Detection and Characterization of Lasiodiplodia pseudotheobromae Associated with Stem Wilt on Ficus hirta (Vahl) and Its Fungicidal Sensitivity
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Fungal Isolation
2.2. Pure Culture and Morphological Identification
2.3. Koch’s Postulate Test
2.4. DNA Extraction, PCR Amplification and Phylogenetic Analysis
2.5. Determination of Biological Characteristics of the Pathogen
2.6. Evaluation of Fungicide Sensitivity
2.7. Statistical Analysis
3. Results
3.1. Disease Symptoms and Morphology of Pathogen
3.2. Pathogenicity Test
3.3. Sequence, Identification of Pathogen Species and Phylogenetic Analysis
3.4. Biological Characterization of Lasiodiplodia pseudotheobromae
3.5. Evaluation of Fungicide Sensitivity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Editorial Committee of Flora of China, Chinese Academy of Sciences. Flora of China; Science Press: Beijing, China, 1998; Volume 23, pp. 160–162. [Google Scholar]
- Guangzhou Botany Institute. The Flora of Guangdong; Guangdong Science Press: Guangzhou, China, 2004; Volume 4, p. 194. [Google Scholar]
- Nanjing University of Chinese Medicine. The Great Dictionary of Traditional Chinese Medicine; Shanghai Science and Technology Press: Shanghai, China, 2006; p. 29. [Google Scholar]
- Zeng, Y.W.; Liu, X.Z.; Lv, Z.C.; Peng, Y. Effects of Ficus hirta (Wu zhi mao tao) extracts on growth inhibition of HeLa cells. Exp. Toxicol. Pathol. 2012, 64, 743–749. [Google Scholar] [CrossRef]
- Liu, C.L.; Xu, H.H.; Wu, Q.H.; Shan, S.; Chen, F.H. Experimental study on the effect of Radix Ficus hirta Vahl on mouse immune function. Tradit. Chin. Med. 2004, 5, 367–368. [Google Scholar] [CrossRef]
- Lv, Y.J.; Jia, F.L.; Ruan, M.; Zhang, B.X. The hepatoprotective effect of aqueous extracts from Ficus hirta on N, N-dimethylformamide induced acute liver injury in mice. J. Chin. Med. Mater. 2008, 31, 1364–1368. [Google Scholar] [CrossRef]
- Quan, T.; Zhou, F.; Chen, H.; Jian, L.; Yang, Y.; Xia, F.; Xiang, S.; Zhou, B.; Li, S. Ficus hirta Vahl ameliorates nonalcoholic fatty liver disease through regulating lipid metabolism and gut microbiota. Oxidative Med. Cell. Longev. 2022, 1, 3474723. [Google Scholar] [CrossRef]
- Damm, U.; Crous, P.W.; Fourie, P.H. Botryosphaeriaceae as potential pathogens of prunus species in South Africa, with descriptions of Diplodia africana and Lasiodiplodia plurivora sp. nov. Mycologia 2007, 99, 664–680. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.; Crous, P.W.; Correia, A.; Phillips, A.J.L. Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Divers. 2008, 28, 155–160. [Google Scholar] [CrossRef]
- Castro-Medina, F.; Mohali, S.; Úrbez-Torres, J.R.; Gubler, W.D. First report of Lasiodiplodia pseudotheobromae causing trunk cankers in Acacia mangium in Venezuela. Plant Dis. 2014, 98, 686. [Google Scholar] [CrossRef]
- Liang, L.; Li, H.; Zhou, L.F.; Chen, F.M. Lasiodiplodia pseudotheobromae causes stem canker of Chinese hackberry in China. J. For. Res. 2019, 31, 2571–2580. [Google Scholar] [CrossRef]
- Dai, S.L.; Lin, J.; Gao, L. Brief report on antibacterial activity of penicillin and streptomycin in PDA medium. Edible Fungi China 2007, 26, 53–54. [Google Scholar] [CrossRef]
- Correia, K.C.; Silva, M.A.; Morais, M.A.; Armengol, J.; Phillips, A.J.L.; Camara, M.P.S.; Michereff, S.J. Phylogeny, distribution and pathogenicity of Lasiodiplodia species associated with dieback of table grape in the main Brazilian exporting region. Plant Pathol. 2015, 65, 92–103. [Google Scholar] [CrossRef]
- Choi, Y.W.; Hyde, K.D.; Ho, W.H. Single spore isolation of fungi. Fungal Divers. 1999, 3, 29–38. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. PCR Protocol: A Guide to Methods and Applications. In PCR Protocols; Academic Press, Inc.: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. Mega5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Vincent, J.M. Distortion of fungal hyphae in the presence of certain inhibition. Nature 1947, 159, 850. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.J.; Gan, Z.; Shi, X.G.; Song, S.L.; Guo, D.K.; Chen, L.L.; Kuang, W.G. Pathogen identification and fungicide screening of loquat anthracnose. Biol. Disaster Sci. 2021, 44, 259–263. [Google Scholar] [CrossRef]
- Jia, H.M.; Zhao, J.Y.; Li, S.C. Discussion on the grading standards and investigation methods of asparagus stem blight disease. Chin. Veg. 2010, 11, 25–26. [Google Scholar] [CrossRef]
- Dou, Z. Lasiodiplodia chinensis, a new holomorphic species from China. Mycosphere 2017, 8, 521–532. [Google Scholar] [CrossRef]
- Wang, F.H.; Zeng, Q.; Liu, C.; Zhou, Y.J.; Chen, X.H.; Liu, F.; Xu, X.; Liu, Y.G.; Yang, C.L. Trunk canker of Juglans sigillata caused by Lasiodiplodia pseudotheobromae in China. Plant Dis. 2023, 107, 1228. [Google Scholar] [CrossRef]
- Juliana, F.M.; Amanda, C.Q.; Eliude, S.O.; Cristina, M.S.; Alexandre, R.M. First report of Lasiodiplodia pseudotheobromae causing cladode rot in Hylocereus sp. in Brazil. J. Plant Pathol. 2022, 104, 899. [Google Scholar] [CrossRef]
- Lv, J.; Luo, B.; Qian, J.P.; Zhang, J.W.; Gao, Y.T.; Yang, Q. Diversity of endophytic fungi from Cinnamomum cassia and their antagonism to the pathogen of C. cassia branch blight in Guangdong, South China. Mycosystema 2022, 41, 435–449. [Google Scholar] [CrossRef]
- Fan, R.; Yin, L.W.; Wu, X.M.; Hu, A.L.; Yin, X.X.; Zhang, Z.B.; Long, Y.H. First report of Lasiodiplodia theobromae causing leaf blight of Kadsura longipedunculata in China. Plant Dis. 2020, 104, 3063. [Google Scholar] [CrossRef]
- Munirah, M.; Azmi, A.R.; Christina, S.Y.Y.; Nur Ain Izzati, M.Z. Characterization of Lasiodiplodia theobromae and L. pseudotheobromae causing fruit rot on pre-harvest mango in Malaysia. Plant Pathol. 2017, 7, 202–213. [Google Scholar] [CrossRef]
- Awan, Q.N.; Akgul, D.S.; Unal, G. First report of Lasiodiplodia pseudotheobromae causing postharvest fruit rot of lemon in Turkey. Plant Dis. 2016, 100, 2327. [Google Scholar] [CrossRef]
- Phillips, A.J.; Alves, A.; Abdollahzadeh, J.; Slippers, B.; Wingfield, M.J.; Groenewald, J.Z.; Crous, P.W. The Botryosphaeriaceae: Genera and species known from culture. Stud. Mycol. 2013, 76, 51–167. [Google Scholar] [CrossRef]
- Li, H.L.; Ruvishika, S.J.; Xu, W.; Hu, M.; Li, X.H.; Liu, J.H.; Hyde, K.; Yan, J. Lasiodiplodia theobromae and L. pseudotheobromae causing leaf necrosis on Camellia sinensis in Fujian Province, China. Can. J. Plant Pathol. 2019, 41, 277–284. [Google Scholar] [CrossRef]
- Serrato-Diaz, L.M.; Mariño, Y.A.; Guadalupe, I.; Bayman, P.; Goenaga, R. First report of Lasiodiplodia pseudotheobromae and Colletotrichum siamense causing cacao pod rot, and first report of C. tropicale causing cacao pod rot in Puerto Rico. Plant Dis. 2020, 104, 592. [Google Scholar] [CrossRef]
- Wu, R.H.; Li, Z.P.; Zhang, Y.; Shi, Z.K. Identification and biological characteristics of the pathogen causing Lasiodiplodia leaf spot of rubber tree. Chin. J. Trop. Crops 2019, 40, 107–114. [Google Scholar] [CrossRef]
- Trakunyingcharoen, T.; Cheewangkoon, R.; To-anun, C. Phylogenetic study of the Botryosphaeriaceae species associated with avocado and para rubber in Thailand. Chiang Mai J. Sci. 2015, 42, 104–116. [Google Scholar]
- Yue, Y.; Wu, L.P.; Xia, J.Y.; Ma, L.J. The pathogen causing twig blight of Phoebe. Acta Phytopathol. Sinica 2019, 49, 699–704. [Google Scholar] [CrossRef]
- Pan, T.T.; Xue, D.S.; Li, B.H.; Lian, S.; Wang, C.X. Characterization of the pathogen causing shoot dieback on apple. Acta Phytopathol. Sin. 2020, 50, 107–111. [Google Scholar] [CrossRef]
- Punithalingam, E. CMI Descriptions of Pathogenic Fungi and Bacteria; CAB International: Wallingford, UK, 1976; Volume 519, pp. 1–2. [Google Scholar]
- Leslie, J.F.; Summerell, B.A. The Fusarium Laboratory Manual; Blackwell Publishing: Oxford, UK, 2006. [Google Scholar]
- Xu, L.X.; Gao, J.Y.; Ye, Q.Q.; He, R.; WANG, M.; Yang, Y. Sensitivity of Lasiodiplodia spp. from stem-end rot of avocado to six fungicides. Chin. J. Pestic. Sci. 2024, 26, 77–87. [Google Scholar] [CrossRef]
- Diao, C.L.; Liu, F.; Song, B.A. Research progress on the mechanism of action of agricultural fungicides. Agrochemicals 2006, 45, 374–377. [Google Scholar] [CrossRef]
- Smith, D.L.; Garrison, M.; Hollowell, J.E.; Isleib, T.G.; Shew, B.B. Evaluation of application timing and efficacy of the fungicides fluazinam and boscalid for control of Sclerotinia blight of peanut. Crop Prot. 2008, 27, 823–833. [Google Scholar] [CrossRef]
Fungicides | Manufacturer | Concentration (µg/mL) |
---|---|---|
Fluazinam (98% a.i.) | Shanghai Yuanye Biotechnology Co., Ltd., Shanghai, China | 0.4, 0.2, 0.1, 0.05, 0.025 |
Thiophanate-Methyl (95% a.i.) | Anlin Biochemical Co., Ltd., An yang, China | 10, 5, 2.5, 1.25, 0.625 |
Difenoconazole (95% a.i.) | Beijing Green Nonghua Plant Protection Technology Co., Ltd., Beijing, China | 2, 1, 0.5, 0.25, 0.125 |
Prochloraz (97% a.i.) | Jiangsu Huifeng Biological Agriculture Co., Ltd., Yancheng, China | 0.5, 0.25, 0.125, 0.063, 0.031 |
Propiconazole (95% a.i.) | Shanghai Demohua Agricultural Chemical Co., Ltd., Shanghai, China | 1, 0.5, 0.25, 0.125, 0.063 |
Tebuconazole (96% a.i.) | Jiangsu Fengdeng Crop Protection Co., Ltd., Changzhou, China | 0.4, 0.2, 0.1, 0.05, 0.025 |
Chlorothalonil (98% a.i.) | Shanghai Yuanye Biotechnology Co., Ltd., Shanghai, China | 50, 10, 5, 1, 0.5 |
Carbendazim (97% a.i.) | Shanghai Yuanye Biotechnology Co., Ltd., Shanghai, China | 5, 1, 0.5, 0.1, 0.05 |
Iprodione (97% a.i.) | Hubei Wanye Pharmaceutical Co., Ltd., Wuhan, China | 1, 0.5, 0.25, 0.125, 0.063 |
Azoxystrobin (95% a.i.) | Shanghai Demohuaxue Technology Co., Ltd., Shanghai, China | 40, 20, 10, 5, 2.5 |
Mancozeb (96% a.i.) | Shanghai Demohuaxue Technology Co., Ltd., Shanghai, China | 20, 10, 5, 2.5, 1.25 |
Grade | Value | Degree of Disease Occurrence |
---|---|---|
Level 0 | 0 | The main stem has no diseased spots |
Level 1 | 1 | The length of the main stem lesion around the stem accounts for less than 25% of the circumference of the main stem |
Level 2 | 2 | The length of diseased spots around the main stem accounts for 25% to 50% of the circumference of the main stem |
Level 3 | 3 | The length of diseased spots around the main stem accounts for 50% to 75% of the circumference of the main stem |
Level 4 | 4 | The length of the main stem lesion around the stem accounts for more than 75% of the circumference of the main stem, or the stem withers and dies |
Fungicides | Regression Equation | Correlation Coefficient (r) | EC50 (µg/mL) |
---|---|---|---|
Fluazinam | y = 1.4675x + 6.9392 | 0.9803 | 0.0477 |
Prochloraz | y = 0.8410x + 5.8425 | 0.9967 | 0.0996 |
Tebuconazole | y = 1.1757x + 6.1145 | 0.9941 | 0.1127 |
Iprodione | y = 3.7339x + 8.4946 | 0.9950 | 0.1159 |
Propiconazole | y = 1.0861x + 5.9834 | 0.9895 | 0.1243 |
Carbendazim | y = 1.5813x + 5.8423 | 0.9856 | 0.2933 |
Difenoconazole | y = 1.5047x + 5.6738 | 0.9945 | 0.3566 |
Thiophanate-Methyl | y = 2.5114x + 4.7267 | 0.9993 | 1.2847 |
Mancozeb | y = 1.6801x + 4.7240 | 0.9753 | 1.4598 |
Chlorothalonil | y = 1.1061x + 4.7049 | 0.9559 | 1.8485 |
Azoxystrobin | y = 1.3411x + 3.8461 | 0.9934 | 7.2519 |
Fungicides | Manufacturer | Concentration (µg/mL) | 7 Days after Second Use | |
---|---|---|---|---|
Disease Index | Control Effect * (%) | |||
Prochloraz (25% EC) | Andao Maihuifeng (Jiangsu) Co., Ltd., Yancheng, China | 167 | 30.56 | 47.45a |
250 | 31.95 | 45.06a | ||
500 | 27.78 | 52.55a | ||
fluazinam (50% SC) | Shiyuan (Shanghai) Chemical Co., Ltd., Shanghai, China | 222 | 38.89 | 32.43a |
333 | 31.94 | 45.04a | ||
667 | 36.11 | 37.37a | ||
CK | / | 0.00 | 58.33 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, C.; Wu, H.; Hu, Y.; Li, R.; Lin, J.; Lu, Y.; Gu, Z.; Tan, S.; Liang, Y. Detection and Characterization of Lasiodiplodia pseudotheobromae Associated with Stem Wilt on Ficus hirta (Vahl) and Its Fungicidal Sensitivity. Horticulturae 2024, 10, 1069. https://doi.org/10.3390/horticulturae10101069
He C, Wu H, Hu Y, Li R, Lin J, Lu Y, Gu Z, Tan S, Liang Y. Detection and Characterization of Lasiodiplodia pseudotheobromae Associated with Stem Wilt on Ficus hirta (Vahl) and Its Fungicidal Sensitivity. Horticulturae. 2024; 10(10):1069. https://doi.org/10.3390/horticulturae10101069
Chicago/Turabian StyleHe, Chunping, He Wu, Yue Hu, Rui Li, Jinjing Lin, Ying Lu, Ziwei Gu, Shibei Tan, and Yanqiong Liang. 2024. "Detection and Characterization of Lasiodiplodia pseudotheobromae Associated with Stem Wilt on Ficus hirta (Vahl) and Its Fungicidal Sensitivity" Horticulturae 10, no. 10: 1069. https://doi.org/10.3390/horticulturae10101069
APA StyleHe, C., Wu, H., Hu, Y., Li, R., Lin, J., Lu, Y., Gu, Z., Tan, S., & Liang, Y. (2024). Detection and Characterization of Lasiodiplodia pseudotheobromae Associated with Stem Wilt on Ficus hirta (Vahl) and Its Fungicidal Sensitivity. Horticulturae, 10(10), 1069. https://doi.org/10.3390/horticulturae10101069