# Informational Reinterpretation of the Mechanics Notions and Laws

## Abstract

**:**

## 1. Introduction

## 2. Results and Discussion

#### 2.1. Informational Reinterpretation of the First Newton Law

#### 2.2. The Landauer Principle and Noninertial Frames of Reference

#### 2.3. The Informational Reinterpretation of the Equivalence Principle

## 3. Conclusions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Kucia, R.A. Landauer’s principle as a special case of galois connection. Entropy
**2018**, 20, 971. [Google Scholar] [CrossRef][Green Version] - Bérut, A.; Arakelyan, A.; Petrosyan, A.; Ciliberto, S.; Dillenschneider, R.; Lutz, E. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature
**2012**, 483, 187–189. [Google Scholar] [CrossRef] [PubMed] - Herrera, L. The Gibbs paradox, the Landauer principle and the irreversibility associated with tilted observers. Entropy
**2017**, 19, 110. [Google Scholar] [CrossRef][Green Version] - Vopson, M.M. The mass-energy-information equivalence principle. AIP Adv.
**2019**, 9, 095206. [Google Scholar] [CrossRef] - Diamantini, M.C.; Trugenberger, C.A. Generalized Landauer bound as a universal thermodynamic entropy in continuous phase transitions. Phys. Rev. E
**2014**, 89, 052138. [Google Scholar] [CrossRef][Green Version] - Landauer, R. Dissipation and heat generation in the computing process. IBM J. Res. Dev.
**1961**, 5, 183. [Google Scholar] [CrossRef] - Landauer, R. Information is physical. Phys. Today
**1991**, 44, 23–29. [Google Scholar] [CrossRef] - Landauer, R. Minimal energy requirements in communication. Science
**1996**, 272, 1914–1918. [Google Scholar] [CrossRef] - Norton, J.D. Eaters of the lotus: Landauer’s principle and the return of Maxwell’s demon. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys.
**2005**, 36, 375–411. [Google Scholar] [CrossRef][Green Version] - Norton, J.D. Waiting for Landauer. Stud. Hist. Philos. Mod. Phys.
**2011**, 42, 184–198. [Google Scholar] [CrossRef][Green Version] - Wheeler, J.A. Information, physics, quantum: The search for links. In Proceedings of the 3rd International Symposium on Foundations of Quantum Mechanics in the Light of New Technology, Tokyo, Japan, 28–31 August 1989; pp. 354–368. [Google Scholar]
- Herrera, L. The mass of a bit of information and the Brillouin’s principle. Fluct. Noise Lett.
**2014**, 13, 14500. [Google Scholar] [CrossRef][Green Version] - Bormashenko, E. The Landauer principle: Re-formulation of the second thermodynamics law or a step to great unification? Entropy
**2019**, 21, 918. [Google Scholar] [CrossRef][Green Version] - Ben Naim, A. Shannon’s measure of information and Boltzmann’s H-theorem. Entropy
**2017**, 19, 48. [Google Scholar] [CrossRef][Green Version] - Ben-Naim, A. Information Theory; World Scientific: Singapore, 2017. [Google Scholar]
- Ben-Naim, A. A Farewell to Entropy: Statistical Thermodynamics Based on Information; World Scientific: Singapore, 2008. [Google Scholar]
- Ben-Naim, A. Entropy, the Truth the Whole Truth and Nothing but the Truth; World Scientific: Singapore, 2016. [Google Scholar]
- Ben-Naim, A. Entropy and information theory: Uses and misuses. Entropy
**2019**, 21, 1170. [Google Scholar] [CrossRef][Green Version] - Knuth, K.H. Information-Based Physics and the Influence Network. In It from Bit or Bit from It? Aguirre, A., Foster, B., Merali, Z., Eds.; Springer: Cham, Germany, 2015. [Google Scholar]
- Knuth, K.H.; Walsh, J.L. An introduction to influence theory: Kinematics and dynamics. Ann. Phys.
**2019**, 531, 1800091. [Google Scholar] [CrossRef] - Caticha, A. Entropic dynamics. Entropy
**2015**, 17, 6110–6128. [Google Scholar] [CrossRef][Green Version] - Verlinde, E. On the origin of gravity and the laws of Newton. J. High Energy Phys.
**2011**, 29, 2011. [Google Scholar] [CrossRef][Green Version] - Plastino, A.; Rocca, M.C. Entropic forces and newton’s gravitation. Entropy
**2020**, 22, 273. [Google Scholar] [CrossRef][Green Version] - Kobakhidze, A. Gravity is not an entropic force. Phys. Rev. D
**2011**, 83, 021502. [Google Scholar] [CrossRef][Green Version] - Müller, J.G. Information contained in molecular motion. Entropy
**2019**, 21, 1052. [Google Scholar] [CrossRef][Green Version] - Earman, J.; Friedman, M. The meaning and status of Newton’s Law of inertia and the nature of gravitational forces. Philos. Sci.
**1973**, 4, 329–359. [Google Scholar] [CrossRef] - Landau, L.; Lifshitz, E.M. The Classical Theory of Fields, 4th ed.; Butterworth-Heinemann: Oxford, UK, 1975; Volume 2. [Google Scholar]
- Sagawa, T.; Ueda, M. Minimal energy cost for thermodynamic information processing: Measurement and information erasure. Phys. Rev. Lett.
**2009**, 102, 250602. [Google Scholar] [CrossRef] [PubMed][Green Version] - Parrondo, J.M.R.; Horowitz, J.M.; Sagawa, T. Thermodynamics of information. Nat. Phys.
**2015**, 11, 131–139. [Google Scholar] [CrossRef] - Bormashenko, E. Generalization of the Landauer Principle for computing devices based on many-valued logic. Entropy
**2019**, 21, 1150. [Google Scholar] [CrossRef][Green Version] - Szilard, L. Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. J. Phys.
**1929**, 53, 840–856. (In German) [Google Scholar] - Lutz, E.; Ciliberto, S. Information: From Maxwell’s demon to Landauer’s eraser. Phys. Today
**2015**, 68, 30–35. [Google Scholar] [CrossRef][Green Version] - Bormashenko, E.; Shkorbatov, A.; Gendeman, O. The Carnot engine based on the small thermodynamic system: Its efficiency and the ergodic hypothesis. Am. J. Phys.
**2007**, 75, 911–915. [Google Scholar] [CrossRef] - Goldstein, H. Classical Mechanics; Addison-Wesley Publishing Co.: Boston, MA, USA, 1959. [Google Scholar]
- Baierlein, R. Thermal Physics; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Statistical Physics, 3rd ed.; Course of Theoretical Physics; Elsevier: Oxford, UK, 2011; Volume 5. [Google Scholar]
- Ohanian, H. What is the principle of equivalence? Am. J. Phys.
**1977**, 45, 903. [Google Scholar] [CrossRef] - Roll, P.G.; Krotkov, R.; Dicke, R.H. The equivalence of inertial and passive gravitational mass. Ann. Phys.
**1964**, 26, 442–517. [Google Scholar] [CrossRef] - Tolman, R.C. Relativity, Thermodynamics and Cosmology; Oxford University Press: Oxford, UK, 1934. [Google Scholar]
- Ott, X. Lorenz-transformation der waerme and der temperatur. J. Phys.
**1963**, 175, 70–104. (In German) [Google Scholar] - Bekenstein, J. Universal upper bound on the entropy-to-energy ratio for bounded systems. Phys. Rev. D
**1981**, 23, 287–298. [Google Scholar] [CrossRef] - Bekenstein, J. How does the entropy/information bound work? Found. Phys.
**2005**, 35, 1805–1823. [Google Scholar] [CrossRef][Green Version]

**Figure 1.**Particle m is placed into the twin-well, symmetrical, frictionless bowl, built of two identical spherical wells labeled “I” and “II”. The initial location of the particle is denoted “a”. Location of the particle in the well labeled “I” corresponds to the informational state “0”; the location of the particle in the well “II” corresponds to the informational state “1”. The inertial force ${\overrightarrow{F}}_{in,m}=-m\overrightarrow{a}$ transfers the particle from the well “I” to the well “II” (the blue arrow indicates the a→b→c path of the particle, driven by the inertial force).

**Figure 2.**Finding of the particle m in the certain (left or right) half of the chamber corresponds to the recording of 1 bit of information. The partition M is free to slide along the chamber. Frame of references xyz moves with the acceleration $\overrightarrow{a}$ relatively to the particle m and the partition M. The inertial forces $-m\overrightarrow{a}$ and $-M\overrightarrow{a}$ act on the particle m and the partition M. The minimal thermal engine undergoes the isobaric expansion relatively to the frame of references xyz moving with the chamber.

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bormashenko, E. Informational Reinterpretation of the Mechanics Notions and Laws. *Entropy* **2020**, *22*, 631.
https://doi.org/10.3390/e22060631

**AMA Style**

Bormashenko E. Informational Reinterpretation of the Mechanics Notions and Laws. *Entropy*. 2020; 22(6):631.
https://doi.org/10.3390/e22060631

**Chicago/Turabian Style**

Bormashenko, Edward. 2020. "Informational Reinterpretation of the Mechanics Notions and Laws" *Entropy* 22, no. 6: 631.
https://doi.org/10.3390/e22060631