Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (141)

Search Parameters:
Keywords = α-phellandrene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3226 KiB  
Article
Sustainable Agronomical Practices Affect Essential Oil Composition of Tanacetum balsamita L.
by Martina Grattacaso, Alessandra Bonetti, Sara Di Lonardo and Luigi Paolo D’Acqui
Plants 2025, 14(15), 2406; https://doi.org/10.3390/plants14152406 - 3 Aug 2025
Viewed by 279
Abstract
This study evaluated the influence of compost and bioinoculants (mycorrhizal fungi and plant growth-promoting bacteria) on the yield and composition of essential oil extracted from Tanacetum balsamita L. over two growing seasons. The plants were cultivated under four treatments: compost, bioinoculants, a combination [...] Read more.
This study evaluated the influence of compost and bioinoculants (mycorrhizal fungi and plant growth-promoting bacteria) on the yield and composition of essential oil extracted from Tanacetum balsamita L. over two growing seasons. The plants were cultivated under four treatments: compost, bioinoculants, a combination (bioinoculants + compost), and a control. At each harvest, essential oil was extracted from fresh leaves via stem-flow distillation and analyzed using gas chromatography coupled with single quadrupole mass spectrometry. Twenty to twenty-four compounds were identified. Based on the dominant terpene derivative, the results indicated that Tanacetum balsamita L. cultivated in Italy belongs to “camphor” chemotype, a pharmacologically active compound known for its antimicrobial, anti-inflammatory, and analgesic properties. Moreover, three compounds, α-, β-phellandrene and myrtenol, were identified as typical of Tanacetum balsamita L. cultivated in Italy. Treatment effects were significant for some compounds (camphor, borneol, terpinen-4-ol, α-terpineol, dehydro sabinene ketone, and 3-thujanol), and the interaction between treatment and year was significant for a few compounds (borneol, terpinen-4-ol, dehydro sabinene ketone, 1,8-cineol, and 3-thujanol). These results emphasize the need to account for seasonal variation and underline the necessity of a deeper understanding of how experimental factors interact with them, especially in long-term essential oil studies. Full article
(This article belongs to the Special Issue Chemical Analysis, Bioactivity, and Application of Essential Oils)
Show Figures

Figure 1

17 pages, 3186 KiB  
Article
Unveiling the Pharmacognostic Potential of Peucedanum ostruthium (L.) W.D.J. Koch: A Comparative Study of Rhizome and Leaf Essential Oils
by Cristina Danna, Andrea Mainetti, Souda Belaid, Erminia La Camera, Domenico Trombetta, Laura Cornara and Antonella Smeriglio
Plants 2025, 14(13), 2047; https://doi.org/10.3390/plants14132047 - 3 Jul 2025
Viewed by 364
Abstract
Peucedanum ostruthium (L.) W.D.J. Koch (Apiaceae) is a perennial herb native to alpine regions that is renowned in traditional medicine. This study provided a pharmacognostic evaluation, comparing the EOs obtained from its rhizomes and leaves (REO and LEO, respectively). A micromorphological analysis, which [...] Read more.
Peucedanum ostruthium (L.) W.D.J. Koch (Apiaceae) is a perennial herb native to alpine regions that is renowned in traditional medicine. This study provided a pharmacognostic evaluation, comparing the EOs obtained from its rhizomes and leaves (REO and LEO, respectively). A micromorphological analysis, which was carried out using fluorescence and scanning electron microscopy, revealed terpenoid-rich secretory ducts in both organs. The EOs were extracted by hydrodistillation and characterized by gas chromatography, coupled with flame ionization detection and mass spectrometry (GC-FID and GC-MS), revealing distinct chemical profiles. REO was dominated by monoterpenes (80.08%), especially D-limonene (29.13%), sabinene (19.77%), and α-phellandrene (12.02%), while LEO was sesquiterpene-rich (81.15%), with β-caryophyllene (21.78%), β-selinene (14.09%), and germacrene D (10.43%) as the major compounds. The in vitro assays demonstrated that both EOs exhibit significant antioxidant and anti-inflammatory activities, with LEO consistently outperforming REO across all tests. However, neither EO showed antimicrobial effects against common bacterial or fungal strains. This may have been due to the absence of polar antimicrobial constituents, such as coumarins, which are poorly recovered by hydrodistillation. To fully exploit the therapeutic potential of P. ostruthium, especially its antimicrobial properties, future studies should aim to develop integrated formulations combining volatile and non-volatile fractions, preserving the complete plant complex and broadening bioactivity. Full article
Show Figures

Figure 1

24 pages, 4337 KiB  
Article
Optimized Extraction, Comprehensive Chemical Profiling, and Antioxidant Evaluation of Volatile Oils from Wurfbainia villosa (Lour.) Škorničk. & A.D.Poulsen Leaves
by Yuancong Gu, Bangyu Lv, Xingrui Nian, Xinrui Xie and Xinhe Yang
Plants 2025, 14(13), 2041; https://doi.org/10.3390/plants14132041 - 3 Jul 2025
Viewed by 358
Abstract
This study employed cellulase-assisted hydrodistillation (cellulase-HD) to extract volatile oils from Wurfbainia villosa (Lour.) Škorničk. & A.D.Poulsen (W. villosa) leaves, with process optimization conducted via the response surface methodology (RSM). The optimized extraction parameters were as follows: enzyme dosage 2.2%, enzymatic hydrolysis temperature [...] Read more.
This study employed cellulase-assisted hydrodistillation (cellulase-HD) to extract volatile oils from Wurfbainia villosa (Lour.) Škorničk. & A.D.Poulsen (W. villosa) leaves, with process optimization conducted via the response surface methodology (RSM). The optimized extraction parameters were as follows: enzyme dosage 2.2%, enzymatic hydrolysis temperature 49 °C, hydrolysis duration 73 min, and material/liquid ratio (1:10.7 mg/mL). Under these optimal conditions, the volatile oil yield reached 0.772%, representing a 31.29% increase compared to conventional hydrodistillation (HD). GC-MS analysis identified 54 and 49 volatile compounds in cellulase-HD and HD extracts, respectively, with 39 shared components. The cellulase-HD extract was predominantly composed of γ-terpinene (14.981%), limonene (13.352%), β-phellandrene (10.634%), 4-terpineol (10.145%), and α-terpineol (8.085%). In contrast, the HD extract showed higher contents of β-phellandrene (41.881%), followed by β-myrcene (8.656%) and limonene (8.444%). Notably, cellulase pretreatment significantly increased the yield of oxygenated compounds. Orthogonal partial least squares discriminant analysis (OPLS-DA) revealed substantial compositional differences between the two extraction methods, with key differential components including fenchol, borneol, and γ-elemene. Antioxidant activity assessment demonstrated superior free radical scavenging capacity in cellulase-HD extracts. Structure–activity relationship analysis identified seven compounds with DPPH radical scavenging rates >50%, particularly, epi-bicyclosesquiphellandrene (71.51%) and γ-elemene (78.91%). Furthermore, thirteen components, including isopinocamphone (66.58%) and α-terpineol (66.95%), exhibited ABTS radical scavenging rates above 50%. This study provides theoretical and technical foundations for the extraction and functional development of volatile oils from W. villosa leaves. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

16 pages, 1804 KiB  
Article
GABA and Octopamine Receptors as Potential Targets for Fumigant Actions of Bursera graveolens Essential Oil Against Callosobruchus maculatus and Callosobruchus chinensis
by Luis O. Viteri, Maria José González, Pedro B. Silva, Jonatas M. Gomes, Thiago Svacina, Lara T. M. Costa, Eduardo Valarezo, Javier G. Mantilla-Afanador, Osmany M. Herrera, Raimundo W. S. Aguiar, Gil R. Santos and Eugênio E. Oliveira
J. Xenobiot. 2025, 15(3), 91; https://doi.org/10.3390/jox15030091 - 12 Jun 2025
Viewed by 1284
Abstract
Cowpea, Vigna sp., is an important, low-cost protein source in subtropical and semi-arid regions, where seasonal rainfall makes storage necessary. However, the weevils Callosobruchus maculatus and C. chinensis cause significant grain losses during storage. While synthetic fumigants are commonly used to control these [...] Read more.
Cowpea, Vigna sp., is an important, low-cost protein source in subtropical and semi-arid regions, where seasonal rainfall makes storage necessary. However, the weevils Callosobruchus maculatus and C. chinensis cause significant grain losses during storage. While synthetic fumigants are commonly used to control these pests, their risks to mammals have prompted the search for safer alternatives. In this context, we tested palo santo, Bursera graveolens, essential oil with limonene, α-phellandrene, o-cymene and β-phellandrene, menthofuran, and germacrene-D as a sustainable approach. This plant is readily accessible, produces high fruit yields, and is used in households for various purposes. We evaluated the fumigant toxicity, repellency, and ovicidal effects of B. graveolens essential oil on both Callosobruchus species. Our results showed that B. graveolens oil was toxic to C. maculatus (LC50 = 80.90 [76.91–85.10] µL) and C. chinensis (LC50 = 63.9 [60.95–66.99] µL), with C. chinensis being more susceptible (SR = 1.27). Molecular docking analyses revealed that all the oil’s compounds bind to both the GABA and octopamine receptors, exhibiting high energy affinities; however, germacrene shows the strongest affinity in these receptors. C. chinensis was strongly repelled at all concentrations, while C. maculatus was repelled only at lethal concentrations. No ovicidal effect was observed in either species. In conclusion, our findings suggest that B. graveolens essential oil is a promising and sustainable protectant for stored cowpeas in small-scale storage units. Full article
Show Figures

Figure 1

34 pages, 5032 KiB  
Article
Improving the Efficiency of Essential Oil Distillation via Recurrent Water and Steam Distillation: Application of a 500-L Prototype Distillation Machine and Different Raw Material Packing Grids
by Namphon Pipatpaiboon, Thanya Parametthanuwat, Nipon Bhuwakietkumjohn, Yulong Ding, Yongliang Li and Surachet Sichamnan
AgriEngineering 2025, 7(6), 175; https://doi.org/10.3390/agriengineering7060175 - 4 Jun 2025
Viewed by 2514
Abstract
This research presents an essential oil (EO) distillation method with improved efficiency, called recurrent water and steam distillation (RWASD), as well as the testing of a 500 L prototype essential oil distillation machine (500 L PDM). The raw material used was 100 kg [...] Read more.
This research presents an essential oil (EO) distillation method with improved efficiency, called recurrent water and steam distillation (RWASD), as well as the testing of a 500 L prototype essential oil distillation machine (500 L PDM). The raw material used was 100 kg of lime fruit. At each distillation time point, the test result was compared with that obtained via water and steam distillation (WASD), and different raw material grid configurations were taken into consideration. It was found that distillation using the RWASD method increased the amount of EO obtained from limes by 53.69 ± 2.68% (or 43.21 ± 2.16 mL) compared with WASD. The results of gas chromatography mass spectrometry (GC-MS) analysis of bioactive compounds from the distilled EO revealed that important compounds were present in amounts close to the standards reported in many studies; namely, β-myrcene (2.72%), limonene (20.72%), α-phellandrene (1.27%), and terpinen-4-ol (3.04%). In addition, it was found that the temperature, state of saturated steam, and heat distribution during distillation were relatively constant. The results showed the design, construction, and heat loss error values of the 500 L PDM were 5.90 ± 0.29% and 7.83 ± 0.39%, respectively, leading to the use and percentage of useful heat energy to stabilize at 29,880 ± 1,494 kJ/s and 22.47 ± 1.12%, respectively. Additionally, the shape of the grid containing the raw material affects the temperature distribution and the amount of EO distilled, with values 10.14 ± 0.51% and 8.07 ± 0.40% higher for the normal grid (NS), respectively, as well as an exergy efficiency of 49.97 ± 2.49%. The highest values found for exergy in, exergy out, and exergy loss were 294.29 ± 14.71 kJ/s, 144.76 ± 7.23 kJ/s, and 150.22 ± 7.51 kJ/s, respectively. The obtained results can be further developed and expanded to promote the application of this method in SMEs, serving as basic information for the development of the EO distillation industry. Full article
(This article belongs to the Section Pre and Post-Harvest Engineering in Agriculture)
Show Figures

Figure 1

16 pages, 3313 KiB  
Article
Entomopathogenic Fungus Treatment Affects Trophic Interactions by Altering Volatile Emissions in Tomato
by Asim Munawar, Haonan Zhang, Jinyi Zhang, Xiangfen Zhang, Xiao-Xiao Shi, Xuan Chen, Zicheng Li, Xiaoli He, Jian Zhong, Zengrong Zhu, Yaqiang Zheng and Wenwu Zhou
Agronomy 2025, 15(5), 1161; https://doi.org/10.3390/agronomy15051161 - 9 May 2025
Viewed by 754
Abstract
Entomopathogenic fungi (EPFs) can influence plant–insect interactions through complex molecular and chemical mechanisms. This study investigates how EPF treatment of tomato plants modulates volatile organic compound (VOC) emissions and subsequent trophic interactions between tomato plants, the herbivorous pest Phthorimaea absoluta, and the [...] Read more.
Entomopathogenic fungi (EPFs) can influence plant–insect interactions through complex molecular and chemical mechanisms. This study investigates how EPF treatment of tomato plants modulates volatile organic compound (VOC) emissions and subsequent trophic interactions between tomato plants, the herbivorous pest Phthorimaea absoluta, and the parasitic wasp, Trichogramma chilonis. Our results demonstrate that EPF-treated plants exhibited reduced attractiveness to adult P. absoluta moths, which were actively repelled by EPF-induced VOCs. Conversely, these same plants showed enhanced recruitment of the parasitoid T. chilonis, which demonstrated positive chemotaxis toward the modified VOC profile. Chemical analysis revealed significantly elevated emissions of key VOCs in EPF-treated plants, particularly (E)-β-Caryophyllene, β-phellandrene, and α-Phellandrene. This increase is correlated with enhanced production of defense-related phytohormones, including JA, SA, and JA-Ile, which may regulate VOC biosynthesis pathways. Behavioral response studies using synthetic VOCs and electroantennogram (EAG) measurements confirmed that these EPF-induced VOCs elicited strong olfactory responses in both insect species. To summarize, EPF treatment reshapes multitrophic interactions by strategically modulating plant VOC emissions and activating defense signaling pathways in tomato plants, providing new insights for potential applications in sustainable pest management strategies. Full article
(This article belongs to the Special Issue Pests, Pesticides, Pollinators and Sustainable Farming)
Show Figures

Figure 1

31 pages, 4741 KiB  
Article
Preservative Potential of Anethum graveolens Essential Oil on Fish Fillet Quality and Shelf Life During Refrigerated Storage
by Aya Tayel, Faten S. Hassanin, Shimaa N. Edris, Ahmed Hamad and Islam I. Sabeq
Foods 2025, 14(9), 1591; https://doi.org/10.3390/foods14091591 - 30 Apr 2025
Viewed by 647
Abstract
This study estimated the preservative potential of Dill essential oil (DEO, Anethum graveolens) in terms of the quality and shelf life of Pangasius bocourti (basa fish) fillets during cold storage. GC-MS analysis of DEO’s chemical composition identified monoterpenes, including α-phellandrene (21.81%), d-limonene [...] Read more.
This study estimated the preservative potential of Dill essential oil (DEO, Anethum graveolens) in terms of the quality and shelf life of Pangasius bocourti (basa fish) fillets during cold storage. GC-MS analysis of DEO’s chemical composition identified monoterpenes, including α-phellandrene (21.81%), d-limonene (18.54%), carvone (17.42%), and Dill ether (14.82%). DEO showed concentration-dependent antioxidant properties in the DPPH assay, with an IC50 of 48.3 ± 0.9 µg/mL (mean ± SE). Its antibacterial efficacy against various foodborne pathogens was evaluated using the resazurin turbidimetric microdilution method. Fish fillets were treated with DEO at 200, 2000, and 4000 ppm, and compared to the untreated control and 200 ppm butylhydroxytoluene (BHT)-treated groups. Physicochemical parameters, microbial growth, and sensory characteristics were assessed over a 15-day period at 2.5 °C ± 0.5 °C. Higher concentrations of DEO effectively preserved the pH, water-holding capacity, and color stability of the fillets. Microbial analysis showed that DEO, particularly at 4000 ppm, significantly inhibited the growth of aerobic bacteria, lactic acid bacteria, coliforms, and staphylococci compared with the control. Sensory evaluation revealed that DEO treatment, especially at 4000 ppm, maintained the odor, color, texture, and overall acceptability of fish fillets throughout storage. These results suggest that Anethum graveolens L. essential oil can serve as an effective natural preservative to enhance the quality and prolong the shelf life of refrigerated fish fillets. Full article
Show Figures

Figure 1

24 pages, 1201 KiB  
Article
Insecticidal Activity of Monoterpenoids Against Sitophilus zeamais Motschulsky and Tribolium castaneum Herbst: Preliminary Structure–Activity Relationship Study
by Andrés G. Sierra-Quitian, Juliet A. Prieto-Rodríguez and Oscar J. Patiño-Ladino
Int. J. Mol. Sci. 2025, 26(7), 3407; https://doi.org/10.3390/ijms26073407 - 5 Apr 2025
Cited by 2 | Viewed by 697
Abstract
To contribute to the search for effective substances in pest control, this study describes the fumigant and contact toxicity against Tribolium castaneum and Sitophilus zeamais of four essential oils (EOs) and some of their major chemical constituents. The EOs from Tagetes zypaquirensis, [...] Read more.
To contribute to the search for effective substances in pest control, this study describes the fumigant and contact toxicity against Tribolium castaneum and Sitophilus zeamais of four essential oils (EOs) and some of their major chemical constituents. The EOs from Tagetes zypaquirensis, Anethum graveolens, Satureja viminea and Minthostachys mollis were obtained by steam distillation and chemically characterized using GC–MS. In the development of research, some monoterpenoids were isolated from the EOs, others were purchased commercially, and some were synthesized from the most active monoterpenoids present in EOs. The main components in the EOs were dill ether (28.56%), α-phellandrene (25.78%) and carvone (23.67%) for A. graveolens, piperitone oxide (30.40%) and pulegone (25.91%) in M. mollis, pulegone (37.40%) and p-menth-3-en-8-ol (11.83%) for S. viminea, and dihydrotagetone (32.13%), myrcene epoxide (19.64%) and β-myrcene (5.30%) for T. zypaquirensis. The results highlight the fumigant action (LC50) and contact toxicity (LD50) of EO from M. mollis against T. castaneum (LC50 of 4.8 µL/L air and LD50 of 6.5 µg/insect) and S. zeamais (LC50 of 7.0 µL/L air and LD50 of 5.81 µg/insect). Among the chemical constituents evaluated, R-carvone 2, piperitone oxide 5 and R-pulegone 6 stand out for their insecticidal potential against S. zeamais (LC50 between 3.0 and 42.4 µL/L, while LD50 between 14.9 and 24.6 µg/insect) and T. castaneum (LC50 between 2.2 and 4.8 µL/L, while LD50 between 4.8 and 13.1 µg/insect). Preliminary structure–activity analysis suggests that the presence of the carbonyl group with conjugated double bonds in cyclic monoterpenes is important for the insecticidal potential exhibited. Full article
Show Figures

Figure 1

23 pages, 6757 KiB  
Review
Diversity of Needle Terpenes Among Pinus Taxa
by Biljana M. Nikolić, Dalibor Ballian and Zorica S. Mitić
Forests 2025, 16(4), 623; https://doi.org/10.3390/f16040623 - 2 Apr 2025
Cited by 2 | Viewed by 593
Abstract
Essential oils are mixtures of volatile compounds often found in the leaves, wood, and fruits of coniferous trees and shrubs. The composition and abundance of individual oil components vary across different plant parts. Terpenes (monoterpenes, sesquiterpenes, diterpenes, triterpenes) dominate in the essential oils [...] Read more.
Essential oils are mixtures of volatile compounds often found in the leaves, wood, and fruits of coniferous trees and shrubs. The composition and abundance of individual oil components vary across different plant parts. Terpenes (monoterpenes, sesquiterpenes, diterpenes, triterpenes) dominate in the essential oils of many plants. They are the most abundant class of secondary metabolites, with plants containing over a hundred of them at varying concentrations. The terpene profile of certain species consists of a few dominant (abundant) components and numerous less abundant ones. It is believed that the biological activity of essential oil mostly depends on the dominant terpene components. In most of the analyzed Pinus species, the most abundant terpene compounds are α-pinene, β-pinene, δ-3-carene, β-caryophyllene, limonene/β-phellandrene, and germacrene D. In certain taxa, additional dominant compounds include α-cedrol, bornyl acetate, caryophyllene oxide, α-phellandrene, trimethylbicyclo [3.1.1]hept-2-ene, 2H-benzocyclohepten-2-one, phenylethyl butyrate, 4-epi-isocembrol, β-thujene, and thunbergol. Moreover, compounds with abundances exceeding 15% include methyl chavicol (=estragole), geranylene, myrcene, γ-muurolene, sabinene, and abieta-7,13-diene. It can be concluded that the terpene profiles of the needles of the analyzed pine taxa depend on the type of chromatographic columns, the method of obtaining essential oils, the origin of the trees (in natural habitat or artificial plantation), the age of the needles, the variety, and the season in which the needles were collected. Full article
(This article belongs to the Special Issue Essential Oil Composition of Forests Trees)
Show Figures

Figure 1

16 pages, 1004 KiB  
Article
Complex Floral Scent Profile of Neottia ovata (Orchidaceae): General Attractants and Beyond
by Edyta Jermakowicz, Marcin Stocki, Piotr Szefer, Justyna Burzyńska and Emilia Brzosko
Plants 2025, 14(6), 942; https://doi.org/10.3390/plants14060942 - 17 Mar 2025
Viewed by 558
Abstract
Understanding the complexity of flower scent—a crucial attractant for pollinators and a key factor in ensuring plant reproduction—is an essential ecological task for highly endangered orchids. To address this issue, we studied the flower volatiles profile of Neottia ovata, a nectar-rewarding orchid [...] Read more.
Understanding the complexity of flower scent—a crucial attractant for pollinators and a key factor in ensuring plant reproduction—is an essential ecological task for highly endangered orchids. To address this issue, we studied the flower volatiles profile of Neottia ovata, a nectar-rewarding orchid known for its generalist pollination strategy. We then compared the chemical composition of N. ovata floral scent with scent data of other orchid species to place our findings in the context of general volatile attractants emitted by nectar-rewarding or food-deceptive species. Our results contribute to understanding the complexity of the N. ovata floral scent profile and provide valuable methodological insights. The scented bouquet of N. ovata comprises 100 compounds with a relatively consistent composition across the analyzed samples. It is rich in terpenes, including linalool and trans-/cis-sabinene hydrate, compounds commonly associated with generalized rewarding or food-deceptive pollination systems. Other terpenes identified include α- and β-pinene, limonene, and β-phellandrene, whose presence underscores the generalized nature of the floral scent. Interestingly, in the studied N. ovata populations, the dominance among terpenes is shifting markedly towards γ-terpinene, α-terpinene, and terpinene-4-ol, commonly found in essential oils and the floral scents of some supergeneralist-pollination plants. Aromatic compounds were less represented in the N. ovata scent profile and those of other orchids studied, though benzyl alcohol and benzaldehyde were noticeably more abundant. Aliphatic compounds composed the least prevalent fraction, showing a marked decreasing trend among nectar-rewarding species with generalized or specialized pollination systems. It is worth emphasizing that the applied methodology revealed an extensive group of low-frequency compounds in the N. ovata floral scent. This finding raises new ecological questions about the intraspecific diversity of floral scent profiles and sheds new light on the factors determining effective reproduction in this species of orchid. Full article
(This article belongs to the Special Issue The Conservation of Protected Plant Species: From Theory to Practice)
Show Figures

Figure 1

32 pages, 9464 KiB  
Article
Impact of Oil Temperature and Splashing Frequency on Chili Oil Flavor: Volatilomics and Lipidomics
by Xiaoping Li, Xiaopeng Liu, Shiting Su, Zhao Yao, Zhenhua Zhu, Xingyou Chen, Fei Lao and Xiang Li
Foods 2025, 14(6), 1006; https://doi.org/10.3390/foods14061006 - 16 Mar 2025
Viewed by 746
Abstract
In this study, headspace gas chromatography–ion mobility spectrometry, headspace gas chromatography–mass spectrometry, and lipidomics were used to explore the effects of three oil temperatures (210 °C, 180 °C, 150 °C) with single- and traditional triple-oil-splashing processes (210 °C → 180 °C → 150 [...] Read more.
In this study, headspace gas chromatography–ion mobility spectrometry, headspace gas chromatography–mass spectrometry, and lipidomics were used to explore the effects of three oil temperatures (210 °C, 180 °C, 150 °C) with single- and traditional triple-oil-splashing processes (210 °C → 180 °C → 150 °C) on the formation of key chili oil aromas. A total of 31 key aroma compounds were identified, with 2,4-nonadienal, α-pinene, α-phellandrene, and β-ocimene being found in all treatment groups. Lipidomics suggested that oleic acid, linoleic acid, and α-linolenic acid were highly positively correlated with key chili oil key aroma compounds, such as (E)-2-heptenal, 2-methylbutyraldehyde, limonene, (E, E)-2,4-heptadienal, 2,4-nonadienal, and 2,4-decadienal. The temperature and frequency of oil splashing significantly affected the chili oil aroma profile (p < 0.05). The citrus, woody, and grassy notes were richer in chili oil prepared at 150 °C, malty and fatty aromas were more prominent at 180 °C, and the nutty aroma was stronger in 210 °C prepared and triple-splashed chili oil. The present study reveals how sequential oil splashing processes synergistically activate distinct lipid degradation pathways compared to single-temperature treatments, providing new insights into lipid-rich condiment preparation, enabling chefs and food manufacturers to target specific aroma profiles. Full article
(This article belongs to the Section Foodomics)
Show Figures

Graphical abstract

16 pages, 1773 KiB  
Article
Protective Effects of Frankincense Oil on Wound Healing: Downregulating Caspase-3 Expression to Facilitate the Transition from the Inflammatory to Proliferative Phase
by Krishnaraju Venkatesan, Durgaramani Sivadasan, Moufida Abderrahmen Al Weslati, Mohammed Gayasuddin Mouid, Manoj Goyal, Monika Bansal, Mohamed EL-Dosoky Mohamed Salama, Syed Azizullah Ghori and Fazil Ahmad
Pharmaceuticals 2025, 18(3), 407; https://doi.org/10.3390/ph18030407 - 13 Mar 2025
Cited by 2 | Viewed by 3275
Abstract
Background/Objectives: Wound healing is a complex process involving inflammation, oxidative stress, immune modulation, and tissue regeneration. Frankincense essential oil (FEO), derived from Boswellia species, is known for its anti-inflammatory, antioxidant, and therapeutic properties. This study investigates the protective effects of FEO in an [...] Read more.
Background/Objectives: Wound healing is a complex process involving inflammation, oxidative stress, immune modulation, and tissue regeneration. Frankincense essential oil (FEO), derived from Boswellia species, is known for its anti-inflammatory, antioxidant, and therapeutic properties. This study investigates the protective effects of FEO in an excision wound model in rats, focusing on oxidative stress reduction, inflammatory cytokine modulation, and caspase-3 regulation. Methods: The chemical composition of FEO was analyzed using gas chromatography-mass spectrometry (GC-MS). Rats with excision wounds were treated with FEO, and its efficacy was assessed using biochemical and histological analyses. Caspase-3 expression, IL-1β, TNF-α, and CD68 levels were measured, along with oxidative stress markers. Wound contraction, epithelialization and collagen synthesis were also evaluated. Immunohistochemical and histopathological assessments were performed to analyze inflammatory infiltration and tissue remodeling. Results: FEO, rich in alpha-phellandrene (10.52%) and limonene (7.31%), significantly downregulated caspase-3, reducing apoptosis in the wound environment. It also lowered IL-1β and TNF-α levels, confirming anti-inflammatory effects. Additionally, FEO modulated CD68 expression, shifting the wound environment from inflammatory to healing. The oil antioxidant activity reduced oxidative stress, limiting caspase-3-mediated apoptosis and enhancing cell survival. FEO treatment accelerated wound contraction, improved epithelialization, and increased collagen synthesis. Histological analysis revealed reduced inflammatory infiltration and enhanced tissue remodeling. Conclusions: FEO integrates anti-inflammatory, antioxidant, and anti-apoptotic mechanisms to promote wound healing and tissue repair. Its ability to modulate caspase-3, IL-1β, TNF-α, CD68, and oxidative stress markers along with its major constituents such as alpha-phellandrene and limonene highlights its potential as a natural therapeutic agent for wound management and regenerative medicine. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

18 pages, 1140 KiB  
Article
Effect of Schinus areira L. Essential Oil on Attraction, Reproductive Behavior, and Survival of Ceratitis capitata Wiedemann
by Flavia Jofré Barud, María Pía Gomez, María Josefina Ruiz, Guillermo Bachmann, Diego Fernando Segura, María Teresa Vera and María Liza López
Plants 2025, 14(5), 794; https://doi.org/10.3390/plants14050794 - 4 Mar 2025
Viewed by 744
Abstract
The essential oil (EO) of Schinus areira exhibits a chemical composition dominated by monoterpene and sesquiterpene hydrocarbons, with α-phellandrene, limonene, α-pinene, and p-cymene as major constituents. This study aimed to evaluate the effects of S. areira EO on the biology and behavior of [...] Read more.
The essential oil (EO) of Schinus areira exhibits a chemical composition dominated by monoterpene and sesquiterpene hydrocarbons, with α-phellandrene, limonene, α-pinene, and p-cymene as major constituents. This study aimed to evaluate the effects of S. areira EO on the biology and behavior of the Mediterranean fruit fly, Ceratitis capitata, particularly its attraction to the EO and the impact on its reproductive behavior and survival. Females were attracted at the initial choice and the time spent in the arm of the Y-tube olfactometer with the EO was longer, while males were attracted at the final choice, indicating the attractive potential of S. areira EO for both sexes of C. capitata. Within the context of the sterile insect technique (SIT), the better performance of released sterile males allows more copulations with wild females in competition with wild males, increasing the efficacy of the SIT. Exposure of tsl sterile males to the EO did not enhance their sexual competitiveness and increased latency to initiate copulation, indicating potential adverse effects. In addition, in oviposition assays, only a low concentration of the EO stimulated egg-laying on treated substrates, possibly due to the absence of deterrent compounds such as linalool. Finally, the LD50 of the EO was <25 µg/fly for both females and males, at 72 h post-treatment. These findings highlight the potential of EOs as biopesticides that influence the behaviors of C. capitata and emphasize the need for further studies to optimize their application in integrated pest management strategies, including the SIT. Full article
(This article belongs to the Special Issue Emerging Topics in Botanical Biopesticides—2nd Edition)
Show Figures

Figure 1

21 pages, 3843 KiB  
Article
Chemical Composition and Larvicidal Activity Against Aedes aegypti of the Leaf Essential Oils from Croton blanchetianus
by Pedro Henrique Ribeiro Lopes, Nicaely Maria de Oliveira Pereira, Matheus Nunes da Rocha, Marcia Machado Marinho, Jesyka Macêdo Guedes, Tigressa Helena Soares Rodrigues, Jean Parcelli Costa Do Vale, Emmanuel Silva Marinho, Gilvandete Maria Pinheiro Santiago and Hélcio Silva dos Santos
Molecules 2025, 30(5), 1034; https://doi.org/10.3390/molecules30051034 - 24 Feb 2025
Viewed by 824
Abstract
The Aedes aegypti mosquito is the primary vector of dengue, a neglected disease and a serious public health problem in tropical countries. The control of this vector has been carried out using chemical insecticides, which impact human health. Thus, it is essential to [...] Read more.
The Aedes aegypti mosquito is the primary vector of dengue, a neglected disease and a serious public health problem in tropical countries. The control of this vector has been carried out using chemical insecticides, which impact human health. Thus, it is essential to develop natural larvicides that are less harmful to the environment. This study investigates the circadian cycle and larvicidal activity of essential oils from Croton blanchetianus against Aedes aegypti. The leaf oils were extracted by hydrodistillation and analyzed by GC–MS and GC–FID. The circadian study revealed variations in the chemical composition of oils extracted at different times of the day. The main constituents were α-pinene, β-phellandrene, eucalyptol, β-caryophyllene, bicyclogermacrene, and spathulenol. The larvicidal activity showed LC50 values at the following different collection times: 55.294 ± 3.209 μg/mL at 08:00 h; 95.485 ± 2.684 μg/mL at 12:00 h; and 64.883 ± 1.780 μg/mL at 17:00 h. Molecular docking simulations indicated that α-pinene, β-phellandrene, eucalyptol, and β-caryophyllene strongly interact with the active site of the sterol carrier protein, suggesting their role in larvicidal activity. These findings reinforce the potential of C. blanchetianus essential oils as an alternative for Aedes aegypti control. The predictive pharmacokinetic tests showed a PAMPA profile associated with high effective cellular permeability and microsomal stability, resulting from the metabolic stability of the derivatives (3) eucalyptol and (6) spathulenol, indicating that these compounds have the highest pharmacokinetic viability and low reactivity with respect to organ toxicity. Full article
(This article belongs to the Special Issue Natural Products as Insecticidal Agents)
Show Figures

Figure 1

22 pages, 7191 KiB  
Article
Optimizing Protein Profile, Flavor, Digestibility, and Microstructure: The Impact of Preheating and Reheating in Stir-Fried Chicken
by Kumayl Hassan Akhtar, Ziwu Gao, Zeyu Zhang, Xiangxiang Sun, Yumei Yu, Jiale Ma, Dequan Zhang and Zhenyu Wang
Foods 2025, 14(4), 643; https://doi.org/10.3390/foods14040643 - 14 Feb 2025
Viewed by 1188
Abstract
Preheating and reheating play key roles in enhancing the nutritional and sensory qualities of stir-fried chicken. Thus, this study investigated the effect of preheating (D1) and reheating (D30) after 30 days of storage on the protein profile, lipid oxidation, flavor, texture, color, sensory [...] Read more.
Preheating and reheating play key roles in enhancing the nutritional and sensory qualities of stir-fried chicken. Thus, this study investigated the effect of preheating (D1) and reheating (D30) after 30 days of storage on the protein profile, lipid oxidation, flavor, texture, color, sensory properties, protein digestibility, and microstructure of household stir-fried chicken. Four doneness levels of preheating (medium rare (T1 = 62 °C), medium (T2 = 65 °C), medium well (T3 = 68 °C), and well done (T4 = 71 °C) and reheating (72 °C) were selected. Results revealed that preheating and reheating enhanced protein and lipid oxidation, while the unfolding of α-helix improved quality and digestibility. GC-MS identified 59 volatile compounds, including β-phellandrene and 1-octen-3-ol in preheating and anethole and benzaldehyde in reheating. Texture analysis showed decreased hardness, chewiness, and gumminess at T3. Lightness (L*) and redness (a*) were largely unaffected, except for the well done (D1T4, D30T4) doneness level, although yellowness (b*) increased with the increasing doneness levels. Sensory evaluation highlighted improved appearance, tenderness, and overall acceptability, particularly for D30T3. Digestibility enhanced with reheating, reaching up to 80% intestinal digestibility at D30T3. Microstructural analysis unveiled structural deformation, which was most pronounced at T4. Preheating followed by reheating enhanced meat quality attributes, with D30T3 emerging as the optimal doneness level for the industrial production of stir-fried chicken. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

Back to TopTop