture, and temperature variations, which affect the plants’ health and optimization in water utilization, which enhances plant yield productivity. A significant feature of the system is the efficient monitoring system in a larger region through drones’ high-resolution cameras, which enables real-time, efficient response and alerting for environmental fluctuations to the authorities. The machine learning algorithm, particularly recurrent neural networks, which is a pioneer with agriculture and pest control, is incorporated for intelligent monitoring systems. The proposed system incorporates a specialized form of a recurrent neural network, Long Short-Term Memory (LSTM), which effectively addresses the vanishing gradient problem. It also utilizes an attention-based mechanism that enables the model to assign meaningful weights to the most important parts of the data sequence. This algorithm not only enhances water utilization efficiency but also boosts plant yield and strengthens pest control mechanisms. This system also provides sustainability through the re-utilization of water and the elimination of electric energy through solar panel systems for powering the inbuilt irrigation system. A comparative analysis of variant algorithms in the agriculture sector with a machine learning approach was also illustrated, and the proposed system yielded 99% yield accuracy, a 97.8% precision value, 98.4% recall, and a 98.4% F1 score value. By encompassing solar irrigation and artificial intelligence-driven analysis, the proposed algorithm, Solar Argo Savior, established a sustainable framework in the latest agricultural sectors and promoted sustainability to protect our environment and community. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

26 pages, 1790 KiB  
Article
A Hybrid Deep Learning Model for Aromatic and Medicinal Plant Species Classification Using a Curated Leaf Image Dataset
by Shareena E. M., D. Abraham Chandy, Shemi P. M. and Alwin Poulose
AgriEngineering 2025, 7(8), 243; https://doi.org/10.3390/agriengineering7080243 - 1 Aug 2025
Abstract
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the [...] Read more.
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the lack of domain-specific, high-quality datasets and the limited representational capacity of traditional architectures. This study addresses these challenges by introducing a novel, well-curated leaf image dataset consisting of 39 classes of medicinal and aromatic plants collected from the Aromatic and Medicinal Plant Research Station in Odakkali, Kerala, India. To overcome performance bottlenecks observed with a baseline Convolutional Neural Network (CNN) that achieved only 44.94% accuracy, we progressively enhanced model performance through a series of architectural innovations. These included the use of a pre-trained VGG16 network, data augmentation techniques, and fine-tuning of deeper convolutional layers, followed by the integration of Squeeze-and-Excitation (SE) attention blocks. Ultimately, we propose a hybrid deep learning architecture that combines VGG16 with Batch Normalization, Gated Recurrent Units (GRUs), Transformer modules, and Dilated Convolutions. This final model achieved a peak validation accuracy of 95.24%, significantly outperforming several baseline models, such as custom CNN (44.94%), VGG-19 (59.49%), VGG-16 before augmentation (71.52%), Xception (85.44%), Inception v3 (87.97%), VGG-16 after data augumentation (89.24%), VGG-16 after fine-tuning (90.51%), MobileNetV2 (93.67), and VGG16 with SE block (94.94%). These results demonstrate superior capability in capturing both local textures and global morphological features. The proposed solution not only advances the state of the art in plant classification but also contributes a valuable dataset to the research community. Its real-world applicability spans field-based plant identification, biodiversity conservation, and precision agriculture, offering a scalable tool for automated plant recognition in complex ecological and agricultural environments. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

17 pages, 3595 KiB  
Article
Sensor-Based Monitoring of Fire Precursors in Timber Wall and Ceiling Assemblies: Research Towards Smarter Embedded Detection Systems
by Kristian Prokupek, Chandana Ravikumar and Jan Vcelak
Sensors 2025, 25(15), 4730; https://doi.org/10.3390/s25154730 (registering DOI) - 31 Jul 2025
Abstract
The movement towards low-emission and sustainable building practices has driven increased use of natural, carbon-based materials such as wood. While these materials offer significant environmental advantages, their inherent flammability introduces new challenges for timber building safety. Despite advancements in fire protection standards and [...] Read more.
The movement towards low-emission and sustainable building practices has driven increased use of natural, carbon-based materials such as wood. While these materials offer significant environmental advantages, their inherent flammability introduces new challenges for timber building safety. Despite advancements in fire protection standards and building regulations, the risk of fire incidents—whether from technical failure, human error, or intentional acts—remains. The rapid detection of fire onset is crucial for safeguarding human life, animal welfare, and valuable assets. This study investigates the potential of monitoring fire precursor gases emitted inside building structures during pre-ignition and early combustion stages. The research also examines the sensitivity and effectiveness of commercial smoke detectors compared with custom sensor arrays in detecting these emissions. A representative structural sample was constructed and subjected to a controlled fire scenario in a laboratory setting, providing insights into the integration of gas sensing technologies for enhanced fire resilience in sustainable building systems. Full article
Show Figures

Figure 1

40 pages, 18911 KiB  
Article
Twin-AI: Intelligent Barrier Eddy Current Separator with Digital Twin and AI Integration
by Shohreh Kia, Johannes B. Mayer, Erik Westphal and Benjamin Leiding
Sensors 2025, 25(15), 4731; https://doi.org/10.3390/s25154731 (registering DOI) - 31 Jul 2025
Abstract
The current paper presents a comprehensive intelligent system designed to optimize the performance of a barrier eddy current separator (BECS), comprising a conveyor belt, a vibration feeder, and a magnetic drum. This system was trained and validated on real-world industrial data gathered directly [...] Read more.
The current paper presents a comprehensive intelligent system designed to optimize the performance of a barrier eddy current separator (BECS), comprising a conveyor belt, a vibration feeder, and a magnetic drum. This system was trained and validated on real-world industrial data gathered directly from the working separator under 81 different operational scenarios. The intelligent models were used to recommend optimal settings for drum speed, belt speed, vibration intensity, and drum angle, thereby maximizing separation quality and minimizing energy consumption. the smart separation module utilizes YOLOv11n-seg and achieves a mean average precision (mAP) of 0.838 across 7163 industrial instances from aluminum, copper, and plastic materials. For shape classification (sharp vs. smooth), the model reached 91.8% accuracy across 1105 annotated samples. Furthermore, the thermal monitoring unit can detect iron contamination by analyzing temperature anomalies. Scenarios with iron showed a maximum temperature increase of over 20 °C compared to clean materials, with a detection response time of under 2.5 s. The architecture integrates a Digital Twin using Azure Digital Twins to virtually mirror the system, enabling real-time tracking, behavior simulation, and remote updates. A full connection with the PLC has been implemented, allowing the AI-driven system to adjust physical parameters autonomously. This combination of AI, IoT, and digital twin technologies delivers a reliable and scalable solution for enhanced separation quality, improved operational safety, and predictive maintenance in industrial recycling environments. Full article
(This article belongs to the Special Issue Sensors and IoT Technologies for the Smart Industry)
37 pages, 7777 KiB  
Review
Cement-Based Electrochemical Systems for Structural Energy Storage: Progress and Prospects
by Haifeng Huang, Shuhao Zhang, Yizhe Wang, Yipu Guo, Chao Zhang and Fulin Qu
Materials 2025, 18(15), 3601; https://doi.org/10.3390/ma18153601 (registering DOI) - 31 Jul 2025
Abstract
Cement-based batteries (CBBs) are an emerging category of multifunctional materials that combine structural load-bearing capacity with integrated electrochemical energy storage, enabling the development of self-powered infrastructure. Although previous reviews have explored selected aspects of CBB technology, a comprehensive synthesis encompassing system architectures, material [...] Read more.
Cement-based batteries (CBBs) are an emerging category of multifunctional materials that combine structural load-bearing capacity with integrated electrochemical energy storage, enabling the development of self-powered infrastructure. Although previous reviews have explored selected aspects of CBB technology, a comprehensive synthesis encompassing system architectures, material strategies, and performance metrics remains insufficient. In this review, CBB systems are categorized into two representative configurations: probe-type galvanic cells and layered monolithic structures. Their structural characteristics and electrochemical behaviors are critically compared. Strategies to enhance performance include improving ionic conductivity through alkaline pore solutions, facilitating electron transport using carbon-based conductive networks, and incorporating redox-active materials such as zinc–manganese dioxide and nickel–iron couples. Early CBB prototypes demonstrated limited energy densities due to high internal resistance and inefficient utilization of active components. Recent advancements in electrode architecture, including nickel-coated carbon fiber meshes and three-dimensional nickel foam scaffolds, have achieved stable rechargeability across multiple cycles with energy densities surpassing 11 Wh/m2. These findings demonstrate the practical potential of CBBs for both energy storage and additional functionalities, such as strain sensing enabled by conductive cement matrices. This review establishes a critical basis for future development of CBBs as multifunctional structural components in infrastructure applications. Full article
Show Figures

Figure 1

21 pages, 1928 KiB  
Article
A CNN-Transformer Hybrid Framework for Multi-Label Predator–Prey Detection in Agricultural Fields
by Yifan Lyu, Feiyu Lu, Xuaner Wang, Yakui Wang, Zihuan Wang, Yawen Zhu, Zhewei Wang and Min Dong
Sensors 2025, 25(15), 4719; https://doi.org/10.3390/s25154719 (registering DOI) - 31 Jul 2025
Abstract
Accurate identification of predator–pest relationships is essential for implementing effective and sustainable biological control in agriculture. However, existing image-based methods struggle to recognize insect co-occurrence under complex field conditions, limiting their ecological applicability. To address this challenge, we propose a hybrid deep learning [...] Read more.
Accurate identification of predator–pest relationships is essential for implementing effective and sustainable biological control in agriculture. However, existing image-based methods struggle to recognize insect co-occurrence under complex field conditions, limiting their ecological applicability. To address this challenge, we propose a hybrid deep learning framework that integrates convolutional neural networks (CNNs) and Transformer architectures for multi-label recognition of predator–pest combinations. The model leverages a novel co-occurrence attention mechanism to capture semantic relationships between insect categories and employs a pairwise label matching loss to enhance ecological pairing accuracy. Evaluated on a field-constructed dataset of 5,037 images across eight categories, the model achieved an F1-score of 86.5%, mAP50 of 85.1%, and demonstrated strong generalization to unseen predator–pest pairs with an average F1-score of 79.6%. These results outperform several strong baselines, including ResNet-50, YOLOv8, and Vision Transformer. This work contributes a robust, interpretable approach for multi-object ecological detection and offers practical potential for deployment in smart farming systems, UAV-based monitoring, and precision pest management. Full article
(This article belongs to the Special Issue Sensor and AI Technologies in Intelligent Agriculture: 2nd Edition)
Show Figures

Figure 1

40 pages, 3463 KiB  
Review
Machine Learning-Powered Smart Healthcare Systems in the Era of Big Data: Applications, Diagnostic Insights, Challenges, and Ethical Implications
by Sita Rani, Raman Kumar, B. S. Panda, Rajender Kumar, Nafaa Farhan Muften, Mayada Ahmed Abass and Jasmina Lozanović
Diagnostics 2025, 15(15), 1914; https://doi.org/10.3390/diagnostics15151914 - 30 Jul 2025
Abstract
Healthcare data rapidly increases, and patients seek customized, effective healthcare services. Big data and machine learning (ML) enabled smart healthcare systems hold revolutionary potential. Unlike previous reviews that separately address AI or big data, this work synthesizes their convergence through real-world case studies, [...] Read more.
Healthcare data rapidly increases, and patients seek customized, effective healthcare services. Big data and machine learning (ML) enabled smart healthcare systems hold revolutionary potential. Unlike previous reviews that separately address AI or big data, this work synthesizes their convergence through real-world case studies, cross-domain ML applications, and a critical discussion on ethical integration in smart diagnostics. The review focuses on the role of big data analysis and ML towards better diagnosis, improved efficiency of operations, and individualized care for patients. It explores the principal challenges of data heterogeneity, privacy, computational complexity, and advanced methods such as federated learning (FL) and edge computing. Applications in real-world settings, such as disease prediction, medical imaging, drug discovery, and remote monitoring, illustrate how ML methods, such as deep learning (DL) and natural language processing (NLP), enhance clinical decision-making. A comparison of ML models highlights their value in dealing with large and heterogeneous healthcare datasets. In addition, the use of nascent technologies such as wearables and Internet of Medical Things (IoMT) is examined for their role in supporting real-time data-driven delivery of healthcare. The paper emphasizes the pragmatic application of intelligent systems by highlighting case studies that reflect up to 95% diagnostic accuracy and cost savings. The review ends with future directions that seek to develop scalable, ethical, and interpretable AI-powered healthcare systems. It bridges the gap between ML algorithms and smart diagnostics, offering critical perspectives for clinicians, data scientists, and policymakers. Full article
(This article belongs to the Special Issue Machine-Learning-Based Disease Diagnosis and Prediction)
Show Figures

Figure 1

36 pages, 2713 KiB  
Article
Leveraging the Power of Human Resource Management Practices for Workforce Empowerment in SMEs on the Shop Floor: A Study on Exploring and Resolving Issues in Operations Management
by Varun Tripathi, Deepshi Garg, Gianpaolo Di Bona and Alessandro Silvestri
Sustainability 2025, 17(15), 6928; https://doi.org/10.3390/su17156928 - 30 Jul 2025
Abstract
Operations management personnel emphasize the maintenance of workforce empowerment on the shop floor. This is made possible by implementing effective operations and human resource management practices. However, organizations are adept at controlling the workforce empowerment domain within operational scenarios. In the current industry [...] Read more.
Operations management personnel emphasize the maintenance of workforce empowerment on the shop floor. This is made possible by implementing effective operations and human resource management practices. However, organizations are adept at controlling the workforce empowerment domain within operational scenarios. In the current industry revolution scenario, industry personnel often face failure due to a laggard mindset in the face of industry revolutions. There are higher possibilities of failure because of standardized operations controlling the shop floor. Organizations utilize well-established human resource concepts, including McClelland’s acquired needs theory, Herzberg’s two-factor theory, and Maslow’s hierarchy of needs, in order to enhance the workforce’s performance on the shop floor. Current SME individuals require fast-paced approaches for tracking the performance and idleness of a workforce in order to control them more efficiently in both flexible and transformational stages. The present study focuses on investigating the parameters and factors that contribute to workforce empowerment in an industrial revolution scenario. The present research is used to develop a framework utilizing operations and human resource management approaches in order to identify and address the issues responsible for deteriorating workforce contributions. The framework includes HRM and operations management practices, including Herzberg’s two-factor theory, Maslow’s theory, and lean and smart approaches. The developed framework contains four phases for achieving desired outcomes on the shop floor. The developed framework is validated by implementing it in a real-life electric vehicle manufacturing organization, where the human resources and operations team were exhausted and looking to resolve employee-related issues instantly and establish a sustainable work environment. The current industry is transforming from Industry 3.0 to Industry 4.0, and seeks future-ready innovations in operations, control, and monitoring of shop floor setups. The operations management and human resource management practices teams reviewed the results over the next three months after the implementation of the developed framework. The results revealed an improvement in workforce empowerment within the existing work environment, as evidenced by reductions in the number of absentees, resignations, transfer requests, and medical issues, by 30.35%, 94.44%, 95.65%, and 93.33%, respectively. A few studies have been conducted on workforce empowerment by controlling shop floor scenarios through modifications in operations and human resource management strategies. The results of this study can be used to fulfil manufacturers’ needs within confined constraints and provide guidelines for efficiently controlling workforce performance on the shop floor. Constraints refer to barriers that have been decided, including production time, working time, asset availability, resource availability, and organizational policy. The study proposes a decision-making plan for enhancing shop floor performance by providing suitable guidelines and an action plan, taking into account both workforce and operational performance. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

21 pages, 3471 KiB  
Review
Nanomedicine: The Effective Role of Nanomaterials in Healthcare from Diagnosis to Therapy
by Raisa Nazir Ahmed Kazi, Ibrahim W. Hasani, Doaa S. R. Khafaga, Samer Kabba, Mohd Farhan, Mohammad Aatif, Ghazala Muteeb and Yosri A. Fahim
Pharmaceutics 2025, 17(8), 987; https://doi.org/10.3390/pharmaceutics17080987 - 30 Jul 2025
Abstract
Nanotechnology is revolutionizing medicine by enabling highly precise diagnostics, targeted therapies, and personalized healthcare solutions. This review explores the multifaceted applications of nanotechnology across medical fields such as oncology and infectious disease control. Engineered nanoparticles (NPs), such as liposomes, polymeric carriers, and carbon-based [...] Read more.
Nanotechnology is revolutionizing medicine by enabling highly precise diagnostics, targeted therapies, and personalized healthcare solutions. This review explores the multifaceted applications of nanotechnology across medical fields such as oncology and infectious disease control. Engineered nanoparticles (NPs), such as liposomes, polymeric carriers, and carbon-based nanomaterials, enhance drug solubility, protect therapeutic agents from degradation, and enable site-specific delivery, thereby reducing toxicity to healthy tissues. In diagnostics, nanosensors and contrast agents provide ultra-sensitive detection of biomarkers, supporting early diagnosis and real-time monitoring. Nanotechnology also contributes to regenerative medicine, antimicrobial therapies, wearable devices, and theranostics, which integrate treatment and diagnosis into unified systems. Advanced innovations such as nanobots and smart nanosystems further extend these capabilities, enabling responsive drug delivery and minimally invasive interventions. Despite its immense potential, nanomedicine faces challenges, including biocompatibility, environmental safety, manufacturing scalability, and regulatory oversight. Addressing these issues is essential for clinical translation and public acceptance. In summary, nanotechnology offers transformative tools that are reshaping medical diagnostics, therapeutics, and disease prevention. Through continued research and interdisciplinary collaboration, it holds the potential to significantly enhance treatment outcomes, reduce healthcare costs, and usher in a new era of precise and personalized medicine. Full article
Show Figures

Figure 1

12 pages, 1492 KiB  
Article
User Experiences of the Cue2walk Smart Cueing Device for Freezing of Gait in People with Parkinson’s Disease
by Matthijs van der Laan, Marc B. Rietberg, Martijn van der Ent, Floor Waardenburg, Vincent de Groot, Jorik Nonnekes and Erwin E. H. van Wegen
Sensors 2025, 25(15), 4702; https://doi.org/10.3390/s25154702 - 30 Jul 2025
Abstract
Freezing of gait (FoG) impairs mobility and daily functioning and increases the risk of falls, leading to a reduced quality of life (QoL) in people with Parkinson’s disease (PD). The Cue2walk, a wearable smart cueing device, can detect FoG and hereupon provides rhythmic [...] Read more.
Freezing of gait (FoG) impairs mobility and daily functioning and increases the risk of falls, leading to a reduced quality of life (QoL) in people with Parkinson’s disease (PD). The Cue2walk, a wearable smart cueing device, can detect FoG and hereupon provides rhythmic cues to help people with PD manage FoG in daily life. This study investigated the user experiences and device usage of the Cue2walk, and its impact on health-related QoL, FoG and daily activities. Twenty-five users of the Cue2walk were invited to fill out an online survey, which included a modified version of the EQ-5D-5L, tailored to the use of the Cue2walk, and its scale for health-related QoL, three FoG-related questions, and a question about customer satisfaction. Sixteen users of the Cue2walk completed the survey. Average device usage per day was 9 h (SD 4). Health-related QoL significantly increased from 5.2/10 (SD 1.3) to 6.2/10 (SD 1.3) (p = 0.005), with a large effect size (Cohen’s d = 0.83). A total of 13/16 respondents reported a positive effect on FoG duration, 12/16 on falls, and 10/16 on daily activities and self-confidence. Customer satisfaction was 7.8/10 (SD 1.7). This pilot study showed that Cue2walk usage per day is high and that 15/16 respondents experienced a variety of positive effects since using the device. To validate these findings, future studies should include a larger sample size and a more extensive set of questionnaires and physical measurements monitored over time. Full article
Show Figures

Figure 1

30 pages, 7223 KiB  
Article
Smart Wildlife Monitoring: Real-Time Hybrid Tracking Using Kalman Filter and Local Binary Similarity Matching on Edge Network
by Md. Auhidur Rahman, Stefano Giordano and Michele Pagano
Computers 2025, 14(8), 307; https://doi.org/10.3390/computers14080307 - 30 Jul 2025
Abstract
Real-time wildlife monitoring on edge devices poses significant challenges due to limited power, constrained bandwidth, and unreliable connectivity, especially in remote natural habitats. Conventional object detection systems often transmit redundant data of the same animals detected across multiple consecutive frames as a part [...] Read more.
Real-time wildlife monitoring on edge devices poses significant challenges due to limited power, constrained bandwidth, and unreliable connectivity, especially in remote natural habitats. Conventional object detection systems often transmit redundant data of the same animals detected across multiple consecutive frames as a part of a single event, resulting in increased power consumption and inefficient bandwidth usage. Furthermore, maintaining consistent animal identities in the wild is difficult due to occlusions, variable lighting, and complex environments. In this study, we propose a lightweight hybrid tracking framework built on the YOLOv8m deep neural network, combining motion-based Kalman filtering with Local Binary Pattern (LBP) similarity for appearance-based re-identification using texture and color features. To handle ambiguous cases, we further incorporate Hue-Saturation-Value (HSV) color space similarity. This approach enhances identity consistency across frames while reducing redundant transmissions. The framework is optimized for real-time deployment on edge platforms such as NVIDIA Jetson Orin Nano and Raspberry Pi 5. We evaluate our method against state-of-the-art trackers using event-based metrics such as MOTA, HOTA, and IDF1, with a focus on detected animals occlusion handling, trajectory analysis, and counting during both day and night. Our approach significantly enhances tracking robustness, reduces ID switches, and provides more accurate detection and counting compared to existing methods. When transmitting time-series data and detected frames, it achieves up to 99.87% bandwidth savings and 99.67% power reduction, making it highly suitable for edge-based wildlife monitoring in resource-constrained environments. Full article
(This article belongs to the Special Issue Intelligent Edge: When AI Meets Edge Computing)
Show Figures

Figure 1

22 pages, 554 KiB  
Systematic Review
Smart Homes: A Meta-Study on Sense of Security and Home Automation
by Carlos M. Torres-Hernandez, Mariano Garduño-Aparicio and Juvenal Rodriguez-Resendiz
Technologies 2025, 13(8), 320; https://doi.org/10.3390/technologies13080320 - 30 Jul 2025
Viewed by 141
Abstract
This review examines advancements in smart home security through the integration of home automation technologies. Various security systems, including surveillance cameras, smart locks, and motion sensors, are analyzed, highlighting their effectiveness in enhancing home security. These systems enable users to monitor and control [...] Read more.
This review examines advancements in smart home security through the integration of home automation technologies. Various security systems, including surveillance cameras, smart locks, and motion sensors, are analyzed, highlighting their effectiveness in enhancing home security. These systems enable users to monitor and control their homes in real-time, providing an additional layer of security. The document also examines how these security systems can enhance the quality of life for users by providing greater convenience and control over their domestic environment. The ability to receive instant alerts and access video recordings from anywhere allows users to respond quickly to unexpected situations, thereby increasing their sense of security and well-being. Additionally, the challenges and future trends in this field are addressed, emphasizing the importance of designing solutions that are intuitive and easy to use. As technology continues to evolve, it is crucial for developers and manufacturers to focus on creating products that seamlessly integrate into users’ daily lives, facilitating their adoption and use. This comprehensive state-of-the-art review, based on the Scopus database, provides a detailed overview of the current status and future potential of smart home security systems. It highlights how ongoing innovation in this field can lead to the development of more advanced and efficient solutions that not only protect homes but also enhance the overall user experience. Full article
(This article belongs to the Special Issue Smart Systems (SmaSys2024))
Show Figures

Figure 1

28 pages, 2789 KiB  
Review
A Review of Computer Vision and Deep Learning Applications in Crop Growth Management
by Zhijie Cao, Shantong Sun and Xu Bao
Appl. Sci. 2025, 15(15), 8438; https://doi.org/10.3390/app15158438 - 30 Jul 2025
Viewed by 94
Abstract
Agriculture is the foundational industry for human survival, profoundly impacting economic, ecological, and social dimensions. In the face of global challenges such as rapid population growth, resource scarcity, and climate change, achieving technological innovation in agriculture and advancing smart farming have become increasingly [...] Read more.
Agriculture is the foundational industry for human survival, profoundly impacting economic, ecological, and social dimensions. In the face of global challenges such as rapid population growth, resource scarcity, and climate change, achieving technological innovation in agriculture and advancing smart farming have become increasingly critical. In recent years, deep learning and computer vision have developed rapidly. Key areas in computer vision—such as deep learning-based image processing, object detection, and multimodal fusion—are rapidly transforming traditional agricultural practices. Processes in agriculture, including planting planning, growth management, harvesting, and post-harvest handling, are shifting from experience-driven methods to digital and intelligent approaches. This paper systematically reviews applications of deep learning and computer vision in agricultural growth management over the past decade, categorizing them into four key areas: crop identification, grading and classification, disease monitoring, and weed detection. Additionally, we introduce classic methods and models in computer vision and deep learning, discussing approaches that utilize different types of visual information. Finally, we summarize current challenges and limitations of existing methods, providing insights for future research and promoting technological innovation in agriculture. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

Back to TopTop