As-Doped h-BN Monolayer: A High Sensitivity and Short Recovery Time SF6 Decomposition Gas Sensor
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Purnomoadi, A.; Mor, A.R.; Smit, J. Spacer flashover in Gas Insulated Switchgear (GIS) with humid SF6 under different electrical stresses. Int. J. Electr. Power Energy Syst. 2020, 116, 105559. [Google Scholar] [CrossRef]
- Xing, Y.; Liu, L.; Xu, Y.; Yang, Y.; Li, C. Defects and failure types of solid insulation in gas insulated switchgear: In situ study and case analysis. High Volt 2021, 7, 158–164. [Google Scholar] [CrossRef]
- Khan, Q.; Refaat, S.S.; Abu-Rub, H.; Toliyat, H.A. Partial discharge detection and diagnosis in gas insulated switchgear: State of the art. IEEE Electr. Insul. Mag. 2019, 35, 16–33. [Google Scholar] [CrossRef]
- Li, X.; Liu, W.; Xu, Y.; Ding, D. Partial Discharge and Movement Characteristics of Micron-sized Metal Particles on Insulator Surface in Gas-Insulated Switchgear with Long-time AC Stress. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 2152–2160. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Ma, G.M.; Wang, Y.; Qin, W.Q.; Jiang, J.; Yan, C.; Li, C.R. Optical sensing in condition monitoring of gas insulated apparatus: A review. High Volt. 2019, 4, 259–270. [Google Scholar] [CrossRef]
- Wu, S.; Zeng, F.; Tang, J.; Yao, Q.; Miao, Y. Triangle fault diagnosis method for SF6 gas-insulated equipment. IEEE Trans. Power Deliv. 2019, 34, 1470–1477. [Google Scholar] [CrossRef]
- Pang, X.; Wu, H.; Pan, J.; Qi, Y.; Li, X.; Zhang, J.; Xie, Q. Analysis of Correlation between Internal discharge in GIS and SF6 Decomposition Products. In Proceedings of the 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Athens, Greece, 10–13 September 2018; pp. 1–4. [Google Scholar]
- Zeng, F.; Tang, J.; Zhang, X.; Zhou, S.; Pan, C.; Sánchez, R. Typical internal defects of gas-insulated switchgear and partial discharge characteristics. In Simulation and Modelling of Electrical Insulation Weaknesses in Electrical Equipment; InTech: Rijeka, Croatia, 2018; p. 103. [Google Scholar]
- Miao, Y.; Li, C.; Yao, Q.; Hou, Y.; Zeng, F. Study on Influencing Factors of SF6 Decomposition Products Detection Results. In Proceedings of the 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Beijing, China, 6–10 September 2020; pp. 1–4. [Google Scholar]
- Hao, Y.; Jin, S.; Li, X.; Tian, H.; Liu, Z.; Liu, P.; Peng, Z. Study on Gas-tightness detection analysis and leak test of UHV AC GIL. In Proceedings of the 16th IET International Conference on AC and DC Power Transmission (ACDC 2020), Online, 2–3 July 2020; pp. 2155–2159. [Google Scholar]
- Wang, J.; Yang, G.; Xue, J.; Lei, J.; Cai, Q.; Chen, D.; Lu, H.; Zhang, R.; Zheng, Y. High sensitivity and selectivity of AsP sensor in detecting SF6 decomposition gases. Sci. Rep. 2018, 8, 12011. [Google Scholar]
- Wang, H.; Yang, J.; Li, F.; Liu, W.; Liang, H. Feature Fingerprint Extraction and Abnormity Diagnosis Method of the Vibration on the GIS. In Proceedings of the 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Beijing, China, 6–10 September 2020; pp. 1–4. [Google Scholar]
- Cho, I.; Sim, Y.C.; Cho, M.; Cho, Y.-H.; Park, I. Monolithic micro light-emitting diode/metal oxide nanowire gas sensor with microwatt-level power consumption. ACS Sens. 2020, 5, 563–570. [Google Scholar] [CrossRef]
- Yan, W.; Liu, Y.; Shao, G.; Zhu, K.; Cui, S.; Wang, W.; Shen, X. Chemical surface adsorption and trace detection of alcohol gas in graphene oxide-based acid-etched SnO2 aerogels. ACS Appl. Mater. Interfaces 2021, 13, 20467–20478. [Google Scholar] [CrossRef]
- Mondal, B.; Gogoi, P.K. Nanoscale Heterostructured Materials Based on Metal Oxides for a Chemiresistive Gas Sensor. ACS Appl. Electron. Mater. 2022, 4, 59–86. [Google Scholar] [CrossRef]
- Choi, J.H.; Lee, J.; Byeon, M.; Hong, T.E.; Park, H.; Lee, C.Y. Graphene-based gas sensors with high sensitivity and minimal sensor-to-sensor variation. ACS Appl. Nano Mater. 2020, 3, 2257–2265. [Google Scholar] [CrossRef]
- Li, X.; Scully, R.A.; Shayan, K.; Luo, Y.; Strauf, S. Near-unity light collection efficiency from quantum emitters in boron nitride by coupling to metallo-dielectric antennas. ACS Nano 2019, 13, 6992–6997. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wei, C.; Song, H.; Yang, Y.; Xue, Y.; Deng, D.; Lv, Y. Cataluminescence coupled with photoassisted technology: A highly efficient metal-free gas sensor for carbon monoxide. Anal. Chem. 2019, 91, 13158–13164. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Pan, W.; Zhang, Z.; Qi, N.; Chen, Z. Theoretical Study of Small Molecules Adsorption on Pristine and Transition Metal Doped GeSe Monolayer for Gas Sensing Application. Langmuir 2022, 38, 1287–1295. [Google Scholar] [CrossRef]
- Modi, G.; Stach, E.A.; Agarwal, R. Low-Power Switching through Disorder and Carrier Localization in Bismuth-Doped Germanium Telluride Phase Change Memory Nanowires. ACS Nano 2020, 14, 2162–2171. [Google Scholar] [CrossRef]
- Guo, L.-Y.; Xia, S.-Y.; Sun, H.; Li, C.-H.; Long, Y.; Zhu, C.; Gui, Y.; Huang, Z.; Li, J. A DFT Study of the Ag-Doped h-BN Monolayer for Harmful Gases (NO2, SO2F2, and NO). Surf. Interfaces 2022, 102113. [Google Scholar] [CrossRef]
- Agrawal, A.V.; Kumar, N.; Kumar, M. Strategy and future prospects to develop room-temperature-recoverable NO2 gas sensor based on two-dimensional molybdenum disulfide. Nano-Micro Lett. 2021, 13, 38. [Google Scholar] [CrossRef]
- Roondhe, B.; Dabhi, S.D.; Jha, P.K. Sensing properties of pristine boron nitride nanostructures towards alkaloids: A first principles dispersion corrected study. Appl. Surf. Sci. 2018, 441, 588–598. [Google Scholar] [CrossRef]
- Guo, L.-Y.; Xia, S.-Y.; Tan, Y.; Huang, Z. Zr-Doped h-BN Monolayer: A High-Sensitivity Atmospheric Pollutant-Monitoring Sensor. Sensors 2022, 22, 4103. [Google Scholar] [CrossRef]
- Alzate-Carvajal, N.; Luican-Mayer, A. Functionalized graphene surfaces for selective gas sensing. ACS Omega 2020, 5, 21320–21329. [Google Scholar] [CrossRef]
- Xia, S.-Y.; Tao, L.-Q.; Jiang, T.; Sun, H.; Li, J. Rh-doped h-BN monolayer as a high sensitivity SF6 decomposed gases sensor: A DFT study. Appl. Surf. Sci. 2021, 536, 147965. [Google Scholar] [CrossRef]
- Sharma, B.; Sharma, A.; Myung, J.-H. Selective ppb-level NO2 gas sensor based on SnO2-boron nitride nanotubes. Sens. Actuator B-Chem. 2021, 331, 129464. [Google Scholar] [CrossRef]
- Guo, L.-Y.; Liang, S.; Yang, Z.; Jin, L.; Tan, Y.; Huang, Z. Gas-Sensing Properties of Dissolved Gases in Insulating Material Adsorbed on SnO2-GeSe Monolayer. Chemosensors 2022, 10, 212. [Google Scholar] [CrossRef]
- Schleicher, M.; Fyta, M. Lateral MoS2 heterostructure for sensing small gas molecules. ACS Appl. Electron. Mater. 2019, 2, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Jia, Z.; Gao, Z.; Feng, A.; Zhang, Y.; Zhang, C.; Nie, G.; Wang, K.; Wu, G. Laminated microwave absorbers of A-site cation deficiency perovskite La0.8FeO3 doped at hybrid RGO carbon. Compos. Part B-Eng. 2019, 176, 107246. [Google Scholar] [CrossRef]
- Chen, W.Y.; Yen, C.-C.; Xue, S.; Wang, H.; Stanciu, L.A. Surface functionalization of layered molybdenum disulfide for the selective detection of volatile organic compounds at room temperature. ACS Appl. Mater. Interfaces 2019, 11, 34135–34143. [Google Scholar] [CrossRef]
- Wang, G.; Yu, J.; Zheng, K.; Huang, Y.; Li, X.; Chen, X.; Tao, L.-Q. A monolayer composite of h-BN doped by a nano graphene domain: As sensitive material for SO2 gas detection. IEEE Electron Device Lett. 2020, 41, 1404–1407. [Google Scholar] [CrossRef]
- Peng, Z.; Tao, L.-Q.; Wang, G.; Zhang, F.; Sun, H.; Zhu, C.; Zou, S.; Yu, J.; Chen, X. The promotion of sulfuric vacancy in two-dimensional molybdenum disulfide on the sensing performance of SF6 decomposition components. Appl. Surf. Sci. 2022, 571, 151377. [Google Scholar] [CrossRef]
- Liu, Y.; Gui, Y.; Xu, L.; Chen, X. Adsorption property of Co, Rh, and Pd-embedded g-C3N4 monolayer to SO2F2 gas. J. Mater. Res. Technol.-JMRT 2021, 15, 4790–4799. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, J.; Li, P.; Cao, Y. Room-temperature SO2 gas-sensing properties based on a metal-doped MoS nanoflower: An experimental and density functional theory investigation. J. Mater. Chem. A 2017, 5, 20666–20677. [Google Scholar] [CrossRef]
- Zhang, D.; Li, Q.; Li, P.; Pang, M.; Luo, Y. Fabrication of Pd-decorated MoSe2 nanoflowers and density functional theory simulation toward ammonia sensing. IEEE Electron Device Lett. 2019, 40, 616–619. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, Y.; Xia, S.-Y.; Guo, L.-Y.; Tan, Y.; Huang, Z. As-Doped h-BN Monolayer: A High Sensitivity and Short Recovery Time SF6 Decomposition Gas Sensor. Sensors 2022, 22, 4797. https://doi.org/10.3390/s22134797
Long Y, Xia S-Y, Guo L-Y, Tan Y, Huang Z. As-Doped h-BN Monolayer: A High Sensitivity and Short Recovery Time SF6 Decomposition Gas Sensor. Sensors. 2022; 22(13):4797. https://doi.org/10.3390/s22134797
Chicago/Turabian StyleLong, Yunfeng, Sheng-Yuan Xia, Liang-Yan Guo, Yaxiong Tan, and Zhengyong Huang. 2022. "As-Doped h-BN Monolayer: A High Sensitivity and Short Recovery Time SF6 Decomposition Gas Sensor" Sensors 22, no. 13: 4797. https://doi.org/10.3390/s22134797
APA StyleLong, Y., Xia, S.-Y., Guo, L.-Y., Tan, Y., & Huang, Z. (2022). As-Doped h-BN Monolayer: A High Sensitivity and Short Recovery Time SF6 Decomposition Gas Sensor. Sensors, 22(13), 4797. https://doi.org/10.3390/s22134797