Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = β-CaSiO3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7952 KiB  
Article
Achyrophanite, (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5, a New Mineral with the Novel Structure Type from Fumarolic Exhalations of the Tolbachik Volcano, Kamchatka, Russia
by Igor V. Pekov, Natalia V. Zubkova, Natalia N. Koshlyakova, Dmitry I. Belakovskiy, Marina F. Vigasina, Atali A. Agakhanov, Sergey N. Britvin, Anna G. Turchkova, Evgeny G. Sidorov, Pavel S. Zhegunov and Dmitry Yu. Pushcharovsky
Minerals 2025, 15(7), 706; https://doi.org/10.3390/min15070706 - 2 Jul 2025
Viewed by 297
Abstract
The new mineral achyrophanite (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5 was found in high-temperature sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, [...] Read more.
The new mineral achyrophanite (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5 was found in high-temperature sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with aphthitalite-group sulfates, hematite, alluaudite-group arsenates (badalovite, calciojohillerite, johillerite, nickenichite, hatertite, and khrenovite), ozerovaite, pansnerite, arsenatrotitanite, yurmarinite, svabite, tilasite, katiarsite, yurgensonite, As-bearing sanidine, anhydrite, rutile, cassiterite, and pseudobrookite. Achyrophanite occurs as long-prismatic to acicular or, rarer, tabular crystals up to 0.02 × 0.2 × 1.5 mm, which form parallel, radiating, bush-like, or chaotic aggregates up to 3 mm across. It is transparent, straw-yellow to golden yellow, with strong vitreous luster. The mineral is brittle, with (001) perfect cleavage. Dcalc is 3.814 g cm–3. Achyrophanite is optically biaxial (+), α = 1.823(7), β = 1.840(7), γ = 1.895(7) (589 nm), 2V (meas.) = 60(10)°. Chemical composition (wt.%, electron microprobe) is: Na2O 3.68, K2O 9.32, CaO 0.38, MgO 1.37, MnO 0.08, CuO 0.82, ZnO 0.48, Al2O3 2.09, Fe2O3 20.42, SiO2 0.12, TiO2 7.35, P2O5 0.14, V2O5 0.33, As2O5 51.88, SO3 1.04, and total 99.40. The empirical formula calculated based on 22 O apfu is Na1.29K2.15Ca0.07Mg0.34Mn0.01Cu0.11Zn0.06Al0.44Fe3+2.77Ti1.00Si0.02P0.02S0.14V0.04As4.90O22. Achyrophanite is orthorhombic, space group P2221, a = 6.5824(2), b = 13.2488(4), c = 10.7613(3) Å, V = 938.48(5) Å3 and Z = 2. The strongest reflections of the PXRD pattern [d,Å(I)(hkl)] are 5.615(59)(101), 4.174(42)(022), 3.669(31)(130), 3.148(33)(103), 2.852(43)(141), 2.814(100)(042, 202), 2.689(29)(004), and 2.237(28)(152). The crystal structure of achyrophanite (solved from single-crystal XRD data, R = 4.47%) is unique. It is based on the octahedral-tetrahedral M-T-O pseudo-framework (M = Fe3+ with admixed Ti, Al, Mg, Na; T = As5+). Large-cation A sites (A = K, Na) are located in the channels of the pseudo-framework. The achyrophanite structure can be described as stuffed, with the defect heteropolyhedral pseudo-framework derivative of the orthorhombic Fe3+AsO4 archetype. The mineral is named from the Greek άχυρον, straw, and φαίνομαι, to appear, in allusion to its typical straw-yellow color and long prismatic habit of crystals. Full article
Show Figures

Figure 1

13 pages, 2746 KiB  
Article
A Cl-Dominant Analogue of Annite Occurs at the Eastern Edge of the Oktyabrsky Cu-Ni-PGE Deposit, Norilsk, Russia
by Andrei Y. Barkov, Giovanni Orazio Lepore, Luca Bindi, Robert F. Martin, Taras Panikorovskii, Ivan I. Nikulin and Sergey A. Silyanov
Minerals 2025, 15(6), 640; https://doi.org/10.3390/min15060640 - 12 Jun 2025
Viewed by 368
Abstract
A Cl-rich annitic mica is present in zones in taxitic gabbro–dolerite enriched in base metal sulfides in the eastern portion of the Oktyabrsky deposit in the Norilsk complex (Russia). Other Cl-enriched minerals in the assemblage include hastingsite (4.06 wt.% Cl), ferro-hornblende (2.53 wt.%), [...] Read more.
A Cl-rich annitic mica is present in zones in taxitic gabbro–dolerite enriched in base metal sulfides in the eastern portion of the Oktyabrsky deposit in the Norilsk complex (Russia). Other Cl-enriched minerals in the assemblage include hastingsite (4.06 wt.% Cl), ferro-hornblende (2.53 wt.%), and chlorapatite (>6 wt.%). New wavelength-dispersive electron probe analyses reveal compositions with up to 7.75 wt.% Cl, corresponding to the formula K0.742Na0.047Ca0.007)Σ0.796 (Fe2+2.901Mg0.078Mn0.047Ti0.007Cr0.003)Σ3.036 (Si3.190Al0.782)Σ3.972O10 (Cl1.105OH0.854F0.041)Σ2.000 based on 22 negative charges per formula unit, in which OH(calc.) = 2 − (Cl + F). Unfortunately, the grain size of the Cl-dominant mica precluded a single-crystal X-ray diffraction study even though its EBSD pattern confirms its identity as a member of the Mica group. We present results of a refinement of a crystal from the same mineralized sample containing 0.90(6) apfu Cl [R1 = 7.89% for 3720 unique reflections]. The mica is monoclinic, space group C2/m, a 5.3991(4), b 9.3586(6), c 10.2421(10) Å, β 100.873(9)°, V = 508.22(7) Å3, Z = 2. We also describe physical properties and provide a Raman spectrum. Among the mica compositions acquired from the same sample, a high Cl content is correlated with relative enrichment in Si, Mn, and Na and with a depletion in Al, Mg (low Mg#), K, Cr, and Ti. The buildup in Cl in the ore-forming environment is ultimately due to efficient fractional crystallization of the basic magma, with possible contributions from the Devonian metasedimentary sequences that it intruded. Full article
(This article belongs to the Collection New Minerals)
Show Figures

Figure 1

28 pages, 2711 KiB  
Article
Soluble β-Amyloid Oligomers Selectively Upregulate TRPC3 in Excitatory Neurons via Calcineurin-Coupled NFAT
by Zhengjun Wang, Dongyi Ding, Jiaxing Wang, Ling Chen, Qingming Dong, Moumita Khamrai, Yuyang Zhou, Akihiro Ishii, Kazuko Sakata, Wei Li, Jianyang Du, Thirumalini Vaithianathan, Fu-Ming Zhou and Francesca-Fang Liao
Cells 2025, 14(11), 843; https://doi.org/10.3390/cells14110843 - 4 Jun 2025
Viewed by 868
Abstract
To investigate how dysregulated transient receptor potential canonical channels (TRPCs) are associated with Alzheimer’s disease (AD), we challenged primary neurons with amyloid-β (Aβ). Both the naturally secreted or synthetic Aβ oligomers (AβOs) induced long-lasting increased TRPC3 and downregulated the TRPC6 expression in mature [...] Read more.
To investigate how dysregulated transient receptor potential canonical channels (TRPCs) are associated with Alzheimer’s disease (AD), we challenged primary neurons with amyloid-β (Aβ). Both the naturally secreted or synthetic Aβ oligomers (AβOs) induced long-lasting increased TRPC3 and downregulated the TRPC6 expression in mature excitatory neurons (CaMKIIα-high) via a Ca2+-dependent calcineurin-coupled NFAT transcriptionally and calpain-mediated protein degradation, respectively. The TRPC3 expression was also found to be upregulated in pyramidal neurons of human AD brains. The selective downregulation of the Trpc6 gene induced synaptotoxicity, while no significant effect was observed from the Trpc3-targeting siRNA, suggesting potentially differential roles of TRPC3 and 6 in modulating the synaptic morphology and functions. Electrophysiological recordings of mouse hippocampal slices overexpressing TRPC3 revealed increased neuronal hyperactivity upon the TRPC3 channel activation by its agonist. Furthermore, the AβO-mediated synaptotoxicity appeared to be positively correlated with the degrees of the induced dendritic Ca2+ flux in neurons, which was completely prevented by the co-treatment with two pyrazole-based TRPC3-selective antagonists Pyr3 or Pyr10. Taken together, our findings suggest that the aberrantly upregulated TRPC3 is another ion channel critically contributing to the process of AβO-induced Ca2+ overload, neuronal hyperexcitation, and synaptotoxicity, thus representing a potential therapeutic target of AD. Full article
Show Figures

Figure 1

16 pages, 6091 KiB  
Article
Seasonal Dynamics of Microbial Communities in PM2.5 and PM10 from a Pig Barn
by Qian Tang, Minyang Zhang, Lili Yu, Kaidong Deng, Huihua Mao, Jingwen Hu and Chuang Wang
Animals 2025, 15(8), 1116; https://doi.org/10.3390/ani15081116 - 12 Apr 2025
Cited by 1 | Viewed by 522
Abstract
Modern, intensive, high-density farming practices cause elevated concentrations of particulate matter (PM) inside livestock barns. PM in livestock barns is predominantly biological, hence, it contains abundant microorganisms. Understanding the microbial composition of PM is crucial for assessing the hazards of air emitted from [...] Read more.
Modern, intensive, high-density farming practices cause elevated concentrations of particulate matter (PM) inside livestock barns. PM in livestock barns is predominantly biological, hence, it contains abundant microorganisms. Understanding the microbial composition of PM is crucial for assessing the hazards of air emitted from livestock barns. PM10 and PM2.5 from a pig barn were collected in winter and spring, and morphological, chemical, and microbial analyses were performed. The PM samples exhibit diverse morphological characteristics. The top three elements detected in the PM samples were O, C, and Si. Other elements, including N, Al, K, Mg, Ca, Na, Zn, P, W, Ba, Fe, S, Cl, and Ti, were also identified in these samples. For bacterial α diversity, the Sobs and Chao1 indices for PM10 were significantly higher than those for PM2.5 in winter (p < 0.05), and in spring, the ACE index for PM10 was significantly higher than that for PM2.5 (p < 0.05). For fungal α diversity, the Shannon index for PM10 was significantly higher than that for PM2.5 in winter (p < 0.01), and in spring, the Ace index for PM10 was significantly higher than that for PM2.5 (p < 0.05). The β diversity results indicate that season, rather than the particle size, had a significant effect on the microbial composition in the PM samples. A total of seven bacterial pathogen genera and 16 fungal allergen genera were identified in PM samples. In winter, the relative abundances of total bacterial pathogens and fungal allergens in PM2.5 were higher than those in PM10. In contrast, the relative abundance of fungal allergens in PM10 was higher in spring than in winter. This study provides a comprehensive characterization of PM from a pig barn across the particle sizes and seasons. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

15 pages, 6633 KiB  
Article
Nioboixiolite-(□),(Nb0.8□0.2)4+O2, a New Mineral Species from the Bayan Obo World-Class REE-Fe-Nb Deposit, Inner Mongolia, China
by Yike Li, Changhui Ke, Denghong Wang, Zidong Peng, Yonggang Zhao, Ruiping Li, Zhenyu Chen, Guowu Li, Hong Yu, Li Zhang, Bin Guo and Yupu Gao
Minerals 2025, 15(1), 88; https://doi.org/10.3390/min15010088 - 17 Jan 2025
Cited by 3 | Viewed by 799
Abstract
Nioboixiolite-(□) is a new mineral found in a carbonatite sill from the Bayan Obo mine, Baotou City, Inner Mongolia, China. It occurs as anhedral to subhedral grains (100 to 500 μm in diameter) that are disseminated in carbonatite rock composed of dolomite, calcite, [...] Read more.
Nioboixiolite-(□) is a new mineral found in a carbonatite sill from the Bayan Obo mine, Baotou City, Inner Mongolia, China. It occurs as anhedral to subhedral grains (100 to 500 μm in diameter) that are disseminated in carbonatite rock composed of dolomite, calcite, magnetite, apatite, biotite, actionlike, zircon, and columbite-(Fe). Most of these grains are highly serrated, with numerous inclusions of columbite-(Fe). The mineral is gray to deep black in color; is opaque, with a semi-metallic luster; has a black streak; and is brittle, with an uneven conchoidal splintery. The Mohs hardness is 6–6½, and the calculated density is 6.05 g/cm3. The reflection color is gray with a blue tone, and there is no double reflection color. The measured reflectivity of nioboixiolite-(□) is about 10.6%~12.1%, close to that of ixiolite (11%–13%). Nioboixiolite-(□) is non-fluorescent under 254 nm (short-wave) and 366 nm (long-wave) ultraviolet light. The average chemical analysis results (wt.%) of twelve electron microprobe analyses are F 0.01, MnO 0.12, MgO 0.15, BaO 0.62, PbO 0.91, SrO 1.49, CaO 2.76, Al2O3 0.01, TREE2O3 1.58, Fe2O3 3.57, ThO2 0.11, SiO2 1.69, TiO2 3.68, Ta2O5 13.95, Nb2O5 47.04, and UO3 21.56, with a total of 99.25. The simplified formula is [Nb5+, Ta5+,Ti4+, Fe3+,□,]O2. X-ray diffraction data show that nioboixiolite-(□) is orthorhombic, belonging to the space group Pbcn (#60). The refined unit cell parameters are a = 4.7071(5) Å, b = 5.7097(7) Å, c = 5.1111(6) Å, V = 138.31(3), and β = 90(1) °Å3 with Z = 4. In the crystal structure of nioboixiolite-(□), all cations occupy a single M1 site. In these minerals, edge-sharing M1O6 octahedra form chains along the c direction. In this direction, the chains are connected with each other via common vertices of the octahedra. The strongest measured X-ray powder diffraction lines are [d in Å, (I/I0), (hkl)]: 3.662(20) (110), 2.975(100) (111), 2.501(20) (021), 1.770(20) (122), 1.458(20) (023). A type specimen was deposited in the Geological Museum of China with catalogue number M16118, No. 15, Yangrou Hutong, Xisi, Beijing 100031, People’s Republic of China. Full article
(This article belongs to the Collection New Minerals)
Show Figures

Figure 1

14 pages, 3502 KiB  
Article
Zheshengite, Pb4ZnZn2(AsO4)2(PO4)2(OH)2: A New Mineral of the Dongchuanite Group and the Influence of As–P Isomorphic Substitution on Unit-Cell Parameters of Dongchuanite Group Minerals
by Ningyue Sun, Guowu Li, Yuan Xue, Hongtao Shen and Jinhua Hao
Minerals 2024, 14(12), 1276; https://doi.org/10.3390/min14121276 - 16 Dec 2024
Cited by 1 | Viewed by 924
Abstract
Zheshengite (IMA2022-011), Pb4ZnZn2(AsO4)2(PO4)2(OH)2, is a new mineral from Sanguozhuang Village in the eastern Dongchuan Copper Ore Field, Yunnan Province, China. The new mineral is named after Zhesheng Ma (1937–). [...] Read more.
Zheshengite (IMA2022-011), Pb4ZnZn2(AsO4)2(PO4)2(OH)2, is a new mineral from Sanguozhuang Village in the eastern Dongchuan Copper Ore Field, Yunnan Province, China. The new mineral is named after Zhesheng Ma (1937–). Zheshengite occurs as prismatic single crystals with chisel-like terminations on hemimorphite, with crystal sizes ranging from 0.02 to 0.05 mm. It is a brittle mineral with irregular fractures, a Mohs hardness of 2½ to 3, perfect cleavage on {011}, and a calculated density of 6.26 g/cm3. The empirical formula of zheshengite, based on 18 O atoms per formula unit, is (Pb4.12Ca0.01)∑4.13(Zn0.83Cu0.23Fe0.04)∑1.10Zn2.00[(As0.90P0.10)∑1.00O4]2[(P0.94Si0.01)∑0.95O4]2(OH)2. Zheshengite exhibits a triclinic structure (space group P−1, no. 2), with unit-cell parameters: a = 4.7746(4) Å, b = 8.4920 (7) Å, c = 10.4056 (8) Å, α = 97.087 (7)°, β = 101.060 (7)°, γ = 92.996 (7)°, V = 409.66 (6) Å3, and Z = 1. As a member of the dongchuanite group, zheshengite features a dongchuanite-type structure. This study reveals the impact of As–P isomorphic substitution on unit-cell parameters in the dongchuanite group, identifying correlations between As content and changes in parameters a and V, which may serve as diagnostic indicators for dongchuanite group minerals. In addition, the structure studies of zheshengite may have implications for environmental protection. Full article
(This article belongs to the Collection New Minerals)
Show Figures

Figure 1

19 pages, 13271 KiB  
Article
Sintering Mechanism and Leaching Kinetics of Low-Grade Mixed Lithium Ore and Limestone
by Wanying Fu, Long Meng and Jingkui Qu
Metals 2024, 14(9), 1075; https://doi.org/10.3390/met14091075 - 19 Sep 2024
Cited by 4 | Viewed by 1489
Abstract
With the rapid development of new energy fields and the current shortage of lithium supply, an efficient, clean, and stable lithium resource extraction process is urgently necessary. In this paper, various advanced detection methods were utilized to conduct a mineralogical analysis of the [...] Read more.
With the rapid development of new energy fields and the current shortage of lithium supply, an efficient, clean, and stable lithium resource extraction process is urgently necessary. In this paper, various advanced detection methods were utilized to conduct a mineralogical analysis of the raw ore and systematically study the occurrence state of lithium; the limestone sintering process was strengthened and optimized, elucidating the sintering mechanism and analyzing the leaching process kinetics. Under an ingredient ratio of 1:3, a sample particle size of 300 mesh, a sintering temperature of 1100 °C, a sintering time of 3 h, a liquid–solid ratio of 2:1, a leaching temperature of 95 °C, and a leaching time of 1 h, the leaching rate of Li reached 90.04%. The highly active Ca–O combined with Si–O on the surface of β–spodumene to CaSiO4, and Al–O was isolated and combined with Li to LiAlO2, which was beneficial for the leaching process. The leaching process was controlled by both surface chemical reactions and diffusion processes, and Ea was 27.18 kJ/mol. These studies provide theoretical guidance for the subsequent re-optimization of the process. Full article
Show Figures

Figure 1

22 pages, 9321 KiB  
Article
New Minerals from Inclusions in Corundum Xenocrysts from Mt. Carmel, Israel: Magnéliite, Ziroite, Sassite, Mizraite-(Ce) and Yeite
by Chi Ma, Fernando Cámara, Luca Bindi, Vered Toledo and William L. Griffin
Materials 2023, 16(24), 7578; https://doi.org/10.3390/ma16247578 - 9 Dec 2023
Cited by 7 | Viewed by 1917
Abstract
Our nanomineralogical investigation of melt inclusions in corundum xenocrysts from the Mt. Carmel area, Israel has revealed seven IMA-approved new minerals since 2021. We report here four new oxide minerals and one new alloy mineral. Magnéliite (Ti3+2Ti4+2O [...] Read more.
Our nanomineralogical investigation of melt inclusions in corundum xenocrysts from the Mt. Carmel area, Israel has revealed seven IMA-approved new minerals since 2021. We report here four new oxide minerals and one new alloy mineral. Magnéliite (Ti3+2Ti4+2O7; IMA 2021-111) occurs as subhedral crystals, ~4 μm in size, with alabandite, zirconolite, Ti,Al,Zr-oxide, and hibonite in corundum Grain 767-1. Magnéliite has an empirical formula (Ti3+1.66Al0.13Ti4+0.15Mg0.10Ca0.01Sc0.01)Σ2.06 (Ti4+1.93Zr0.08)Σ2.01O7 and the triclinic P1¯ Ti4O7-type structure with the cell parameters: a = 5.60(1) Å, b = 7.13(1) Å, c = 12.47(1) Å, α = 95.1(1)°, β = 95.2(1)°, γ = 108.7(1)°, V = 466(2) Å3, Z = 4. Ziroite (ZrO2; IMA 2022-013) occurs as irregular crystals, ~1–4 μm in size, with baddeleyite, hibonite, and Ti,Al,Zr-oxide in corundum Grain 479-1a. Ziroite has an empirical formula (Zr0.72Ti4+0.26Mg0.02Al0.02Hf0.01)Σ1.03O2 and the tetragonal P42/nmc zirconia(HT)-type structure with the cell parameters: a = 3.60(1) Å, c = 5.18(1) Å, V = 67.1(3) Å3, Z = 2. Sassite (Ti3+2Ti4+O5; IMA 2022-014) occurs as subhedral-euhedral crystals, ~4–16 μm in size, with Ti,Al,Zr-oxide, mullite, osbornite, baddeleyite, alabandite, and glass in corundum Grain 1125C1. Sassite has an empirical formula (Ti3+1.35Al0.49Ti4+0.08Mg0.07)Σ1.99(Ti4+0.93Zr0.06Si0.01)Σ1.00O5 and the orthorhombic Cmcm pseudobrookite-type structure with the cell parameters: a = 3.80(1) Å, b = 9.85(1) Å, c = 9.99(1) Å, V = 374(1) Å3, Z = 4. Mizraite-(Ce) (Ce(Al11Mg)O19; IMA 2022-027) occurs as euhedral crystals, <1–14 μm in size, with Ce-silicate, Ti-sulfide, Ti,Al,Zr-oxide, ziroite, and thorianite in corundum Grain 198-8. Mizraite-(Ce) has an empirical formula (Ce0.76Ca0.10La0.07Nd0.01)Σ0.94(Al10.43Mg0.84Ti3+0.60Si0.09Zr0.04)Σ12.00O19 and the hexagonal P63/mmc magnetoplumbite-type structure with the cell parameters: a = 5.61(1) Å, c = 22.29(1) Å, V = 608(2) Å3, Z = 2. Yeite (TiSi; IMA 2022-079) occurs as irregular-subhedral crystals, 1.2–3.5 μm in size, along with wenjiite (Ti5Si3) and zhiqinite (TiSi2) in Ti-Si alloy inclusions in corundum Grain 198c. Yeite has an empirical formula (Ti0.995Mn0.003V0.001Cr0.001)(Si0.996P0.004) and the orthorhombic Pnma FeB-type structure with the cell parameters: a = 6.55(1) Å, b = 3.64(1) Å, c = 4.99(1) Å, V = 119.0(4) Å3, Z = 4. The five minerals are high-temperature oxide or alloy phases, formed in melt pockets in corundum xenocrysts derived from the upper mantle beneath Mt. Carmel. Full article
(This article belongs to the Special Issue Advances in Rock and Mineral Materials)
Show Figures

Figure 1

24 pages, 18786 KiB  
Article
Composite Powders Synthesized from the Water Solutions of Sodium Silicate and Different Calcium Salts (Nitrate, Chloride, and Acetate)
by Tatiana V. Safronova, Gleb S. Sterlikov, Maksim R. Kaimonov, Tatiana B. Shatalova, Yaroslav Y. Filippov, Otabek U. Toshev, Ilya V. Roslyakov, Daniil A. Kozlov, Irina N. Tikhomirova and Muslim R. Akhmedov
J. Compos. Sci. 2023, 7(10), 408; https://doi.org/10.3390/jcs7100408 - 25 Sep 2023
Cited by 2 | Viewed by 3037
Abstract
Composite powders were synthesized from the water solutions of sodium silicate and different calcium salts (nitrate, chloride, and acetate) at a Ca/Si molar ratio of 1.0. According to the XRD data, all the synthesized powders included hydrated calcium silicate Ca1,5SiO3,5 [...] Read more.
Composite powders were synthesized from the water solutions of sodium silicate and different calcium salts (nitrate, chloride, and acetate) at a Ca/Si molar ratio of 1.0. According to the XRD data, all the synthesized powders included hydrated calcium silicate Ca1,5SiO3,5·xH2O (Ca/Si molar ratio = 1.5) and calcium carbonate CaCO3 (Ca/Si molar ratio = ∞). The presence of H2SiO3 or SiO2·xH2O in the synthesized powders was assumed to be due to the difference between the Ca/Si molar ratio of 1.0 specified by the synthesis protocol and the molar ratio of the detected products. Reaction by-products (sodium nitrate NaNO3, sodium chloride NaCl, and sodium acetate NaCH3COO) were also found in the synthesized powders after filtration and drying. According to the XRD data phase composition of all powders after washing four times consisted of the quasi-amorphous phase and calcium carbonate in the form of calcite. Calcium carbonate in the form of aragonite was detected in powders synthesized from calcium chloride CaCl2 and calcium nitrate Ca(NO3)2 before and after washing. Synthesized powders containing reaction by-products and washed powders were used for the preparation of ceramics at 900, 1000, and 1100 °C. The phase composition of the ceramic samples prepared from the washed powders and powder containing NaCl after firing at 900 and 1000 °C consisted of β-wollastonite β-CaSiO3, and, after firing at 1100 °C, consisted of both β-wollastonite β-CaSiO3 and pseudo-wollastonite α-CaSiO3. The phase composition of the ceramic samples prepared from powders containing sodium nitrate NaNO3 and sodium acetate NaCH3COO after firing at 900, 1000, and 1100 °C consisted of calcium sodium silicates, i.e., Na2Ca2Si3O9 (combeite) and Na2Ca3Si2O8. Synthesized and washed composite powders can be used for the preparation of biocompatible materials, in the technology of construction materials, and as components of lunar soil simulants. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

9 pages, 2514 KiB  
Article
First Terrestrial Occurrence of Kaitianite (Ti3+2Ti4+O5) from the Upper Mantle beneath Mount Carmel, Israel
by Chi Ma, Fernando Cámara, Luca Bindi, Vered Toledo and William L. Griffin
Minerals 2023, 13(8), 1097; https://doi.org/10.3390/min13081097 - 17 Aug 2023
Cited by 3 | Viewed by 2143
Abstract
Our nanomineralogical investigation of melt inclusions in corundum xenoliths from the Mount Carmel area, Israel, has revealed seven IMA-approved new minerals since 2021. We report here the first terrestrial occurrence of kaitianite (Ti3+2Ti4+O5). Kaitianite occurs as [...] Read more.
Our nanomineralogical investigation of melt inclusions in corundum xenoliths from the Mount Carmel area, Israel, has revealed seven IMA-approved new minerals since 2021. We report here the first terrestrial occurrence of kaitianite (Ti3+2Ti4+O5). Kaitianite occurs as exsolution lamellae in tistarite (Ti2O3), in a melt inclusions together with a Ti,Al,Zr-oxide, a MgTi3+2Al4SiO12 phase, spinel, sapphirine, Ti-sulfide, alabandite, and Si-rich glass in a corundum grain (Grain 1125C2). The chemical composition of kaitianite using electron probe microanalysis is (wt%) Ti2O3 58.04, TiO2 37.82, Al2O3 2.87, MgO 0.85, ZrO2 0.10, CaO 0.02, SiO2 0.02, sum 99.73, yielding an empirical formula of (Ti3+1.78Al0.12Ti4+0.05Mg0.05)(Ti4+1.00)O5, with the Ti3+ and Ti4+ partitioned, assuming a stoichiometry of three cations and five oxygen anions pfu. Electron back-scatter diffraction reveals that kaitianite has the monoclinic C2/c γ-Ti3O5-type structure with cell parameters: a = 10.12 Å, b = 5.07 Å, c = 7.18 Å, β = 112°, V = 342 Å3, and Z = 4. Kaitianite is a high-temperature oxide phase, formed in melt pockets under reduced conditions in corundum-aggregate xenoliths derived from the upper mantle beneath Mount Carmel, Israel. Full article
Show Figures

Figure 1

12 pages, 1461 KiB  
Article
Anterior Cervical Discectomy and Fusion Performed Using a CaO-SiO2-P2O5-B2O3 Bioactive Glass Ceramic or Polyetheretherketone Cage Filled with Hydroxyapatite/β-Tricalcium Phosphate: A Prospective Randomized Controlled Trial
by Jiwon Park, Sang-Min Park, Dae-Woong Ham, Jae-Young Hong, Ho-Joong Kim and Jin S. Yeom
J. Clin. Med. 2023, 12(12), 4069; https://doi.org/10.3390/jcm12124069 - 15 Jun 2023
Cited by 4 | Viewed by 1910
Abstract
A CaO-SiO2-P2O5-B2O3 bioactive glass-ceramic (BGS-7) spacer provides high mechanical stability, produces a chemical bond to the adjacent endplate, and facilitates fusion after spine surgery. This prospective, randomized, single-blind, non-inferiority trial aimed to evaluate the [...] Read more.
A CaO-SiO2-P2O5-B2O3 bioactive glass-ceramic (BGS-7) spacer provides high mechanical stability, produces a chemical bond to the adjacent endplate, and facilitates fusion after spine surgery. This prospective, randomized, single-blind, non-inferiority trial aimed to evaluate the radiographic outcomes and clinical efficacy of anterior cervical discectomy and fusion (ACDF) using a BGS-7 spacer for treating cervical degenerative disorders. Thirty-six patients underwent ACDF using a BGS-7 spacer (Group N), and 40 patients underwent ACDF using polyetheretherketone (PEEK) cages filled with a mixture of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) for the treatment of cervical degenerative disorders. The spinal fusion rate was assessed 12 months postoperatively using three-dimensional computed tomography (CT) and dynamic radiographs. Clinical outcomes included patient-reported outcome measures, visual analog scale scores for neck and arm pain, and scores from the neck disability index (NDI), European Quality of Life-5 Dimensions (EQ-5D), and 12-item Short Form Survey (SF-12v2). All participants were randomly assigned to undergo ACDF using either a BGS-7 spacer or PEEK cage filled with HA and β-TCP. The primary outcome was the fusion rate on CT scan image at 12 months after ACDF surgery based on a per-protocol strategy. Clinical outcomes and adverse events were also assessed. The 12-month fusion rates for the BGS-7 and PEEK groups based on CT scans were 81.8% and 74.4%, respectively, while those based on dynamic radiographs were 78.1% and 73.7%, respectively, with no significant difference between the groups. There were no significant differences in the clinical outcomes between the two groups. Neck pain, arm pain, NDI, EQ-5D, and SF-12v2 scores significantly improved postoperatively, with no significant differences between the groups. No adverse events were observed in either group. In ACDF surgery, the BGS-7 spacer showed similar fusion rates and clinical outcomes as PEEK cages filled with HA and β-TCP. Full article
(This article belongs to the Special Issue Spine Surgery – from Basics to Advances Technology)
Show Figures

Figure 1

10 pages, 2949 KiB  
Article
Ca3SiO4Cl2—An Anthropogenic Phase from Burnt Mine Dumps of the Chelyabinsk Coal Basin: Crystal Structure Refinement, Spectroscopic Study and Thermal Evolution
by Anastasia S. Brazhnikova, Margarita S. Avdontceva, Andrey A. Zolotarev, Maria G. Krzhizhanovskaya, Vladimir N. Bocharov, Vladimir V. Shilovskikh, Mikhail A. Rassomakhin, Vladislav V. Gurzhiy and Sergey V. Krivovichev
Minerals 2023, 13(5), 668; https://doi.org/10.3390/min13050668 - 12 May 2023
Cited by 3 | Viewed by 1705
Abstract
The mineral-like phase Ca3SiO4Cl2, an anthropogenic anhydrous calcium chlorine-silicate from the Chelyabinsk coal basin has been investigated using single-crystal and high-temperature powder X-ray diffraction and Raman spectroscopy. The empirical formula of this phase was calculated as Ca [...] Read more.
The mineral-like phase Ca3SiO4Cl2, an anthropogenic anhydrous calcium chlorine-silicate from the Chelyabinsk coal basin has been investigated using single-crystal and high-temperature powder X-ray diffraction and Raman spectroscopy. The empirical formula of this phase was calculated as Ca2.96[(Si0.98P0.03)Σ1.01O4]Cl2, in good agreement with its ideal formula. Ca3SiO4Cl2 is monoclinic, space group P21/c, Z = 4, a = 9.8367(6) Å, b = 6.7159(4) Å, c = 10.8738(7) Å, β = 105.735(6)°, V = 691.43(8) Å3. The crystal structure is based upon the pseudo-layers formed by Ca–O and Si–O bonds separated by Cl atoms. The pseudo-layers are parallel to the (100) plane. The crystal structure of Ca3SiO4Cl2 was refined (R1 = 0.037) and stable up to 660 °C; it expands anisotropically with the direction of the strongest thermal expansion close to parallel to the [−101] direction, which can be explained by the combination of thermal expansion and shear deformations that involves the ‘gliding’ of the Ca silicate layers relative to each other. The Raman spectrum of the compound contains the following bands (cm–1): 950 (ν3), 848 (ν1), 600 (ν4), 466 (ν2), 372 (ν2). The bands near 100–200 cm−1 can be described as lattice modes. The compound had also been found under natural conditions in association with chlorellestadite. Full article
Show Figures

Figure 1

15 pages, 5852 KiB  
Article
Thermal Stability of Iron- and Silicon-Substituted Hydroxyapatite Prepared by Mechanochemical Method
by Svetlana V. Makarova, Natalia V. Bulina, Olga B. Vinokurova and Arcady V. Ishchenko
Powders 2023, 2(2), 372-386; https://doi.org/10.3390/powders2020022 - 11 May 2023
Cited by 7 | Viewed by 2018
Abstract
In this study, hydroxyapatite with the substitution of calcium cations by iron and phosphate by silicate groups was synthesized via a mechanochemical method. The as-prepared compounds have the general formula Ca10−xFex(PO4)6−x(SiO4)x(OH) [...] Read more.
In this study, hydroxyapatite with the substitution of calcium cations by iron and phosphate by silicate groups was synthesized via a mechanochemical method. The as-prepared compounds have the general formula Ca10−xFex(PO4)6−x(SiO4)x(OH)2−xOx/2 with x = 0–1.5. The thermal stability of the as-prepared compounds was studied by ex situ annealing of powders in a furnace. It has been established that, at 800 °C for x ≤ 0.5, a partial decomposition of the substituted apatites occurs with the formation of the β–Ca3(PO4)2 phase. At high “x” values, the formation of this phase starts at the lower temperature of 700 °C, followed by the formation of Fe2O3 at 900 °C. The introduction of iron and silicate ions into the hydroxyapatite lattice was shown to decrease its thermal stability. Full article
(This article belongs to the Special Issue Particle Technologies)
Show Figures

Figure 1

8 pages, 5334 KiB  
Article
Microwave Dielectric Properties of CaB2O4-CaSiO3 System for LTCC Applications
by Changzhi Yin, Zhengyu Zou, Mingfei Cheng, Yiyang Cai, Jiaqing Yang, Weicheng Lei, Wenzhong Lu, Xiaoqiang Song and Wen Lei
Crystals 2023, 13(5), 790; https://doi.org/10.3390/cryst13050790 - 9 May 2023
Cited by 9 | Viewed by 2365
Abstract
A novel composite ceramic with low densification temperature was fabricated using the conventional solid-state method. The XRD and Rietveld refinement results indicated that the two phases of CaB2O4 and CaSiO3 can coexist in all compositions. Furthermore, a phase transition [...] Read more.
A novel composite ceramic with low densification temperature was fabricated using the conventional solid-state method. The XRD and Rietveld refinement results indicated that the two phases of CaB2O4 and CaSiO3 can coexist in all compositions. Furthermore, a phase transition of CaSiO3 ceramic from α-phase to β-phase was observed. A dense ceramic with excellent microwave dielectric properties (εr~6.4, Q × f~75,600 GHz, and a negative τf~26.9 ppm/°C) was obtained at x = 0.5 when sintered at 925 °C at the frequency of 14.2 GHz. A good chemical compatibility between the composite ceramic and Ag electrode was improved by elemental mapping results. A patch antenna was fabricated based on the simulated result. All results indicated that the 0.5 CaB2O4 + 0.5 CaSiO3 ceramic has large application potential in the LTCC field. Full article
(This article belongs to the Special Issue Microwave Dielectric Ceramics)
Show Figures

Figure 1

11 pages, 5134 KiB  
Article
Thermodynamic Analysis of Mineral Phase Composition of Steel Slag System
by Shuai Hao, Guoping Luo, Yuanyuan Lu, Shengli An, Yifan Chai and Wei Song
Minerals 2023, 13(5), 643; https://doi.org/10.3390/min13050643 - 6 May 2023
Cited by 3 | Viewed by 1988
Abstract
In order to transform the crystalline form of Ca2SiO4 (C2S) in phosphorus-containing slag from monoclinic β-polycrystalline to square γ-polycrystalline, a volume expansion of about 11% was generated, which caused the phosphorus-containing slag to undergo self-powdering. The CaO-SiO2-Al [...] Read more.
In order to transform the crystalline form of Ca2SiO4 (C2S) in phosphorus-containing slag from monoclinic β-polycrystalline to square γ-polycrystalline, a volume expansion of about 11% was generated, which caused the phosphorus-containing slag to undergo self-powdering. The CaO-SiO2-Al2O3-MgO-MnO-P2O5-FeO slag system was analyzed using FactSage7.1 thermodynamic software, and the effects of different P2O5, FeO and basicity on the mineral phase composition of slag system were analyzed in the range of 1300~1700 °C. It was shown that P2O5, FeO and basicity all have an effect on the composition of the mineral phases. When the mass fraction of P2O5 in the slag was lower than 0.25%, it had less effect on the transformation of C2S crystalline structure. When the P2O5 content was higher than 0.25%, it was favorable to the generation of low-melting-point substances, but the P2O5 in the slag reacted with C2S in the silicate phase, making P5+ solidly soluble in C2S, inhibiting the transformation of β-C2S to γ-C2S and hindering the self-powdering of the slag. The FeO content in the slag system ranged from 20% to 28%, and as the FeO content increased, the C2S content in the silicate phase decreased from 33.3% to 25.9%, while the temperature at which the silicate was completely dissolved into the liquid phase decreased from 1600 °C to 1500 °C and the complete melting temperature of the slag decreased. The low FeO content facilitates the self-powdering of slag. In the high-phosphorus slag, at temperatures below 1450 °C, with the increase of basicity, the proportion of C2S in the silicate phase first increased and then decreased. With basicity at 1.8; the highest content of silicate phase, accounting for 33.7%; and the temperature exceeding 1450 °C, the silicate phase dissolved into the liquid phase, which is conducive to the removal of phosphorus from the slag, achieving the self-powdering of high-phosphorus slag. Full article
(This article belongs to the Special Issue Management, Recycling and Reuse of Industrial Waste)
Show Figures

Figure 1

Back to TopTop