Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (139)

Search Parameters:
Keywords = α-tubulin gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 705 KiB  
Review
Molecular Guardians of Oocyte Maturation: A Systematic Review on TUBB8, KIF11, and CKAP5 in IVF Outcomes
by Charalampos Voros, Ioakeim Sapantzoglou, Diamantis Athanasiou, Antonia Varthaliti, Despoina Mavrogianni, Kyriakos Bananis, Antonia Athanasiou, Aikaterini Athanasiou, Georgios Papadimas, Athanasios Gkirgkinoudis, Ioannis Papapanagiotou, Kyriaki Migklis, Dimitrios Vaitsis, Aristotelis-Marios Koulakmanidis, Dimitris Mazis Kourakos, Sofia Ivanidou, Maria Anastasia Daskalaki, Marianna Theodora, Panagiotis Antsaklis, Dimitrios Loutradis and Georgios Daskalakisadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2025, 26(13), 6390; https://doi.org/10.3390/ijms26136390 - 2 Jul 2025
Viewed by 570
Abstract
The efficacy of in vitro fertilization (IVF) is significantly hindered by early embryonic developmental failure and oocyte maturation arrest. Recent findings in reproductive genetics have identified several oocyte-specific genes—TUBB8, KIF11, and CKAP5—as essential regulators of meiotic spindle formation and [...] Read more.
The efficacy of in vitro fertilization (IVF) is significantly hindered by early embryonic developmental failure and oocyte maturation arrest. Recent findings in reproductive genetics have identified several oocyte-specific genes—TUBB8, KIF11, and CKAP5—as essential regulators of meiotic spindle formation and cytoskeletal dynamics. Mutations in these genes can lead to significant meiotic defects, fertilization failure, and embryo arrest. The links between genotype and phenotype, along with the underlying biological mechanisms, remain inadequately characterized despite the increasing number of identified variations. This systematic review was conducted in accordance with PRISMA 2020 guidelines. Relevant papers were retrieved from the PubMed and Embase databases using combinations of the keywords “TUBB8,” “KIF11,” “CKAP5,” “oocyte maturation arrest,” “embryonic arrest,” and “IVF failure.” Studies were included if they contained clinical, genomic, and functional data on TUBB8, KIF11, or CKAP5 mutations in women undergoing IVF. Molecular data, including gene variant classifications, inheritance models, in vitro tests (such as microtubule network analysis in HeLa cells), and assisted reproductive technology (ART) outcomes, were obtained. Eighteen trials including 35 women with primary infertility were included. Over fifty different variants were identified, the majority of which can be attributed to TUBB8 mutations. TUBB8 disrupted α/β-tubulin heterodimer assembly due to homozygous missense mutations, hence hindering meiotic spindle formation and leading to early embryo fragmentation or the creation of many pronuclei and cleavage failure. KIF11 mutations resulted in spindle disorganization and chromosomal misalignment via disrupting tubulin acetylation and microtubule transport. Mutations in CKAP5 impaired bipolar spindle assembly and microtubule stabilization. In vitro validation studies showed cytoskeletal disturbances, protein instability, and dominant negative effects in transfected animals. Donor egg IVF was the sole effective treatment; however, no viable pregnancies were documented in patients with pathogenic mutations of TUBB8 or KIF11. TUBB8, KIF11, and CKAP5 are essential for safeguarding oocyte meiotic competence and early embryonic development at the molecular level. Genetic differences in these genes disrupt microtubule dynamics and spindle assembly, resulting in various aspects of oocyte maturation and fertilization. Functional validation underscores the necessity of routine genetic screening for women experiencing unresolved IVF failure, as it substantiates their causal role in infertility. Future therapeutic avenues in ART may be enhanced by tailored counseling and innovative rescue methodologies like as gene therapy. Full article
(This article belongs to the Special Issue Molecular Advances in Obstetrical and Gynaecological Disorders)
Show Figures

Figure 1

20 pages, 2416 KiB  
Article
Short-Term Evolutionary Features and Circadian Clock-Modulated Gene Expression Analysis of Piezo, nanchung, and αTubulin at 67C in a Romanian Population of Drosophila suzukii
by Adriana-Sebastiana Musca, Attila Cristian Ratiu, Adrian Ionascu, Nicoleta-Denisa Constantin and Marius Zahan
Insects 2025, 16(6), 591; https://doi.org/10.3390/insects16060591 - 4 Jun 2025
Viewed by 777
Abstract
Drosophila suzukii is a successful invasive insect species responsible for agricultural losses. The key to its prowess is the ability to swiftly adapt to new environments through various genetic mechanisms, including fast accommodation of mutations and gene expression fine-tuning. Piezo and nanchung ( [...] Read more.
Drosophila suzukii is a successful invasive insect species responsible for agricultural losses. The key to its prowess is the ability to swiftly adapt to new environments through various genetic mechanisms, including fast accommodation of mutations and gene expression fine-tuning. Piezo and nanchung (nan) genes are linked to circadian clock-related behaviors and, therefore, are expected to readily respond to stress stimuli. Herein, we compared the DNA sequences of Piezo, nan, and αTubulin at 67C, a highly conserved housekeeping gene, in ICDPP-ams-1, a Romanian local population of D. suzukii, and two well-annotated reference populations from the United States of America and Japan. Our results imply that short-term evolutionary accumulated single nucleotide and indel variants are overrepresented within introns, a propensity evaluated through the mutation accumulation tendency (MAT) original parameter. Piezo and nan gene expression under photoperiodicity changes challenges were assessed in a series of experiments on three groups of individuals from ICDPP-ams-1. We found that both genes are upregulated in females if their customary circadian rhythm is affected, a trend seemingly reverting if, after an initial perturbation, the circadian clock is reset to its initial timing. In conclusion, we found that both highly conserved and adaptability-related genes are rapidly evolving and that Piezo and nan have a fast functional reaction to circadian clock changes by modifying their gene expression profiles. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

15 pages, 5873 KiB  
Article
A Point Mutation of the Alpha-Tubulin Gene ClTUA Causes Dominant Dwarf Phenotype in Watermelon (Citrullus lanatus)
by Ziwei Hu, Leichen Zhang, Jun Shi, Quansheng Ying, Huafeng Zhang, Xingping Zhang, Yun Deng and Yuhong Wang
Horticulturae 2025, 11(6), 562; https://doi.org/10.3390/horticulturae11060562 - 22 May 2025
Viewed by 417
Abstract
Vine length is a crucial plant architecture trait in watermelon, which determines its height. In this study, we identified a dominant dwarf watermelon mutant by treating G42 with Ethyl methanesulfonate (EMS). In order to clarify the causes of the dwarfism in mutants, genetic [...] Read more.
Vine length is a crucial plant architecture trait in watermelon, which determines its height. In this study, we identified a dominant dwarf watermelon mutant by treating G42 with Ethyl methanesulfonate (EMS). In order to clarify the causes of the dwarfism in mutants, genetic statistics, phenotypic observation, and cytological observation were carried out. Meanwhile, individual resequencing combined with molecular markers was used to map the candidate gene. Our results demonstrated that the dwarf mutant exhibited incomplete dominance. The dwarf plants showed a decrease in the number of internodal cells, shortened internodes, and reduced vine length. Gene mapping indicated that the target gene responsible for this mutation was ClTUA, which encodes α-tubulin. A point mutation in the dwarf plants was identified, specifically, a change from C to T at the 1851st base pair. Further experiments, including transcriptome analysis and Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS), revealed that this gene mutation affected auxin synthesis, leading to the dwarfing of the plants. This study provides new germplasm resources and a theoretical foundation for plant architecture breeding in watermelon. Full article
(This article belongs to the Special Issue Germplasm Resources and Genetics Improvement of Watermelon and Melon)
Show Figures

Figure 1

13 pages, 1521 KiB  
Article
Identification of Nigrospora oryzae Causing Leaf Spot Disease in Tomato and Screening of Its Potential Antagonistic Bacteria
by Jun Zhang, Fei Yang, Aihong Zhang, Qinggang Guo, Xiangrui Sun, Shangqing Zhang and Dianping Di
Microorganisms 2025, 13(5), 1128; https://doi.org/10.3390/microorganisms13051128 - 14 May 2025
Viewed by 563
Abstract
Tomato is a widely cultivated vegetable crop worldwide. It is susceptible to various phytopathogens, including fungi, bacteria, viruses, and nematodes. In 2024, an unknown leaf spot disease outbreak, characterized by distinct brown necrotic lesions on leaves, was observed in tomato plants in Yunnan [...] Read more.
Tomato is a widely cultivated vegetable crop worldwide. It is susceptible to various phytopathogens, including fungi, bacteria, viruses, and nematodes. In 2024, an unknown leaf spot disease outbreak, characterized by distinct brown necrotic lesions on leaves, was observed in tomato plants in Yunnan Province, China. Through rigorous pathogen isolation and the fulfillment of Koch’s postulates, it was proved that the fungal isolate could infect tomato leaves and cause typical symptoms. The pathogen isolated from tomato leaves was identified as Nigrospora oryzae based on its morphology and using a multilocus sequence analysis method with the internal transcribed spacer gene (ITS1), beta-tubulin gene (TUB2), and translation elongation factor 1-alpha gene (TEF1-α). This represents the first documented case of N. oryzae infecting tomatoes in the world. Given the damage caused by N. oryzae to tomato plants, we explored biocontrol methods. Through a dual-culture assay on PDA plates, Bacillus velezensis B31 demonstrated significant biocontrol potential, exhibiting strong antagonistic activity toward N. oryzae. In addition, we developed a polyethylene glycol (PEG)-mediated transformation system that successfully introduced pYF11-GFP into the protoplasts of N. oryzae. This achievement provides a foundation for future genetic manipulation studies of N. oryzae. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

14 pages, 5249 KiB  
Article
Selection of Bactrocera tau (Walker) Reference Genes for Quantitative Real-Time PCR
by Yutong Zhai, Yonghao Yu, Pengfei Xu, Xianru Zeng, Xiuzhen Long, Dewei Wei, Zhan He and Xuyuan Gao
Insects 2025, 16(5), 445; https://doi.org/10.3390/insects16050445 - 24 Apr 2025
Viewed by 478
Abstract
The selection of appropriate reference genes is critical for standardizing quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) data, thereby ensuring accurate and reliable results of gene expression analysis. In this study, we identified 10 candidate reference genes (encoding α-tubulin, G6PDH, [...] Read more.
The selection of appropriate reference genes is critical for standardizing quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) data, thereby ensuring accurate and reliable results of gene expression analysis. In this study, we identified 10 candidate reference genes (encoding α-tubulin, G6PDH, Rab1, RT, RPS13, β-tubulin, DPH1, HSP90, GAPDH, and CP) and evaluated their suitability for use as reference genes in the pest insect, Bactrocera tau. Analysis was conducted using three software-based methods—Delta CT, NormFinder, and BestKeeper—alongside the online tool RefFinder. Expression levels of these genes were analyzed across various B. tau developmental stages and body parts. The overall ranking of reference gene stability scores was as follows: α-tubulin > G6PDH > CP > β-tubulin > RT > HSP90 > GAPDH > DPH1 > RPS13 > Rab1. Ultimately, α-tubulin and G6PDH were identified as the most stable reference genes for B. tau. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

17 pages, 3695 KiB  
Article
Molecular Characterisation of Fusarium Species Causing Common Bean Root Rot in Uganda
by Samuel Erima, Moses Nyine, Richard Edema, Allan Nkuboye, Nalule Habiba, Agnes Candiru and Pamela Paparu
J. Fungi 2025, 11(4), 283; https://doi.org/10.3390/jof11040283 - 3 Apr 2025
Viewed by 993
Abstract
Recently, Fusarium root rot (FRR)-like symptoms were observed in Uganda’s agroecology zones, prompting the National Agricultural Organisation (NARO) to conduct a disease survey. The survey reports indicated FRR as the second most prevalent root rot disease of common bean in Uganda after Southern [...] Read more.
Recently, Fusarium root rot (FRR)-like symptoms were observed in Uganda’s agroecology zones, prompting the National Agricultural Organisation (NARO) to conduct a disease survey. The survey reports indicated FRR as the second most prevalent root rot disease of common bean in Uganda after Southern blight. Ninety nine Fusarium spp. strains were obtained from samples collected during the surveys. The strains were morphologically and pathogenically characterised and confirmed to cause Fusarium root rot as observed in the field. However, molecular characterization of the strains was not conducted. In this study, therefore, 80 of the strains were characterized using partial sequences of translation elongation factor 1-alpha (TEF-1α) gene, beta tubulin (β tubulin) gene and internal transcribed spacers (ITS) region of ribosomal RNA to determine species diversity. High-quality Sanger sequences from the target genes were compared to the sequences from Fusarium species available in the National Centre for Biotechnology Information coding sequences (NCBI-CDS) database to determine the most likely species the strains belonged. The sequences from our strains were deposited into the NCBI gene bank under ID#288420, 2883276, 2873058 for TEF-1α, β tubulin and ITS respectively. The Fusarium species identified included; F. oxysporum, F. solani, F. equiseti F. delphinoides, F. commune, F. subflagellisporum, F. fabacearum, F. falciforme, F. brevicaudatum, F. serpentimum, F. fredkrugeri and F. brachygibbosum. The diversity of these Fusarium species needs to be taken into consideration when developing breeding programs for management of the disease since currently there is no variety of common bean resistant to FRR in Uganda. Full article
(This article belongs to the Special Issue Ascomycota: Diversity, Taxonomy and Phylogeny, 3rd Edition)
Show Figures

Figure 1

17 pages, 5231 KiB  
Article
Environmentally Relevant Sulfamethoxazole Induces Developmental Toxicity in Embryo-Larva of Marine Medaka (Oryzias melastigma)
by Jianxuan Huang, Lei Ye, Siyi Huang, Zuchun Chen, Jiahao Gao, Yangmei Li, Yusong Guo, Zhongduo Wang, Jian Liao, Zhongdian Dong and Ning Zhang
Fishes 2025, 10(3), 120; https://doi.org/10.3390/fishes10030120 - 8 Mar 2025
Viewed by 885
Abstract
Sulfamethoxazole (SMX), a commonly used sulfonamide antibiotic, poses a threat to aquatic life due to its widespread presence in the environment. This study aims to investigate the specific effects of SMX on the development of marine medaka (Oryzias melastigma) embryos and [...] Read more.
Sulfamethoxazole (SMX), a commonly used sulfonamide antibiotic, poses a threat to aquatic life due to its widespread presence in the environment. This study aims to investigate the specific effects of SMX on the development of marine medaka (Oryzias melastigma) embryos and larvae. Marine medaka embryos were exposed to SMX at concentrations of 0 (solvent control group, SC group), 1 μg/L (low concentration group, L group), 60 μg/L (middle concentration group, M group), and 1000 μg/L (high concentration group, H group). The results indicated that SMX exposure significantly accelerated the heart rate of embryos (p < 0.0001) and shortened the hatching time while also causing anomalies such as reduced pigmentation, smaller eye size, spinal curvature, and yolk sac edema. SMX also led to a decrease in the total length of the larvae. The M group and the H group exhibited a significant increase (p < 0.05) in lipid accumulation in the visceral mass of the larvae. In the L group and the M group, there was a significant increase (p < 0.0001) in the swimming distance of the larvae. At the molecular level, SMX exposure affected the transcript levels of the genes involved in the cardiovascular system (ahrra, arnt2, atp2a1, and cacan1da), antioxidant and inflammatory systems (cat, cox-1, gpx, pparα, pparβ, and pparγ), nervous system (gap43, gfap, α-tubulin), intestinal barrier function (claudin-1), detoxification enzymes (ugt2c1-like), and lipid metabolism (rxraa) in the embryos to larval stage. The microbiome analysis showed that at the phylum level, exposure to SMX resulted in an increase in the abundance of Proteobacteria. Additionally, the abundance of Actinobacteriota significantly increased in the L group (p < 0.05). At the genus level, the abundance of Bifidobacterium significantly increased in the L group (p < 0.05), while the abundance of Vibrio significantly increased in the H group (p < 0.05). The alpha diversity analysis revealed a significant decrease in the Chao1 index in the L and H groups, indicating a reduction in microbial richness. The beta diversity analysis showed differences in the microbial communities of marine medaka larvae among different SMX exposure groups. This study elucidates the negative impacts of SMX on the development of marine medaka embryos and larvae and their microbial composition, providing a scientific basis for assessing the risks of SMX in marine ecosystems. Full article
(This article belongs to the Special Issue Toxicology of Anthropogenic Pollutants on Fish)
Show Figures

Figure 1

21 pages, 20591 KiB  
Article
New Species of Diaporthales (Ascomycota) from Diseased Leaves in Fujian Province, China
by Xiayu Guan, Taichang Mu, Nemat O. Keyhani, Junya Shang, Yuchen Mao, Jiao Yang, Minhai Zheng, Lixia Yang, Huili Pu, Yongsheng Lin, Mengjia Zhu, Huajun Lv, Zhiang Heng, Huiling Liang, Longfei Fan, Xiaoli Ma, Haixia Ma, Zhenxing Qiu and Junzhi Qiu
J. Fungi 2025, 11(1), 8; https://doi.org/10.3390/jof11010008 - 26 Dec 2024
Cited by 1 | Viewed by 969
Abstract
Fungal biota represents important constituents of phyllosphere microorganisms. It is taxonomically highly diverse and influences plant physiology, metabolism and health. Members of the order Diaporthales are distributed worldwide and include devastating plant pathogens as well as endophytes and saprophytes. However, many phyllosphere Diaporthales [...] Read more.
Fungal biota represents important constituents of phyllosphere microorganisms. It is taxonomically highly diverse and influences plant physiology, metabolism and health. Members of the order Diaporthales are distributed worldwide and include devastating plant pathogens as well as endophytes and saprophytes. However, many phyllosphere Diaporthales species remain uncharacterized, with studies examining their diversity needed. Here, we report on the identification of several diaporthalean taxa samples collected from diseased leaves of Cinnamomum camphora (Lauraceae), Castanopsis fordii (Fagaceae) and Schima superba (Theaceae) in Fujian province, China. Based on morphological features coupled to multigene phylogenetic analyses of the internal transcribed spacer (ITS) region, the large subunit of nuclear ribosomal RNA (LSU), the partial beta-tubulin (tub2), histone H3 (his3), DNA-directed RNA polymerase II subunit (rpb2), translation elongation factor 1-α (tef1) and calmodulin (cal) genes, three new species of Diaporthales are introduced, namely, Diaporthe wuyishanensis, Gnomoniopsis wuyishanensis and Paratubakia schimae. This study contributes to our understanding on the biodiversity of diaporthalean fungi that are inhabitants of the phyllosphere of trees native to Asia. Full article
(This article belongs to the Special Issue Diversity of Microscopic Fungi)
Show Figures

Figure 1

14 pages, 2743 KiB  
Article
Determination of Stable Reference Genes for Gene Expression Analysis in Black Rockfish (Sebastes schlegeli) Under Hypoxia Stress
by Xiatian Chen, Yujie Yu, Tao Gao, Zhifei Liu, Shuaiyu Chen and Yudong Jia
Genes 2025, 16(1), 9; https://doi.org/10.3390/genes16010009 - 25 Dec 2024
Cited by 1 | Viewed by 1046
Abstract
Background: Hypoxia triggers stress, leading to significant alterations in gene expression patterns, which in turn affect fish’s growth and development. Real-time quantitative PCR (RT-qPCR) is a pivotal technique for assessing changes in gene expression. However, its accuracy is highly contingent upon the stable [...] Read more.
Background: Hypoxia triggers stress, leading to significant alterations in gene expression patterns, which in turn affect fish’s growth and development. Real-time quantitative PCR (RT-qPCR) is a pivotal technique for assessing changes in gene expression. However, its accuracy is highly contingent upon the stable expression of reference genes. Ribosomal RNA (18s), β-actin (actb), elongation factor 1-α (ef1a), α tubulin (tuba), and ribosomal protein L17 (rpl17) are the widely used reference genes, but their expression stability in the tissues of black rockfish under hypoxic conditions remains unclear. Methods: The expression of genes was detected by RT-qPCR and the stability was assessed by Delta Ct, geNorm, NormFinder, and BestKeeper algorithms. Results: Results showed that tuba exhibited stable expression in liver, heart, gill tissues under normoxic conditions, and in the liver and head kidney under hypoxic conditions. Ef1a was identified as the most stably expressed gene in gill tissue under hypoxia. For hypoxic heart studies, rpl17 and tuba were recommended as reference genes. 18s showed high stability in spleen tissue under hypoxic conditions. Actb was the most stably expressed gene in spleen and head kidney tissues under normoxic conditions. Conclusions: The identified reference genes exhibited tissue-specific stability, and it was necessary to select appropriate reference genes based on the specific tissue type for gene expression studies under hypoxic conditions. These findings help in enhancing the accuracy of gene expression analysis in the mechanism of hypoxia for black rockfish. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

15 pages, 5680 KiB  
Article
Enhanced Eicosapentaenoic Acid Production via Synthetic Biological Strategy in Nannochloropsis oceanica
by Congcong Miao, Mingting Du, Hongchao Du, Tao Xu, Shan Wu, Xingwei Huang, Xitao Chen, Suxiang Lei and Yi Xin
Mar. Drugs 2024, 22(12), 570; https://doi.org/10.3390/md22120570 - 19 Dec 2024
Cited by 2 | Viewed by 1385
Abstract
The rational dietary ratio of docosahexaenoic acid (DHA) to eicosapentaenoic acid (EPA) can exert neurotrophic and cardiotrophic effects on the human body. The marine microalga Nannochloropsis oceanica produces EPA yet no DHA, and thus, it is considered an ideal EPA-only model to pursue [...] Read more.
The rational dietary ratio of docosahexaenoic acid (DHA) to eicosapentaenoic acid (EPA) can exert neurotrophic and cardiotrophic effects on the human body. The marine microalga Nannochloropsis oceanica produces EPA yet no DHA, and thus, it is considered an ideal EPA-only model to pursue a rational DHA/EPA ratio. In this study, synthetic biological strategy was applied to improve EPA production in N. oceanica. Firstly, to identify promoters and terminators, fifteen genes from N. oceanica were isolated using a transcriptomic approach. Compared to α-tubulin, NO08G03500, NO03G03480 and NO22G01450 exhibited 1.2~1.3-fold increases in transcription levels. Secondly, to identify EPA-synthesizing modules, putative desaturases (NoFADs) and elongases (NoFAEs) were overexpressed by the NO08G03500 and NO03G03480 promoters/terminators in N. oceanica. Compared to the wild type (WT), NoFAD1770 and NoFAE0510 overexpression resulted in 47.7% and 40.6% increases in EPA yields, respectively. Thirdly, to store EPA in triacylglycerol (TAG), NoDGAT2K was overexpressed using the NO22G01450 promoter/terminator, along with NoFAD1770NoFAE0510 stacking, forming transgenic line XS521. Compared to WT, TAG-EPA content increased by 154.8% in XS521. Finally, to inhibit TAG-EPA degradation, a TAG lipase-encoding gene NoTGL1990 was knocked out in XS521, leading to a 49.2–65.3% increase in TAG-EPA content. Our work expands upon EPA-enhancing approaches through synthetic biology in microalgae and potentially crops. Full article
(This article belongs to the Special Issue Synthetic Biology in Marine Microalgae)
Show Figures

Figure 1

12 pages, 1369 KiB  
Article
Investigating the Role of Primary Cilia and Bone Morphogenetic Protein Signaling in Periodontal Ligament Response to Orthodontic Strain In Vivo and In Vitro: A Pilot Study
by Emily R. Moore and Anna Konermann
Int. J. Mol. Sci. 2024, 25(23), 12648; https://doi.org/10.3390/ijms252312648 - 25 Nov 2024
Viewed by 1044
Abstract
Periodontal ligament (PDL) cells are crucial for mechanosensation and mechanotransduction within the PDL, yet the role of primary cilia in orthodontic force transmission has not been examined. While bone morphogenetic protein (BMP) signaling significantly influences ciliary function, its effect on cellular responses to [...] Read more.
Periodontal ligament (PDL) cells are crucial for mechanosensation and mechanotransduction within the PDL, yet the role of primary cilia in orthodontic force transmission has not been examined. While bone morphogenetic protein (BMP) signaling significantly influences ciliary function, its effect on cellular responses to mechanical stress has not been investigated. This study aims to investigate whether primary cilia and BMP signaling are involved in the periodontal ligament’s response to orthodontic tooth movement and the resultant mechanical strain. To visualize primary cilia, human PDL cells were cultured on glass-bottom dishes for five days, with a subset fixed daily, followed by immunostaining with anti-acetylated α-tubulin and Alexa Fluor 568 and imaging using a fluorescence microscope under 405 nm and 561 nm laser excitation. Human PDL cells were grown on Bioflex® culture plates and subsequently exposed to static tensile strains of 2.5%, 5%, 10%, 20%, on a FX-6000T™ Tension System for 24 h. RT-qPCR was performed to evaluate changes in expression of primary cilia via Ift88 expression, mechanotransduction via Cox2 expression, and BMP signaling-related genes. Histological specimens from orthodontically loaded and control human premolars were investigated for primary cilia and BMP signaling using immunohistochemistry and confocal microscopy. Primary cilia were observed in PDL cells from day one, with their incidence and length increasing over time alongside cell density. BMP signaling components, including upregulated genes such as Bmp7 (10.99–14.97 fold), Alk2 (3.19–5.45 fold), and Bmpr2 (1.64–8.40 fold), consistently responded to strain, while Cox2 and Ift88 showed differential regulation depending on strain intensity. In vivo, orthodontic movement activated BMP signaling and increased primary cilium incidence in the PDL. These findings indicate the potential role of primary cilia and BMP signaling in the mechanosensitivity of PDL cells under orthodontic forces. Further studies are required to understand the complex mechanotransduction mechanisms and role of these components in cellular adaptation during orthodontic tooth movement. Full article
Show Figures

Figure 1

19 pages, 1831 KiB  
Article
Evaluation and Validation of Reliable Reference Genes for Quantitative Real-Time PCR Analysis of the Gene Expression in Macadamia integrifolia
by Qian Yang, Ziping Yang, Hui Zeng, Minghong Zou, Ximei Song, Jifeng Wan, Zhao Wang, Jing Chen and Lianfang Luo
Forests 2024, 15(11), 1966; https://doi.org/10.3390/f15111966 - 7 Nov 2024
Viewed by 950
Abstract
Macadamia is an economically significant crop, with its kernel oil being abundant in monounsaturated fatty acids (MUFA). Analyzing the expression of genes related to MUFA biosynthesis is essential for understanding the complex regulatory networks in Macadamia. However, there are few reports on the [...] Read more.
Macadamia is an economically significant crop, with its kernel oil being abundant in monounsaturated fatty acids (MUFA). Analyzing the expression of genes related to MUFA biosynthesis is essential for understanding the complex regulatory networks in Macadamia. However, there are few reports on the identification of suitable reference genes for use as internal controls in this species. Consequently, selecting a reliable reference gene for gene expression studies under various conditions is critical. In this study, we evaluated the expression stability of 11 traditional housekeeping genes: α-tubulin (TUBa), β-tubulin (TUBb), malate dehydrogenase (MDH), 18S ribosomal RNA (18S), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), α-elongation factor 1 (EF1a), β-elongation factor 1 (EF1b), ubiquitin (UBQ), ubiquitin-conjugating enzyme (UBC), cyclophilin (CYP), and actin (ACT) under abiotic stresses, hormonal treatments and in variety of plant tissues using the online tool RefFinder, which integrates four commonly used software programs: ΔCt, geNorm (version 3.4), NormFinder (version 0953), and BestKeeper (version 1.0). A comprehensive expression stability ranking was established by integrating results from these four methods based on the geometric mean. The findings indicated that ACT was the most stable gene across all samples, including those subjected to cold stress, NaCl stress, PEG stress, ABA treatment, MeJA treatment, and both stem and leaf tissues. EF1b was identified as the most stable gene in GA treatment and heat stress samples, while UBC and CYP were ranked highest in ethrel treatment and root tissue samples, respectively. Finally, the reliability of these findings was further validated using the target gene SAD through qRT-PCR. In summary, this study evaluated and validated appropriate reference genes for qRT-PCR, which will facilitate future investigations into the molecular mechanisms in Macadamia. Full article
Show Figures

Figure 1

15 pages, 5827 KiB  
Article
New Occurrence of Nigrospora oryzae Causing Leaf Blight in Ginkgo biloba in China and Biocontrol Screening of Endophytic Bacteria
by Yuan Tao, Chun Yang, Sinong Yu, Fangfang Fu and Tingting Dai
Microorganisms 2024, 12(11), 2125; https://doi.org/10.3390/microorganisms12112125 - 23 Oct 2024
Cited by 1 | Viewed by 1331
Abstract
Ginkgo biloba is a multifunctional composite tree species that has important ornamental, economic, medicinal, and scientific research value. In October 2023, the foliage of G. biloba on the campus of Nanjing Forestry University exhibited leaf blight. Black-brown necrotic spots were observed on a [...] Read more.
Ginkgo biloba is a multifunctional composite tree species that has important ornamental, economic, medicinal, and scientific research value. In October 2023, the foliage of G. biloba on the campus of Nanjing Forestry University exhibited leaf blight. Black-brown necrotic spots were observed on a large number of leaves, with a disease incidence of 86%. After isolating a fungus from symptomatic leaves, pathogenicity was tested to satisfy Koch’s postulates. Using morphological features and multi-gene phylogenetic analyses of an internal transcribed spacer (ITS), elongation factor 1-alpha (EF1-α), and beta-tubulin (β-tub), the isolates YKB1-1 and YKB1-2 were identified as Nigrospora oryzae. N. oryzae was previously reported as an endophyte of G. biloba. However, this study shows it to be pathogenic to G. biloba, causing leaf spots. Two endophytic bacteria were isolated from asymptomatic leaves of diseased G. biloba trees, and their molecular identification was performed using 16S ribosomal DNA (16S rDNA). GBB1-2 was identified as Bacillus altitudinis, while GBB1-5 was identified as Bacillus amyloliquefaciens. The screening and verification of endophytic bacteria provide a new strategy for the control of N. oryzae. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

14 pages, 2194 KiB  
Article
Detection and Characterization of Lasiodiplodia pseudotheobromae Associated with Stem Wilt on Ficus hirta (Vahl) and Its Fungicidal Sensitivity
by Chunping He, He Wu, Yue Hu, Rui Li, Jinjing Lin, Ying Lu, Ziwei Gu, Shibei Tan and Yanqiong Liang
Horticulturae 2024, 10(10), 1069; https://doi.org/10.3390/horticulturae10101069 - 6 Oct 2024
Viewed by 1541
Abstract
Ficus hirta Vahl is an important medicinal and edible plant in southern China. Typical green wilting on leaves and brown necrotic spots on the stems were observed since mid-June 2022 in an F. hirta plantation in Danzhou, Hainan (China). The disease rapidly developed, [...] Read more.
Ficus hirta Vahl is an important medicinal and edible plant in southern China. Typical green wilting on leaves and brown necrotic spots on the stems were observed since mid-June 2022 in an F. hirta plantation in Danzhou, Hainan (China). The disease rapidly developed, causing stem withering and plant death. The disease incidence varied from 45 to 85% prevalence, and the average disease index was 47 in the period of outbreak during June to December. Relevant hypothetical fungi were isolated from naturally infected wilt tissues, and their pathogens were preliminarily confirmed to be Lasiodiplodia pseudotheobromae through hypothetical fungal culturing, morphological characteristic observations, and pathogenicity testing on F. hirta plants. The phylogenetic tree constructed based on partial ITS, translation elongation factor (TEF1-α), and the β-tubulin gene (TUB2) further confirmed the identity of the pathogen as L. pseudotheobromae. Further research on the biological characteristics of L. pseudotheobromae showed that the optimal temperature for the growth of L. pseudotheobromae was PDA medium, with a temperature of 30 °C and pH of 6. Peptone and fructose were the optimal nitrogen and carbon sources for it. In vitro efficacy testing showed that among eleven fungicides, fluazinam and prochloraz had the highest mycelial growth inhibition, with an EC50 of 0.0477 µg/mL and 0.0996 µg/mL, respectively. And the two fungicides showed significant control on the stem wilt of F. hirta in a pot. To our knowledge, this is the first comprehensive report on the pathogen identification and biological characteristics of L. pseudotheobromae infecting the stem wilt of F. hirta in China. Our results provide important information for developing effective management measures and controlling this disease. Full article
(This article belongs to the Special Issue The Diagnosis, Management, and Epidemiology of Plant Diseases)
Show Figures

Figure 1

12 pages, 4063 KiB  
Article
Selection and Validation of Reference Genes for Quantitative Real-Time PCR Analysis in Cockroach Parasitoid Tetrastichus hagenowii (Ratzeburg)
by Renke Dong, Fengming Cao, Jincong Yu, Yuan Yuan, Jiahui Wang, Zining Li, Chunxue Zhu, Sheng Li and Na Li
Insects 2024, 15(9), 668; https://doi.org/10.3390/insects15090668 - 3 Sep 2024
Cited by 2 | Viewed by 1425
Abstract
Parasitoid wasps play a crucial role in the efficient control of pests, a substantial menace to human health and well-being. Tetrastichus hagenowii (Ratzeburg) stands out as the most effective egg parasitoid wasp for controlling American cockroaches, but accurate and stable reference genes for [...] Read more.
Parasitoid wasps play a crucial role in the efficient control of pests, a substantial menace to human health and well-being. Tetrastichus hagenowii (Ratzeburg) stands out as the most effective egg parasitoid wasp for controlling American cockroaches, but accurate and stable reference genes for quantitative real-time polymerase chain reaction of T. hagenowii genes are still lacking. In this study, we assessed seven candidate nuclear genes, including α-tubulin (α-TUB), elongation factor-1-alpha (EF-1α), β-actin (Actin), ribosomal protein 49 (RP49), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), nicotinamide adenine dinucleotide (NADH), and elongation factor 2 (EF2) of T. hagenowii. By analyzing expression stability with four algorithms (Delta Ct, geNorm, NormFinder, and BestKeeper), as well as comprehensive ranking with RefFinder, we identified α-TUB as the most stable reference gene for the larval, pupal, female adult, and male adult stages. Subsequently, we estimated the transcript levels of vitellogenin (Vg) and cuticle protein (CP) after normalization with α-TUB across various developmental stages. Significantly higher expression levels of CP and Vg were observed in pupae and female adults, respectively, consistent with previous findings in other insects. This study offers a reliable reference gene for normalizing transcription levels of T. hagenowii genes. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

Back to TopTop