Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = β-methylamino-L-alanine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1085 KiB  
Review
Microbial Influences on Amyotrophic Lateral Sclerosis: The Gut–Brain Axis and Therapeutic Potential of Microbiota Modulation
by Victòria Ayala, Laia Fontdevila, Santiago Rico-Rios, Mònica Povedano, Pol Andrés-Benito, Pascual Torres, José C. E. Serrano, Reinald Pamplona and Manuel Portero-Otin
Sclerosis 2025, 3(1), 8; https://doi.org/10.3390/sclerosis3010008 - 5 Mar 2025
Cited by 2 | Viewed by 1538
Abstract
Background/Objectives: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive degeneration of motor neurons. The gut microbiota, a community of microorganisms in the digestive tract, has recently been implicated in ALS pathogenesis through its influence on neuroinflammation and metabolic pathways. [...] Read more.
Background/Objectives: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive degeneration of motor neurons. The gut microbiota, a community of microorganisms in the digestive tract, has recently been implicated in ALS pathogenesis through its influence on neuroinflammation and metabolic pathways. This review explores the potential role of digestive microbiota and its metabolites in ALS progression and investigates therapeutic approaches targeting gut microbiota. Methods: A comprehensive review of the current literature was conducted to assess the relationship between gut microbiota composition, microbial metabolites, and ALS progression in patients. We searched for published reports on microbiota composition, microbial metabolites, and ALS, emphasizing the complex interplay between dysbiosis, neuroinflammation, and systemic metabolism. Special emphasis was placed on studies exploring short-chain fatty acids (SCFAs), bacterial amyloids (curli-like factors), and neurotoxins such as β-methylamino-L-alanine (BMAA). The role of the liver–gut axis was evaluated as well. The potential changes in microbiota would sustain the rationale for therapeutic strategies such as probiotics, prebiotics, fecal microbiota transplantation (FMT), and dietary interventions. Results: ALS patients exhibit gut dysbiosis, characterized by reduced SCFA-producing bacteria and an increase in potentially pathogenic genera. Of note, different studies do not agree on common patterns of microbiota being linked to ALS, supporting the need for further, more extensive studies. Dysbiosis sometimes correlates with systemic inflammation and disrupted liver function, amplifying neuroinflammatory responses. Key microbial metabolites, including SCFAs, bacterial amyloids, and BMAA, may exacerbate motor neuron degeneration by promoting protein misfolding, oxidative stress, and neuroinflammation. Emerging therapeutic strategies, including probiotics and FMT, show potential in restoring microbial balance, although clinical data in ALS patients remain limited. Conclusions: The gut microbiota could modulate neuroinflammation and systemic metabolism in ALS. Microbiota-targeted therapies, such as probiotics and dietary interventions, represent promising avenues for mitigating disease progression. Further research is required to validate these interventions through large-scale, longitudinal studies and to develop personalized microbiota-based treatments tailored to individual ALS phenotypes. Full article
Show Figures

Figure 1

18 pages, 1384 KiB  
Article
Exploring Phaeodactylum tricornutum for Nutraceuticals: Cultivation Techniques and Neurotoxin Risk Assessment
by Tobias Ebbing, Lena Kopp, Konstantin Frick, Tabea Simon, Berit Würtz, Jens Pfannstiel, Ulrike Schmid-Staiger, Stephan C. Bischoff and Günter E. M. Tovar
Mar. Drugs 2025, 23(2), 58; https://doi.org/10.3390/md23020058 - 26 Jan 2025
Cited by 1 | Viewed by 2426
Abstract
This study investigates the potential of the diatom Phaeodactylum tricornutum (PT) as a sustainable and nutritionally valuable food source, focusing on its ability to produce bioactive compounds such as eicosapentaenoic acid, fucoxanthin, chrysolaminarin (CRY) and proteins. PT was cultivated in a flat-plate airlift [...] Read more.
This study investigates the potential of the diatom Phaeodactylum tricornutum (PT) as a sustainable and nutritionally valuable food source, focusing on its ability to produce bioactive compounds such as eicosapentaenoic acid, fucoxanthin, chrysolaminarin (CRY) and proteins. PT was cultivated in a flat-plate airlift photobioreactor (FPA-PBR) illuminated with LEDs from two sides. The study aimed to monitor and minimize β-methylamino-L-alanine (BMAA) levels to address safety concerns. The data showed that the selected FPA-PBR setup was superior in biomass and EPA productivity, and CRY production was reduced. No BMAA was detected in any biomass sample during cultivation. By adjusting the cultivation conditions, PT biomass with different compositional profiles could be produced, enabling various applications in the food and health industries. Biomass from nutrient-repleted conditions is rich in EPA and Fx, with nutritional and health benefits. Biomass from nutrient-depleted conditions accumulated CRY, which can be used as dietary fiber. These results highlight the potential of PT as a versatile ingredient for human consumption and the effectiveness of FPA-PBRs with artificial lighting in producing high-quality biomass. This study also provides the basis for future research to optimize photobioreactor conditions to increase production efficiency and to tailor the biomass profiles of PT for targeted health-promoting applications. Full article
(This article belongs to the Special Issue Algal Cultivation for Obtaining High-Value Products, 2nd Edition)
Show Figures

Figure 1

20 pages, 3758 KiB  
Article
Description of Pegethrix niliensis sp. nov., a Novel Cyanobacterium from the Nile River Basin, Egypt: A Polyphasic Analysis and Comparative Study of Related Genera in the Oculatellales Order
by Guilherme Scotta Hentschke, Zakaria Mohamed, Alexandre Campos and Vitor M. Vasconcelos
Toxins 2024, 16(10), 451; https://doi.org/10.3390/toxins16100451 - 21 Oct 2024
Cited by 2 | Viewed by 1598
Abstract
In this paper, we examine the filamentous cyanobacterial strain NILCB16 and describe it as a new species within the genus Pegethrix. The original population was sampled from a mat growing in an irrigation canal in the Nile River, Egypt. Initially classified under [...] Read more.
In this paper, we examine the filamentous cyanobacterial strain NILCB16 and describe it as a new species within the genus Pegethrix. The original population was sampled from a mat growing in an irrigation canal in the Nile River, Egypt. Initially classified under Plectonema or Planktolyngbya, the strain is a potential producer of the toxins microcystin and β-N-Methylamino-L-Alanine (BMAA). Additionally, we reviewed the taxonomic relationships between the Oculatellales genera. To describe the new species, we conducted a polyphasic study, encompassing 16S rRNA gene phylogenetic analyses performed using both Maximum Likelihood and Bayesian methods, sequence identity (p-distance) analysis, 16S-23S ITS secondary structures, and morphological and habitat comparisons. The phylogenetic analysis revealed that strain NILCB16 clustered within the Pegethrix clade with strong phylogenetic support, but in a distinct position from other species in the genus. The strain shared a maximum 16S rRNA gene identity of 97.3% with P. qiandaoensis and 96.1% with the type species, P. bostrychoides. Morphologically, NILCB16 can be differentiated from other species in the genus by its lack of false branching. Our phylogenetic analyses also show that Pegethrix, Cartusia, Elainella, and Maricoleus are clustered with strong phylogenetic support. They exhibit high 16S rRNA gene identity and are morphologically indistinguishable, suggesting they could potentially be merged into a single genus in the future. Full article
Show Figures

Figure 1

15 pages, 1874 KiB  
Article
Azolla as a Safe Food: Suppression of Cyanotoxin-Related Genes and Cyanotoxin Production in Its Symbiont, Nostoc azollae
by Jonathan P. Bujak, Ana L. Pereira, Joana Azevedo, Alexandra A. Bujak, Victor Leshyk, Minh Pham Gia, Timo Stadtlander, Vitor Vasconcelos and Daniel J. Winstead
Plants 2024, 13(19), 2707; https://doi.org/10.3390/plants13192707 - 27 Sep 2024
Cited by 1 | Viewed by 3426
Abstract
The floating freshwater fern Azolla is the only plant that retains an endocyanobiont, Nostoc azollae (aka Anabaena azollae), during its sexual and asexual reproduction. The increased interest in Azolla as a potential source of food and its unique evolutionary history have raised [...] Read more.
The floating freshwater fern Azolla is the only plant that retains an endocyanobiont, Nostoc azollae (aka Anabaena azollae), during its sexual and asexual reproduction. The increased interest in Azolla as a potential source of food and its unique evolutionary history have raised questions about its cyanotoxin content and genome. Cyanotoxins are potent toxins synthesized by cyanobacteria which have an anti-herbivore effect but have also been linked to neurodegenerative disorders including Alzheimer’s and Parkinson’s diseases, liver and kidney failure, muscle paralysis, and other severe health issues. In this study, we investigated 48 accessions of Azolla–Nostoc symbiosis for the presence of genes coding microcystin, nodularin, cylindrospermopsin and saxitoxin, and BLAST analysis for anatoxin-a. We also investigated the presence of the neurotoxin β-N-methylamino-L-alanine (BMAA) in Azolla and N. azollae through LC-MS/MS. The PCR amplification of saxitoxin, cylindrospermospin, microcystin, and nodularin genes showed that Azolla and its cyanobiont N. azollae do not have the genes to synthesize these cyanotoxins. Additionally, the matching of the anatoxin-a gene to the sequenced N. azollae genome does not indicate the presence of the anatoxin-a gene. The LC-MS/MS analysis showed that BMAA and its isomers AEG and DAB are absent from Azolla and Nostoc azollae. Azolla therefore has the potential to safely feed millions of people due to its rapid growth while free-floating on shallow fresh water without the need for nitrogen fertilizers. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

16 pages, 4157 KiB  
Article
Microbial Diversity Impacts Non-Protein Amino Acid Production in Cyanobacterial Bloom Cultures Collected from Lake Winnipeg
by Stephanie L. Bishop, Julia T. Solonenka, Ryland T. Giebelhaus, David T. R. Bakker, Isaac T. S. Li and Susan J. Murch
Toxins 2024, 16(4), 169; https://doi.org/10.3390/toxins16040169 - 26 Mar 2024
Viewed by 2127
Abstract
Lake Winnipeg in Manitoba, Canada is heavily impacted by harmful algal blooms that contain non-protein amino acids (NPAAs) produced by cyanobacteria: N-(2-aminoethyl)glycine (AEG), β-aminomethyl-L-alanine (BAMA), β-N-methylamino-L-alanine (BMAA), and 2,4-diaminobutyric acid (DAB). Our objective was to investigate the impact of microbial [...] Read more.
Lake Winnipeg in Manitoba, Canada is heavily impacted by harmful algal blooms that contain non-protein amino acids (NPAAs) produced by cyanobacteria: N-(2-aminoethyl)glycine (AEG), β-aminomethyl-L-alanine (BAMA), β-N-methylamino-L-alanine (BMAA), and 2,4-diaminobutyric acid (DAB). Our objective was to investigate the impact of microbial diversity on NPAA production by cyanobacteria using semi-purified crude cyanobacterial cultures established from field samples collected by the Lake Winnipeg Research Consortium between 2016 and 2021. NPAAs were detected and quantified by ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) using validated analytical methods, while Shannon and Simpson alpha diversity scores were determined from 16S rRNA metagenomic sequences. Alpha diversity in isolate cultures was significantly decreased compared to crude cyanobacterial cultures (p < 0.001), indicating successful semi-purification. BMAA and AEG concentrations were higher in crude compared to isolate cultures (p < 0.0001), and AEG concentrations were correlated to the alpha diversity in cultures (r = 0.554; p < 0.0001). BAMA concentrations were increased in isolate cultures (p < 0.05), while DAB concentrations were similar in crude and isolate cultures. These results demonstrate that microbial community complexity impacts NPAA production by cyanobacteria and related organisms. Full article
Show Figures

Graphical abstract

14 pages, 1745 KiB  
Article
TDP-43 and Alzheimer’s Disease Pathology in the Brain of a Harbor Porpoise Exposed to the Cyanobacterial Toxin BMAA
by Susanna P. Garamszegi, Daniel J. Brzostowicki, Thomas M. Coyne, Regina T. Vontell and David A. Davis
Toxins 2024, 16(1), 42; https://doi.org/10.3390/toxins16010042 - 12 Jan 2024
Cited by 11 | Viewed by 3881
Abstract
Cetaceans are well-regarded as sentinels for toxin exposure. Emerging studies suggest that cetaceans can also develop neuropathological changes associated with neurodegenerative disease. The occurrence of neuropathology makes cetaceans an ideal species for examining the impact of marine toxins on the brain across the [...] Read more.
Cetaceans are well-regarded as sentinels for toxin exposure. Emerging studies suggest that cetaceans can also develop neuropathological changes associated with neurodegenerative disease. The occurrence of neuropathology makes cetaceans an ideal species for examining the impact of marine toxins on the brain across the lifespan. Here, we describe TAR DNA-binding protein 43 (TDP-43) proteinopathy and Alzheimer’s disease (AD) neuropathological changes in a beached harbor porpoise (Phocoena phocoena) that was exposed to a toxin produced by cyanobacteria called β-N-methylamino-L-alanine (BMAA). We found pathogenic TDP-43 cytoplasmic inclusions in neurons throughout the cerebral cortex, midbrain and brainstem. P62/sequestosome-1, responsible for the autophagy of misfolded proteins, was observed in the amygdala, hippocampus and frontal cortex. Genes implicated in AD and TDP-43 neuropathology such as APP and TARDBP were expressed in the brain. AD neuropathological changes such as amyloid-β plaques, neurofibrillary tangles, granulovacuolar degeneration and Hirano bodies were present in the hippocampus. These findings further support the development of progressive neurodegenerative disease in cetaceans and a potential causative link to cyanobacterial toxins. Climate change, nutrient pollution and industrial waste are increasing the frequency of harmful cyanobacterial blooms. Cyanotoxins like BMAA that are associated with neurodegenerative disease pose an increasing public health risk. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

13 pages, 440 KiB  
Article
Effects of the Toxic Non-Protein Amino Acid β-Methylamino-L-Alanine (BMAA) on Intracellular Amino Acid Levels in Neuroblastoma Cells
by Jake P. Violi, Lisa Pu, Sercan Pravadali-Cekic, David P. Bishop, Connor R. Phillips and Kenneth J. Rodgers
Toxins 2023, 15(11), 647; https://doi.org/10.3390/toxins15110647 - 9 Nov 2023
Cited by 4 | Viewed by 2664
Abstract
The cyanobacterial non-protein amino acid (AA) β-Methylamino-L-alanine (BMAA) is considered to be a neurotoxin. BMAA caused histopathological changes in brains and spinal cords of primates consistent with some of those seen in early motor neuron disease; however, supplementation with L-serine protected against some [...] Read more.
The cyanobacterial non-protein amino acid (AA) β-Methylamino-L-alanine (BMAA) is considered to be a neurotoxin. BMAA caused histopathological changes in brains and spinal cords of primates consistent with some of those seen in early motor neuron disease; however, supplementation with L-serine protected against some of those changes. We examined the impact of BMAA on AA concentrations in human neuroblastoma cells in vitro. Cells were treated with 1000 µM BMAA and intracellular free AA concentrations in treated and control cells were compared at six time-points over a 48 h culture period. BMAA had a profound effect on intracellular AA levels at specific time points but in most cases, AA homeostasis was re-established in the cell. The most heavily impacted amino acid was serine which was depleted in BMAA-treated cells from 9 h onwards. Correction of serine depletion could be a factor in the observation that supplementation with L-serine protects against BMAA toxicity in vitro and in vivo. AAs that could potentially be involved in protection against BMAA-induced oxidation such as histidine, tyrosine, and phenylalanine were depleted in cells at later time points. Full article
(This article belongs to the Special Issue Toxicology Research on Cyanotoxins)
Show Figures

Graphical abstract

15 pages, 2411 KiB  
Article
A Direct Analysis of β-N-methylamino-l-alanine Enantiomers and Isomers and Its Application to Cyanobacteria and Marine Mollusks
by James S. Metcalf, Sandra Anne Banack, Peter B. Wyatt, Peter B. Nunn and Paul A. Cox
Toxins 2023, 15(11), 639; https://doi.org/10.3390/toxins15110639 - 1 Nov 2023
Cited by 2 | Viewed by 3116
Abstract
Of the wide variety of toxic compounds produced by cyanobacteria, the neurotoxic amino acid β-N-methylamino-l-alanine (BMAA) has attracted attention as a result of its association with chronic human neurodegenerative diseases such as ALS and Alzheimer’s. Consequently, specific detection methods [...] Read more.
Of the wide variety of toxic compounds produced by cyanobacteria, the neurotoxic amino acid β-N-methylamino-l-alanine (BMAA) has attracted attention as a result of its association with chronic human neurodegenerative diseases such as ALS and Alzheimer’s. Consequently, specific detection methods are required to assess the presence of BMAA and its isomers in environmental and clinical materials, including cyanobacteria and mollusks. Although the separation of isomers such as β-amino-N-methylalanine (BAMA), N-(2-aminoethyl)glycine (AEG) and 2,4-diaminobutyric acid (DAB) from BMAA has been demonstrated during routine analysis, a further compounding factor is the potential presence of enantiomers for some of these isomers. Current analytical methods for BMAA mostly do not discriminate between enantiomers, and the chiral configuration of BMAA in cyanobacteria is still largely unexplored. To understand the potential for the occurrence of D-BMAA in cyanobacteria, a chiral UPLC-MS/MS method was developed to separate BMAA enantiomers and isomers and to determine the enantiomeric configuration of endogenous free BMAA in a marine Lyngbya mat and two mussel reference materials. After extraction, purification and derivatization with N-(4-nitrophenoxycarbonyl)-l-phenylalanine 2-methoxyethyl ester ((S)-NIFE), both L- and D-BMAA were identified as free amino acids in cyanobacterial materials, whereas only L-BMAA was identified in mussel tissues. The finding of D-BMAA in biological environmental materials raises questions concerning the source and role of BMAA enantiomers in neurological disease. Full article
(This article belongs to the Special Issue Prospective Studies in Survey and Biosurvey of Cyanotoxins In Situ)
Show Figures

Figure 1

17 pages, 2808 KiB  
Article
Simultaneous Analysis of Cyanotoxins β-N-methylamino-L-alanine (BMAA) and Microcystins-RR, -LR, and -YR Using Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS)
by Sercan Pravadali-Cekic, Aleksandar Vojvodic, Jake P. Violi, Simon M. Mitrovic, Kenneth J. Rodgers and David P. Bishop
Molecules 2023, 28(18), 6733; https://doi.org/10.3390/molecules28186733 - 21 Sep 2023
Cited by 8 | Viewed by 2661
Abstract
β-N-methylamino-L-alanine (BMAA) and its isomers, 2,4-diaminobutyric acid (2,4-DAB) and N-(2-aminoethyl)-glycine (AEG), along with microcystins (MCs)-RR, -LR, and -YR (the major MC congeners), are cyanotoxins that can cause detrimental health and environmental impacts during toxic blooms. Currently, there are no reverse-phase (RP) LC-MS/MS methods [...] Read more.
β-N-methylamino-L-alanine (BMAA) and its isomers, 2,4-diaminobutyric acid (2,4-DAB) and N-(2-aminoethyl)-glycine (AEG), along with microcystins (MCs)-RR, -LR, and -YR (the major MC congeners), are cyanotoxins that can cause detrimental health and environmental impacts during toxic blooms. Currently, there are no reverse-phase (RP) LC-MS/MS methods for the simultaneous detection and quantification of BMAA, its isomers, and the major MCs in a single analysis; therefore, multiple analyses are required to assess the toxic load of a sample. Here, we present a newly developed and validated method for the detection and quantification of BMAA, 2,4-DAB, AEG, MC-LR, MC-RR, and MC-YR using RP LC-MS/MS. Method validation was performed, assessing linearity (r2 > 0.996), accuracy (>90% recovery for spiked samples), precision (7% relative standard deviation), and limits of detection (LODs) and quantification (LOQs) (ranging from 0.13 to 1.38 ng mL−1). The application of this combined cyanotoxin analysis on a culture of Microcystis aeruginosa resulted in the simultaneous detection of 2,4-DAB (0.249 ng mg−1 dry weight (DW)) and MC-YR (4828 ng mg−1 DW). This study provides a unified method for the quantitative analysis of BMAA, its isomers, and three MC congeners in natural environmental samples. Full article
(This article belongs to the Special Issue Analytical Techniques in Environmental Chemistry)
Show Figures

Figure 1

23 pages, 3670 KiB  
Article
Five Years Monitoring the Emergence of Unregulated Toxins in Shellfish in France (EMERGTOX 2018–2022)
by Zouher Amzil, Amélie Derrien, Aouregan Terre Terrillon, Véronique Savar, Thomas Bertin, Marion Peyrat, Audrey Duval, Korian Lhaute, Nathalie Arnich, Vincent Hort and Marina Nicolas
Mar. Drugs 2023, 21(8), 435; https://doi.org/10.3390/md21080435 - 31 Jul 2023
Cited by 20 | Viewed by 3276
Abstract
Shellfish accumulate microalgal toxins, which can make them unsafe for human consumption. In France, in accordance with EU regulations, three groups of marine toxins are currently under official monitoring: lipophilic toxins, saxitoxins, and domoic acid. Other unregulated toxin groups are also present in [...] Read more.
Shellfish accumulate microalgal toxins, which can make them unsafe for human consumption. In France, in accordance with EU regulations, three groups of marine toxins are currently under official monitoring: lipophilic toxins, saxitoxins, and domoic acid. Other unregulated toxin groups are also present in European shellfish, including emerging lipophilic and hydrophilic marine toxins (e.g., pinnatoxins, brevetoxins) and the neurotoxin β-N-methylamino-L-alanine (BMAA). To acquire data on emerging toxins in France, the monitoring program EMERGTOX was set up along the French coasts in 2018. Three new broad-spectrum LC-MS/MS methods were developed to quantify regulated and unregulated lipophilic and hydrophilic toxins and the BMAA group in shellfish (bivalve mollusks and gastropods). A single-laboratory validation of each of these methods was performed. Additionally, these specific, reliable, and sensitive operating procedures allowed the detection of groups of EU unregulated toxins in shellfish samples from French coasts: spirolides (SPX-13-DesMeC, SPX-DesMeD), pinnatoxins (PnTX-G, PnTX-A), gymnodimines (GYM-A), brevetoxins (BTX-2, BTX-3), microcystins (dmMC-RR, MC-RR), anatoxin, cylindrospermopsin and BMAA/DAB. Here, we present essentially the results of the unregulated toxins obtained from the French EMERGTOX monitoring plan during the past five years (2018–2022). Based on our findings, we outline future needs for monitoring to protect consumers from emerging unregulated toxins. Full article
(This article belongs to the Special Issue Emerging Toxins Accumulation in Shellfish)
Show Figures

Figure 1

29 pages, 4793 KiB  
Review
Oxidative Stress, Reductive Stress and Antioxidants in Vascular Pathogenesis and Aging
by Mitko Mladenov, Lubomir Lubomirov, Olaf Grisk, Dimiter Avtanski, Vadim Mitrokhin, Iliyana Sazdova, Milena Keremidarska-Markova, Yana Danailova, Georgi Nikolaev, Rossitza Konakchieva and Hristo Gagov
Antioxidants 2023, 12(5), 1126; https://doi.org/10.3390/antiox12051126 - 19 May 2023
Cited by 40 | Viewed by 10911
Abstract
This review is focused on the mechanisms that regulate health, disease and aging redox status, the signal pathways that counteract oxidative and reductive stress, the role of food components and additives with antioxidant properties (curcumin, polyphenols, vitamins, carotenoids, flavonoids, etc.), and the role [...] Read more.
This review is focused on the mechanisms that regulate health, disease and aging redox status, the signal pathways that counteract oxidative and reductive stress, the role of food components and additives with antioxidant properties (curcumin, polyphenols, vitamins, carotenoids, flavonoids, etc.), and the role of the hormones irisin and melatonin in the redox homeostasis of animal and human cells. The correlations between the deviation from optimal redox conditions and inflammation, allergic, aging and autoimmune responses are discussed. Special attention is given to the vascular system, kidney, liver and brain oxidative stress processes. The role of hydrogen peroxide as an intracellular and paracrine signal molecule is also reviewed. The cyanotoxins β-N-methylamino-l-alanine (BMAA), cylindrospermopsin, microcystins and nodularins are introduced as potentially dangerous food and environment pro-oxidants. Full article
(This article belongs to the Special Issue Oxidative Stress in Cardiorenal System)
Show Figures

Figure 1

11 pages, 3507 KiB  
Article
β-N-Methylamino-L-Alanine (BMAA) Modulates the Sympathetic Regulation and Homeostasis of Polyamines
by Milena Shkodrova, Milena Mishonova, Mariela Chichova, Iliyana Sazdova, Bilyana Ilieva, Dilyana Doncheva-Stoimenova, Neli Raikova, Milena Keremidarska-Markova and Hristo Gagov
Toxins 2023, 15(2), 141; https://doi.org/10.3390/toxins15020141 - 9 Feb 2023
Cited by 2 | Viewed by 2815
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid produced by cyanobacteria. Non-neuronal toxicity of BMAA is poorly studied with a reported increase in reactive oxygen species and a decrease in the antioxidant capacity of liver, kidney, and colorectal adenocarcinoma cells. The aim [...] Read more.
The neurotoxin β-N-methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid produced by cyanobacteria. Non-neuronal toxicity of BMAA is poorly studied with a reported increase in reactive oxygen species and a decrease in the antioxidant capacity of liver, kidney, and colorectal adenocarcinoma cells. The aim of this research is to study the toxicity of BMAA (0.1–1 mM) on mitochondria and submitochondrial particles with ATPase activity, on the semicarbazide-sensitive amino oxidases (SSAOs) activity of rat liver, and on an in vitro model containing functionally active excitable tissues—regularly contracting heart muscle preparation with a preserved autonomic innervation. For the first time the BMAA-dependent inhibition of SSAO activity, the elimination of the positive inotropic effect of adrenergic innervation, and the direct and reversible inhibition of adrenaline signaling in ventricular myocytes with 1 mM BMAA were observed. Additionally, it is confirmed that 1 mM BMAA can activate mitochondrial ATPase indirectly. It is concluded that a higher dose of BMAA may influence multiple physiological and pathological processes as it slows down the degradation of biogenic amines, downregulates the sympathetic neuromediation, and embarrasses the cell signaling of adrenergic receptors. Full article
(This article belongs to the Special Issue Cyanobacterial Toxins: Toxins Production and Risk Assessment)
Show Figures

Graphical abstract

17 pages, 2036 KiB  
Article
Determination of Multiclass Cyanotoxins in Blue-Green Algae (BGA) Dietary Supplements Using Hydrophilic Interaction Liquid Chromatography-Tandem Mass Spectrometry
by María del Mar Aparicio-Muriana, Francisco J. Lara, Monsalud Del Olmo-Iruela and Ana M. García-Campaña
Toxins 2023, 15(2), 127; https://doi.org/10.3390/toxins15020127 - 4 Feb 2023
Cited by 12 | Viewed by 3179
Abstract
In recent years, the consumption of blue-green algae (BGA) dietary supplements is increasing because of their health benefits. However, cyanobacteria can produce cyanotoxins, which present serious health risks. In this work we propose hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry (HILIC-MS/MS) [...] Read more.
In recent years, the consumption of blue-green algae (BGA) dietary supplements is increasing because of their health benefits. However, cyanobacteria can produce cyanotoxins, which present serious health risks. In this work we propose hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry (HILIC-MS/MS) to determine cyanotoxins in BGA dietary supplements. Target toxins, including microcystin-leucine-arginine (MC-LR) and microcystin-arginine-arginine (MC-RR), nodularin, anatoxin-a and three non-protein amino acids, β-N-methylamino-L-alanine (BMAA), 2,4-diaminobutyric acid (DAB) and N-(2-aminoethyl)glycine (AEG), were separated using a SeQuant ZIC-HILIC column. Cyanotoxin extraction was based on solid–liquid extraction (SLE) followed by a tandem-solid phase extraction (SPE) procedure using Strata-X and mixed-mode cation-exchange (MCX) cartridges. The method was validated for BGA dietary supplements obtaining quantification limits from 60 to 300 µg·kg−1. Nine different commercial supplements were analyzed, and DAB, AEG, and MCs were found in some samples, highlighting the relevance of monitoring these substances as precaution measures for the safe consumption of these products. Full article
Show Figures

Figure 1

37 pages, 1139 KiB  
Review
Environmental Neurotoxin β-N-Methylamino-L-alanine (BMAA) as a Widely Occurring Putative Pathogenic Factor in Neurodegenerative Diseases
by Srdjan Lopicic, Zorica Svirčev, Tamara Palanački Malešević, Aleksandar Kopitović, Aleksandra Ivanovska and Jussi Meriluoto
Microorganisms 2022, 10(12), 2418; https://doi.org/10.3390/microorganisms10122418 - 6 Dec 2022
Cited by 19 | Viewed by 4996
Abstract
In the present review we have discussed the occurrence of β-N-methylamino-L-alanine (BMAA) and its natural isomers, and the organisms and sample types in which the toxin(s) have been detected. Further, the review discusses general pathogenic mechanisms of neurodegenerative diseases, and how [...] Read more.
In the present review we have discussed the occurrence of β-N-methylamino-L-alanine (BMAA) and its natural isomers, and the organisms and sample types in which the toxin(s) have been detected. Further, the review discusses general pathogenic mechanisms of neurodegenerative diseases, and how modes of action of BMAA fit in those mechanisms. The biogeography of BMAA occurrence presented here contributes to the planning of epidemiological research based on the geographical distribution of BMAA and human exposure. Analysis of BMAA mechanisms in relation to pathogenic processes of neurodegeneration is used to critically assess the potential significance of the amino acid as well as to identify gaps in our understanding. Taken together, these two approaches provide the basis for the discussion on the potential role of BMAA as a secondary factor in neurodegenerative diseases, the rationale for further research and possible directions the research can take, which are outlined in the conclusions. Full article
(This article belongs to the Special Issue Feature Collection in Environmental Microbiology Section 2021-2022)
Show Figures

Figure 1

11 pages, 804 KiB  
Article
The Changes in Cyanobacterial Concentration of β-Methylamino-L-Alanine during a Bloom Event
by Siobhan J. Peters, Kenneth J. Rodgers, Simon M. Mitrovic and David P. Bishop
Molecules 2022, 27(21), 7382; https://doi.org/10.3390/molecules27217382 - 30 Oct 2022
Cited by 6 | Viewed by 1989
Abstract
β-N-methylamino L-alanine (BMAA) is a neurotoxin linked to high incidences of neurodegenerative disease. The toxin, along with two of its common isomers, 2,4-diaminobuytric acid (2,4-DAB) and N-(2-aminoethyl)glycine (AEG), is produced by multiple genera of cyanobacteria worldwide. Whilst there are many reports of locations [...] Read more.
β-N-methylamino L-alanine (BMAA) is a neurotoxin linked to high incidences of neurodegenerative disease. The toxin, along with two of its common isomers, 2,4-diaminobuytric acid (2,4-DAB) and N-(2-aminoethyl)glycine (AEG), is produced by multiple genera of cyanobacteria worldwide. Whilst there are many reports of locations and species of cyanobacteria associated with the production of BMAA during a bloom, there is a lack of information tracking changes in concentration across a single bloom event. This study aimed to measure the concentrations of BMAA and its isomers through the progression and end of a cyanobacteria bloom event using liquid chromatography-triple quadrupole-mass spectrometry. BMAA was detected in all samples analysed, with a decreasing trend observed as the bloom progressed. BMAA’s isomers were also detected in all samples, however, they did not follow the same decreasing pattern. This study highlights the potential for current sampling protocols that measure a single time point as representative of a bloom’s overall toxin content to underestimate BMAA concentration during a bloom event. Full article
(This article belongs to the Special Issue Analytical Techniques in Environmental Chemistry)
Show Figures

Figure 1

Back to TopTop