Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = ΔQ

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2718 KiB  
Article
Crystal Chemistry at Interfaces Between Liquid Al and Polar SiC{0001} Substrates
by Changming Fang and Zhongyun Fan
Metals 2024, 14(11), 1258; https://doi.org/10.3390/met14111258 - 6 Nov 2024
Viewed by 964
Abstract
Silicon carbide (SiC) has been widely added into light metals, e.g., Al, to enhance their mechanical performance and corrosion resistance. SiC particle-reinforced metal matrix composites (SiC-MMCs) exhibit low weight/volume ratios, high strength/hardness, high corrosion resistance, and thermal stability. They have potential applications in [...] Read more.
Silicon carbide (SiC) has been widely added into light metals, e.g., Al, to enhance their mechanical performance and corrosion resistance. SiC particle-reinforced metal matrix composites (SiC-MMCs) exhibit low weight/volume ratios, high strength/hardness, high corrosion resistance, and thermal stability. They have potential applications in aerospace, automobiles, and other specialized equipment. The macro-mechanical properties of Al/SiC composites depend on the local structures and chemical interactions at the Al/SiC interfaces at the atomic level. Moreover, the added SiC particles may act as potential nucleation sites during solidification. We investigate local atomic ordering and chemical interactions at the interfaces between liquid Al (Al(l) in short) and polar SiC substrates using ab initio molecular dynamics (AIMD) methods. The simulations reveal a rich variety of interfacial interactions. Charge transfer occurs from Al(l) to C-terminating atoms (Δq = 0.3e/Al on average), while chemical bonding between interfacial Si and Al(l) atoms is more covalent with a minor charge transfer of Δq = 0.04e/Al. The prenucleation at both interfaces is moderate with three to four recognizable layers. The information obtained here helps increase understanding of the interfacial interactions at Al/SiC at the atomic level and the related macro-mechanical properties, which is helpful in designing novel SiC-MMC materials with desirable properties and optimizing related manufacturing and machining processes. Full article
(This article belongs to the Special Issue Multi-scale Simulation of Metallic Materials (2nd Edition))
Show Figures

Figure 1

19 pages, 6840 KiB  
Article
Influence of the Surface Texture Parameters of Asphalt Pavement on Light Reflection Characteristics
by Peng Xu, Guoping Qian, Chao Zhang, Xiangdong Wang, Huanan Yu, Hongyu Zhou and Chen Zhao
Appl. Sci. 2023, 13(23), 12824; https://doi.org/10.3390/app132312824 - 29 Nov 2023
Cited by 4 | Viewed by 1847
Abstract
The optical reflection characteristics of asphalt pavement have an important influence on road-lighting design, and the macrotexture and microtexture of asphalt pavement significantly affect its reflection characteristics. To investigate the impact of texture parameters on the retroreflection coefficient of asphalt pavement, the texture [...] Read more.
The optical reflection characteristics of asphalt pavement have an important influence on road-lighting design, and the macrotexture and microtexture of asphalt pavement significantly affect its reflection characteristics. To investigate the impact of texture parameters on the retroreflection coefficient of asphalt pavement, the texture indices of rutted plate specimens and field asphalt pavement were obtained by a pavement texture tester, including the macrotexture surface area (S1), microtexture surface area (S2), macrotexture distribution density (D1), microtexture distribution density (D2), root mean square slope (Δq), skewness (Rsk), and steepness (Rku). The corresponding retroreflective coefficient RL was measured by using a retroreflectometer. In the laboratory experiments, rutted specimens of AC-13, SMA-13, and OGFC-13 asphalt mixtures were formed. The changes in texture parameters and the retroreflection coefficient of rutting specimens before and after rolling were studied, and a factor-influence model between macro- and microtexture parameters and RL was established, along with correlation models of the texture index and RL. The results show that after the rutting test, S1, S2, D1, D2, Δq, and Rku decreased, Rsk increased, and RL increased. In the single-factor model, the parameters could be used to characterize RL with high prediction accuracy, whereas for the onsite measurements, the parameters Δq, Rsk, and Rku could well characterize RL. The nonlinear model established, based on the BP neural network algorithm, improved the prediction accuracy. This research provides ideas for optimizing the reflection characteristics of asphalt pavement and a decision-making basis for road-lighting design. Full article
(This article belongs to the Special Issue Advanced Pavement Materials in Road Construction)
Show Figures

Figure 1

31 pages, 8540 KiB  
Article
Study on Heat Storage Performance of Phase Change Reservoir in Underground Protection Engineering
by Hongyu Zhang, Fei Gan, Guangqin Huang, Chunlong Zhuang, Xiaodong Shen, Shengbo Li, Lei Cheng, Shanshan Hou, Ningge Xu and Zhenqun Sang
Energies 2022, 15(15), 5731; https://doi.org/10.3390/en15155731 - 7 Aug 2022
Cited by 1 | Viewed by 1831
Abstract
In view of the main problems of the condensing heat discharge modes of the existing underground air-conditioning system, the technical scheme of using phase change heat storage modules to improve the heat storage capacity of the reservoir is proposed. By establishing a 3D [...] Read more.
In view of the main problems of the condensing heat discharge modes of the existing underground air-conditioning system, the technical scheme of using phase change heat storage modules to improve the heat storage capacity of the reservoir is proposed. By establishing a 3D flow and transient heat transfer model of the phase change reservoir, the effects of thermal property parameters, package size and arrangement of the phase change heat storage modules on the heat storage performance of the phase change reservoir were quantitatively analyzed based on three indexes: heat storage capacity per volume Δq, guaranteed efficiency coefficient η and slope of temperature rise per unit load ε. The results show that when the phase change temperature is 29 °C (23 °C increased to 33 °C) and the latent heat value is 250 kJ/kg (100 kJ/kg increased to 250 kJ/kg), Δq (110.92 MJ/m3, 112.83 MJ/m3) and η (1.22, 1.24) under both conditions are at their most, respectively, indicating that the phase change temperature should be less than 4 °C at the outlet temperature of the reservoir, and phase change materials with a high latent heat should be selected in engineering design whenever possible. When the size of the phase change module is 150 mm × 20 mm and the phase change reservoir adopts four intakes, ε (0.259, 0.244) under both conditions is the smallest, indicating that increasing the area of the phase change heat storage module and the fluid and increasing the inlet disturbance of the reservoir can enhance its heat storage capacity. Full article
(This article belongs to the Topic Thermal Energy Transfer and Storage)
Show Figures

Figure 1

9 pages, 2124 KiB  
Article
As-Doped h-BN Monolayer: A High Sensitivity and Short Recovery Time SF6 Decomposition Gas Sensor
by Yunfeng Long, Sheng-Yuan Xia, Liang-Yan Guo, Yaxiong Tan and Zhengyong Huang
Sensors 2022, 22(13), 4797; https://doi.org/10.3390/s22134797 - 24 Jun 2022
Cited by 17 | Viewed by 2235
Abstract
SF6 is a common insulating medium of gas-insulated switchgear (GIS). However, it is inevitable that SF6 will be decomposed due to partial discharge (PD) in GIS, which will cause hidden dangers to the safe and stable operation of equipment. Based on [...] Read more.
SF6 is a common insulating medium of gas-insulated switchgear (GIS). However, it is inevitable that SF6 will be decomposed due to partial discharge (PD) in GIS, which will cause hidden dangers to the safe and stable operation of equipment. Based on the DFT method, the two-dimensional nano-composite As-doped h-BN (As-BN) monolayer was proposed. By modeling and calculating, the ability of an As-BN monolayer as a specific sensor for SO2F2 (compared with an H2O adsorption system and CO2 adsorption system) was evaluated by parameters such as the binding energy (Eb), adsorption energy (Eads), transfer charge (ΔQ), geometric structure parameters, the total density of states (TDOS), band structure, charge difference density (CDD), electron localization function (ELF), sensitivity (S), and recovery time (τ). The results showed that an As-BN monolayer showed strong adsorption specificity, high sensitivity, and short recovery time for SO2F2 gas molecules. Therefore, the As-BN monolayer sensor has great application potential in the detection of SF6 decomposition gases. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

38 pages, 2357 KiB  
Article
Mind Your Outcomes: The ΔQSD Paradigm for Quality-Centric Systems Development and Its Application to a Blockchain Case Study
by Seyed Hossein Haeri, Peter Thompson, Neil Davies, Peter Van Roy, Kevin Hammond and James Chapman
Computers 2022, 11(3), 45; https://doi.org/10.3390/computers11030045 - 17 Mar 2022
Cited by 4 | Viewed by 7036
Abstract
This paper directly addresses a long-standing issue that affects the development of many complex distributed software systems: how to establish quickly, cheaply, and reliably whether they can deliver their intended performance before expending significant time, effort, and money on detailed design and implementation. [...] Read more.
This paper directly addresses a long-standing issue that affects the development of many complex distributed software systems: how to establish quickly, cheaply, and reliably whether they can deliver their intended performance before expending significant time, effort, and money on detailed design and implementation. We describe ΔQSD, a novel metrics-based and quality-centric paradigm that uses formalised outcome diagrams to explore the performance consequences of design decisions, as a performance blueprint of the system. The distinctive feature of outcome diagrams is that they capture the essential observational properties of the system, independent of the details of system structure and behaviour. The ΔQSD paradigm derives bounds on performance expressed as probability distributions encompassing all possible executions of the system. The ΔQSD paradigm is both effective and generic: it allows values from various sources to be combined in a rigorous way so that approximate results can be obtained quickly and subsequently refined. ΔQSD has been successfully used by a small team in Predictable Network Solutions for consultancy on large-scale applications in a number of industries, including telecommunications, avionics, and space and defence, resulting in cumulative savings worth billions of US dollars. The paper outlines the ΔQSD paradigm, describes its formal underpinnings, and illustrates its use via a topical real-world example taken from the blockchain/cryptocurrency domain. ΔQSD has supported the development of an industry-leading proof-of-stake blockchain implementation that reliably and consistently delivers blocks of up to 80 kB every 20 s on average across a globally distributed network of collaborating block-producing nodes operating on the public internet. Full article
(This article belongs to the Special Issue Blockchain-Based Systems)
Show Figures

Figure 1

22 pages, 2573 KiB  
Article
Linear and Non-Linear Regression Analysis for the Adsorption Kinetics of SO2 in a Fixed Carbon Bed Reactor—A Case Study
by Anna M. Kisiela-Czajka and Bartosz Dziejarski
Energies 2022, 15(2), 633; https://doi.org/10.3390/en15020633 - 17 Jan 2022
Cited by 11 | Viewed by 3381
Abstract
Here, we determined the kinetic parameters of SO2 adsorption on unburned carbons from lignite fly ash and activated carbons based on hard coal dust. The model studies were performed using the linear and non-linear regression method for the following models: pseudo first [...] Read more.
Here, we determined the kinetic parameters of SO2 adsorption on unburned carbons from lignite fly ash and activated carbons based on hard coal dust. The model studies were performed using the linear and non-linear regression method for the following models: pseudo first and second order, intraparticle diffusion, and chemisorption on a heterogeneous surface. The quality of the fitting of a given model to empirical data was assessed based on: R2, R, Δq, SSE, ARE, χ2, HYBRID, MPSD, EABS, and SNE. It was clearly shown that the linear regression more accurately reflects the behaviour of the adsorption system, which is consistent with the first-order kinetic reaction—for activated carbons (SO2 + Ar) or chemisorption on a heterogeneous surface—for unburned carbons (SO2 + Ar and SO2 + Ar + H2O(g) + O2) and activated carbons (SO2 + Ar + H2O(g) + O2). Importantly, usually, each of the approaches (linear/non-linear) indicated a different mechanism of the studied phenomenon. A certain universality of the χ2 and HYBRID functions has been proved, the minimization of which repeatedly led to the lowest SNE values for the indicated models. Fitting data by any of the non-linear equations based on the R or R2 functions only cannot be treated as evidence/prerequisite of the existence of a given adsorption mechanism. Full article
(This article belongs to the Special Issue Modelling and Calculation of Raw Material Industry)
Show Figures

Figure 1

20 pages, 5913 KiB  
Article
Numerical Investigation of the Effectiveness of Vegetation-Embankment Hybrid Structures for Tsunami Mitigation Introduced after the 2011 Tsunami
by Norio Tanaka, Yoshiya Igarashi and Takehito Zaha
Geosciences 2021, 11(11), 440; https://doi.org/10.3390/geosciences11110440 - 26 Oct 2021
Cited by 16 | Viewed by 2372
Abstract
As a mitigation measure against a tsunami inundation, vegetation-embankment hybrid structures received attention after the 2011 Great East Japan Tsunami, and some structures have already been constructed or are under construction in Japan. The present study conducted a series of numerical simulations using [...] Read more.
As a mitigation measure against a tsunami inundation, vegetation-embankment hybrid structures received attention after the 2011 Great East Japan Tsunami, and some structures have already been constructed or are under construction in Japan. The present study conducted a series of numerical simulations using a hybrid system comprised of an artificial structure (an embankment, moat) and a natural component (vegetation) that was experimentally proposed in previous studies as an effective structure for tsunami mitigation. After validating the numerical model using published data, this study investigated differences in the performance of the hybrid system by changing the tsunami period and height characteristics of the tsunami-like surge-type flow. As a result, the delay in tsunami arrival time (ΔT) was not affected by the tsunami wave period for the investigated hybrid structures. Among the investigated structures, Case Ve40ME (where Ve40, M, and E represent vegetation, moat, and embankment, respectively, in that order from seaward) showed the maximum performance of ΔT. The reductions of overflow volume (ΔQ), fluid force index (RFI), and moment index (RMI) declined during the tsunami period. The tsunami mitigation effect is closely related to the relationship between the development times of backwater rise, hydraulic jump, and the tsunami period. Case Ve40ME was effective for ΔT, ΔQ, and RMI. Case EMVe40 was especially effective for RFI. When the tsunami period is short, the water level at the shoreline starts to decrease before full development of the hydraulic jump generated in the hybrid system. Thus, overflow volume to landward decreases, and the mitigation effects increase. When the tsunami period is long, the receding phenomenon at the peak water level does not affect the maximum values, thus the mitigation effects become smaller compared with the short period. However, the superiority to other structures is maintained in Case Ve40ME and Case EMVe40 with seaward vegetation and landward vegetation, respectively. Full article
Show Figures

Figure 1

11 pages, 2187 KiB  
Article
Fabrication of Pressure Sensor Using Electrospinning Method for Robotic Tactile Sensing Application
by Tamil Selvan Ramadoss, Yuya Ishii, Amutha Chinnappan, Marcelo H. Ang and Seeram Ramakrishna
Nanomaterials 2021, 11(5), 1320; https://doi.org/10.3390/nano11051320 - 17 May 2021
Cited by 14 | Viewed by 4025
Abstract
Tactile sensors are widely used by the robotics industries over decades to measure force or pressure produced by external stimuli. Piezoelectric-based pressure sensors have intensively been investigated as promising candidates for tactile sensing applications. In contrast, piezoelectric-based pressure sensors are expensive due to [...] Read more.
Tactile sensors are widely used by the robotics industries over decades to measure force or pressure produced by external stimuli. Piezoelectric-based pressure sensors have intensively been investigated as promising candidates for tactile sensing applications. In contrast, piezoelectric-based pressure sensors are expensive due to their high cost of manufacturing and expensive base materials. Recently, an effect similar to the piezoelectric effect has been identified in non-piezoelectric polymers such as poly(d,l-lactic acid (PDLLA), poly(methyl methacrylate) (PMMA) and polystyrene. Hence investigations were conducted on alternative materials to find their suitability. In this article, we used inexpensive atactic polystyrene (aPS) as the base polymer and fabricated functional fibers using an electrospinning method. Fiber morphologies were studied using a field-emission scanning electron microscope and proposed a unique pressure sensor fabrication method. A fabricated pressure sensor was subjected to different pressures and corresponding electrical and mechanical characteristics were analyzed. An open circuit voltage of 3.1 V was generated at 19.9 kPa applied pressure, followed by an integral output charge (ΔQ), which was measured to calculate the average apparent piezoelectric constant dapp and was found to be 12.9 ± 1.8 pC N−1. A fabricated pressure sensor was attached to a commercially available robotic arm to mimic the tactile sensing. Full article
(This article belongs to the Special Issue Advanced Mechanical Modeling of Nanomaterials and Nanostructures)
Show Figures

Figure 1

24 pages, 1820 KiB  
Article
Towards a RINA-Based Architecture for Performance Management of Large-Scale Distributed Systems
by Peter Thompson and Neil Davies
Computers 2020, 9(2), 53; https://doi.org/10.3390/computers9020053 - 25 Jun 2020
Cited by 6 | Viewed by 4763
Abstract
Modern society is increasingly dependent on reliable performance of distributed systems. In this paper, we provide a precise definition of performance using the concept of quality attenuation; discuss its properties, measurement and decomposition; identify sources of such attenuation; outline methods of managing performance [...] Read more.
Modern society is increasingly dependent on reliable performance of distributed systems. In this paper, we provide a precise definition of performance using the concept of quality attenuation; discuss its properties, measurement and decomposition; identify sources of such attenuation; outline methods of managing performance hazards automatically using the capabilities of the Recursive InterNetworking Architecture (RINA); demonstrate procedures for aggregating both application demands and network performance to achieve scalability; discuss dealing with bursty and time-critical traffic; propose metrics to assess the effectiveness of a performance management system; and outline an architecture for performance management. Full article
Show Figures

Figure 1

6 pages, 1240 KiB  
Article
Informational Reinterpretation of the Mechanics Notions and Laws
by Edward Bormashenko
Entropy 2020, 22(6), 631; https://doi.org/10.3390/e22060631 - 7 Jun 2020
Cited by 6 | Viewed by 3277
Abstract
The informational re-interpretation of the basic laws of the mechanics exploiting the Landauer principle is suggested. When a physical body is in rest or it moves rectilinearly with the constant speed, zero information is transferred; thus, the informational affinity of the rest state [...] Read more.
The informational re-interpretation of the basic laws of the mechanics exploiting the Landauer principle is suggested. When a physical body is in rest or it moves rectilinearly with the constant speed, zero information is transferred; thus, the informational affinity of the rest state and the rectilinear motion with a constant speed is established. Inertial forces may be involved in the erasure/recording of information. The analysis of the minimal Szilard thermal engine as seen from the noninertial frame of references is carried out. The Szilard single-particle minimal thermal engine undergoes isobaric expansion relative to accelerated frame of references, enabling the erasure of 1 bit of information. The energy ΔQ spent by the inertial force for the erasure of 1 bit of information is estimated as Δ Q 5 3 k B T ¯ , which is larger than the Landauer bound but qualitatively is close to it. The informational interpretation of the equivalence principle is proposed: the informational content of the inertial and gravitational masses is the same. Full article
(This article belongs to the Special Issue The Landauer Principle: Meaning, Physical Roots and Applications)
Show Figures

Figure 1

13 pages, 3293 KiB  
Article
Luminescent Electrochromic Devices for Smart Windows of Energy-Efficient Buildings
by Mariana Fernandes, Vânia Freitas, Sónia Pereira, Rita Leones, Maria Manuela Silva, Luís D. Carlos, Elvira Fortunato, Rute A. S. Ferreira, Rosa Rego and Verónica De Zea Bermudez
Energies 2018, 11(12), 3513; https://doi.org/10.3390/en11123513 - 17 Dec 2018
Cited by 20 | Viewed by 4825
Abstract
To address the challenges of the next generation of smart windows for energy-efficient buildings, new electrochromic devices (ECDs) are introduced. These include indium molybdenum oxide (IMO), a conducting oxide transparent in the near-infrared (NIR) region, and a NIR-emitting electrolyte. The novel electrolytes are [...] Read more.
To address the challenges of the next generation of smart windows for energy-efficient buildings, new electrochromic devices (ECDs) are introduced. These include indium molybdenum oxide (IMO), a conducting oxide transparent in the near-infrared (NIR) region, and a NIR-emitting electrolyte. The novel electrolytes are based on a sol-gel-derived di-urethane cross-linked siloxane-based host structure, including short chains of poly (ε-caprolactone) (PCL(530) (where 530 represents the average molecular weight in g mol−1). This hybrid framework was doped with a combination of either, lithium triflate (LiTrif) and erbium triflate (ErTrif3), or LiTrif and bisaquatris (thenoyltrifluoroacetonate) erbium (III) ([Er(tta)3(H2O)2]). The ECD@LiTrif-[Er(tta)3(H2O)2] device presents a typical Er3+ NIR emission around 1550 nm. The figures of merit of these devices are high cycling stability, good reversibility, and unusually high coloration efficiency (CE = ΔOD/ΔQ, where Q is the inserted/de-inserted charge density). CE values of −8824/+6569 cm2 C−1 and −8243/+5200 cm2 C−1 were achieved at 555 nm on the 400th cycle, for ECD@LiTrif-ErTrif3 and ECD@LiTrif-[Er(tta)3(H2O)2], respectively. Full article
(This article belongs to the Special Issue Building-Integrated Photovoltaics/Luminescent Solar Concentrators)
Show Figures

Figure 1

15 pages, 3598 KiB  
Article
Quantum Flows for Secret Key Distribution in the Presence of the Photon Number Splitting Attack
by Luis A. Lizama-Pérez, J. Mauricio López, Eduardo De Carlos-López and Salvador E. Venegas-Andraca
Entropy 2014, 16(6), 3121-3135; https://doi.org/10.3390/e16063121 - 5 Jun 2014
Cited by 9 | Viewed by 6732
Abstract
Physical implementations of quantum key distribution (QKD) protocols, like the Bennett-Brassard (BB84), are forced to use attenuated coherent quantum states, because the sources of single photon states are not functional yet for QKD applications. However, when using attenuated coherent states, the relatively high [...] Read more.
Physical implementations of quantum key distribution (QKD) protocols, like the Bennett-Brassard (BB84), are forced to use attenuated coherent quantum states, because the sources of single photon states are not functional yet for QKD applications. However, when using attenuated coherent states, the relatively high rate of multi-photonic pulses introduces vulnerabilities that can be exploited by the photon number splitting (PNS) attack to brake the quantum key. Some QKD protocols have been developed to be resistant to the PNS attack, like the decoy method, but those define a single photonic gain in the quantum channel. To overcome this limitation, we have developed a new QKD protocol, called ack-QKD, which is resistant to the PNS attack. Even more, it uses attenuated quantum states, but defines two interleaved photonic quantum flows to detect the eavesdropper activity by means of the quantum photonic error gain (QPEG) or the quantum bit error rate (QBER). The physical implementation of the ack-QKD is similar to the well-known BB84 protocol. Full article
Show Figures

16 pages, 773 KiB  
Article
Numerical Investigations on Electric Field Characteristics with Respect to Capacitive Detection of Free-Flying Droplets
by Andreas Ernst, Klaus Mutschler, Laurent Tanguy, Nils Paust, Roland Zengerle and Peter Koltay
Sensors 2012, 12(8), 10550-10565; https://doi.org/10.3390/s120810550 - 3 Aug 2012
Cited by 3 | Viewed by 7081
Abstract
In this paper a multi-disciplinary simulation of a capacitive droplet sensor based on an open plate capacitor as transducing element is presented. The numerical simulations are based on the finite volume method (FVM), including calculations of an electric field which changes according to [...] Read more.
In this paper a multi-disciplinary simulation of a capacitive droplet sensor based on an open plate capacitor as transducing element is presented. The numerical simulations are based on the finite volume method (FVM), including calculations of an electric field which changes according to the presence of a liquid droplet. The volume of fluid (VOF) method is applied for the simulation of the ejection process of a liquid droplet out of a dispenser nozzle. The simulations were realised using the computational fluid dynamic (CFD) software CFD ACE+. The investigated capacitive sensing principle enables to determine the volume of a micro droplet passing the sensor capacitor due to the induced change in capacity. It could be found that single droplets in the considered volume range of 5 nL < Vdrop < 100 nL lead to a linear change of the capacity up to ΔQ < 30 fC. The sensitivity of the focused capacitor geometry was evaluated to be Si = 0.3 fC/nL. The simulation results are validated by experiments which exhibit good agreement. Full article
(This article belongs to the Special Issue State-of-the-Art Sensors Technology in Germany 2012)
Show Figures

Graphical abstract

Back to TopTop