Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (215)

Search Parameters:
Keywords = Δ9-Tetrahydrocannabinol (THC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1001 KB  
Article
Stereoselective Synthesis and Structural Confirmation of All Four 8-Hydroxyhexahydrocannabinol Stereoisomers
by Kei Ieuji, Kayo Nakamura and Hideyo Takahashi
Molecules 2026, 31(2), 289; https://doi.org/10.3390/molecules31020289 - 13 Jan 2026
Abstract
Hexahydrocannabinol (HHC), a hydrogenated derivative of Δ9-tetrahydrocannabinol (Δ9-THC), is a semi-synthetic cannabinoid marketed as an alternative to Δ9-THC. Its hydroxylated metabolite, 8-hydroxyhexahydrocannabinol (8-OH-HHC), exists as four stereoisomers: (6aR,8R,9R,10aR), (6a [...] Read more.
Hexahydrocannabinol (HHC), a hydrogenated derivative of Δ9-tetrahydrocannabinol (Δ9-THC), is a semi-synthetic cannabinoid marketed as an alternative to Δ9-THC. Its hydroxylated metabolite, 8-hydroxyhexahydrocannabinol (8-OH-HHC), exists as four stereoisomers: (6aR,8R,9R,10aR), (6aR,8S,9S,10aR), (6aR,8S,9R,10aR), and (6aR,8R,9S,10aR). However, the lack of reference standards has hindered pharmacokinetic and forensic studies. This work reports the first stereoselective synthesis and structural confirmation of all four 8-OH-HHC stereoisomers. Two strategies were employed: hydroboration–oxidation and epoxidation–reduction. Hydroboration of Δ8-THC with BH3·THF followed by oxidation predominantly produced anti-isomers (6aR,8R,9R,10aR) and (6aR,8S,9S,10aR) in moderate yields, along with small amounts of syn-isomer (6aR,8S,9R,10aR), suggesting an atypical mechanistic pathway. In contrast, syn-isomers (6aR,8S,9R,10aR) and (6aR,8R,9S,10aR) were accessed via epoxidation of Δ8-THC acetate using mCPBA and subsequent reduction with NaBH3CN/BF3·OEt2, affording the desired products with moderate selectivity. Absolute configurations were confirmed by nuclear Overhauser effect spectroscopy (NOESY). These methods will facilitate future pharmacokinetic and forensic research and support the development of improved detection strategies. Full article
(This article belongs to the Special Issue Application of Organic Synthesis to Bioactive Compounds, 3rd Edition)
Show Figures

Figure 1

36 pages, 2335 KB  
Review
Medical Marijuana and Treatment Personalization: The Role of Genetics and Epigenetics in Response to THC and CBD
by Małgorzata Kalak, Anna Brylak-Błaszków, Łukasz Błaszków and Tomasz Kalak
Genes 2025, 16(12), 1487; https://doi.org/10.3390/genes16121487 - 12 Dec 2025
Viewed by 807
Abstract
Personalizing therapy using medical marijuana (MM) is based on understanding the pharmacogenomics (PGx) and drug–drug interactions (DDIs) involved, as well as identifying potential epigenetic risk markers. In this work, the evidence regarding the role of variants in phase I (CYP2C9, CYP2C19 [...] Read more.
Personalizing therapy using medical marijuana (MM) is based on understanding the pharmacogenomics (PGx) and drug–drug interactions (DDIs) involved, as well as identifying potential epigenetic risk markers. In this work, the evidence regarding the role of variants in phase I (CYP2C9, CYP2C19, CYP3A4/5) and II (UGT1A9/UGT2B7) genes, transporters (ABCB1), and selected neurobiological factors (AKT1/COMT) in differentiating responses to Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) has been reviewed. Data indicating enzyme inhibition by CBD and the possibility of phenoconversion were also considered, which highlights the importance of a dynamic interpretation of PGx in the context of current pharmacotherapy. Simultaneously, the results of epigenetic studies (DNA methylation, histone modifications, and ncRNA) in various tissues and developmental windows were summarized, including the reversibility of some signatures in sperm after a period of abstinence and the persistence of imprints in blood. Based on this, practical frameworks for personalization are proposed: the integration of PGx testing, DDI monitoring, and phenotype correction into clinical decision support systems (CDS), supplemented by cautious dose titration and safety monitoring. The culmination is a proposal of tables and diagrams that organize the most important PGx–DDI–epigenetics relationships and facilitate the elimination of content repetition in the text. The paper identifies areas of implementation maturity (e.g., CYP2C9/THC, CBD-CYP2C19/clobazam, AKT1, and acute psychotomimetic effects) and those requiring replication (e.g., multigenic analgesic signals), indicating directions for future research. Full article
(This article belongs to the Section Epigenomics)
Show Figures

Graphical abstract

19 pages, 1156 KB  
Review
The Pleiotropic Influence of Cannabidiol and Tetrahydrocannabinol on Inflammatory Biomarkers: A Systematic Review and Meta-Analytical Synthesis
by Bruno Moreira Candeloro, Camila M. de Oliveira, Fabiana Veronez Martelato Gimenez, Marianne P. C. N. Barbosa, Beatriz Paiva Soares, Ana C. F. Ruiz, Derfel R. M. A. Folegatti, Sandra Maria Barbalho, Nancy S. Oliveira, Andrey A. Porto, David Matthew Garner, Fernando H. Sousa and Vitor E. Valenti
Int. J. Mol. Sci. 2025, 26(23), 11618; https://doi.org/10.3390/ijms262311618 - 30 Nov 2025
Viewed by 736
Abstract
Preclinical data suggest that cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) modulate inflammatory pathways (e.g., NLRP3, NF-κB, and PPAR-γ), but clinical translation into consistent changes in circulating biomarkers remains ambiguous. Two reviewers independently screened the studies, extracted data, and assessed risk of bias with RoB-2. [...] Read more.
Preclinical data suggest that cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) modulate inflammatory pathways (e.g., NLRP3, NF-κB, and PPAR-γ), but clinical translation into consistent changes in circulating biomarkers remains ambiguous. Two reviewers independently screened the studies, extracted data, and assessed risk of bias with RoB-2. Random-effects meta-analyses (RevMan 5.4.1) formed standardized mean differences (SMD) or mean differences (MD) as appropriate. The certainty of evidence was graded by means of GRADE. Thirteen studies satisfied inclusion criteria; meta-analyses were feasible for IL-6 (four studies, n ≈ 129 per arm), IL-8 (two studies, n ≈ 78 per arm), IL-10 (two studies, n ≈ 92 per arm), and TNF-α (three studies, n ≈ 105 per arm). Pooled estimates favored CBD but were trivial and imprecise: IL-6 SMD −0.17 (95% CI −0.56 to 0.23; p = 0.41; I2 = 55%); IL-8 SMD −0.30 (95% CI −0.62 to 0.01; p = 0.06; I2 = 0%); IL-10 SMD −0.10 (95% CI −0.83 to 0.63; p = 0.79; I2 = 81%); and TNF-α SMD −0.09 (95% CI −0.45 to 0.27; p = 0.62; I2 = 33%). Individual trials reported reductions in biomarkers in high-exposure or diseased populations. GRADE ratings were as follows: IL-6 very low, IL-8 moderate, IL-10 low, and TNF-α moderate. Current RCT evidence demonstrates inconsistent, often trivial effects of phytocannabinoid interventions on circulating inflammatory biomarkers. Full article
(This article belongs to the Special Issue Advancements in Inflammatory and Oxidative Disease Research)
Show Figures

Figure 1

10 pages, 717 KB  
Case Report
Cannabis and Sudden Cardiac Death: A Case Series with Narrative Literature Review
by Vito Maria Goffredo, Michela Ferrara, Mariagrazia Calvano, Natascha Pascale, Aldo Di Fazio and Giuseppe Bertozzi
Forensic Sci. 2025, 5(4), 52; https://doi.org/10.3390/forensicsci5040052 - 24 Oct 2025
Viewed by 2335
Abstract
Background/Objectives: Cannabis is the most widely used illicit substance worldwide, particularly among young adults, with growing acceptance following medical and recreational legalization. Although generally perceived as a drug with low acute toxicity, an expanding body of evidence indicates that cannabinoids can exert [...] Read more.
Background/Objectives: Cannabis is the most widely used illicit substance worldwide, particularly among young adults, with growing acceptance following medical and recreational legalization. Although generally perceived as a drug with low acute toxicity, an expanding body of evidence indicates that cannabinoids can exert relevant cardiovascular effects, including arrhythmias, myocardial ischemia, and sudden cardiac death (SCD). These mechanisms are mediated through complex, dose-dependent interactions among CB1 and CB2 receptors, autonomic imbalance, and endothelial dysfunction. Nevertheless, cannabis-related fatalities remain underestimated in both clinical and forensic settings. Case presentation: Three cases of sudden unexpected death in previously healthy men aged 28, 37, and 37 years are described. All were found deceased at home under non-suspicious circumstances. Forensic autopsies ruled out trauma, coronary atherosclerosis, congenital malformations, or cardiomyopathy. Histological analyses consistently revealed polymorphic myocardial alterations, including interstitial edema, fiber disruption, and focal myocytolysis, without inflammatory infiltrates or necrosis. Toxicological examinations demonstrated the presence of Δ9-tetrahydrocannabinol (THC) and metabolites in peripheral blood and urine, while alcohol and other illicit drugs tested negative. In each case, the cause of death was attributed to arrhythmic sudden cardiac death in temporal association with cannabis use. Conclusions: This case series, integrated with a narrative review of current literature, supports the hypothesis that cannabis consumption can contribute to fatal arrhythmias even in young adults without conventional cardiovascular risk factors. The convergence of autopsy, histopathological, and toxicological findings suggests a potential causal link between THC exposure and sudden unexpected death. These results highlight the importance of systematic postmortem investigations in suspected drug-related fatalities and underscore the need for greater awareness among clinicians, forensic pathologists, and policymakers regarding the underestimated cardiovascular toxicity of cannabis. Full article
Show Figures

Figure 1

14 pages, 7212 KB  
Article
Distinct Adipocyte Responses to Δ9-Tetrahydrocannabinol (THC) Exposure Govern Hepatic Lipid Accumulation in an Obesogenic Setting
by Adi Eitan, Ofer Gover and Betty Schwartz
Int. J. Mol. Sci. 2025, 26(18), 8860; https://doi.org/10.3390/ijms26188860 - 11 Sep 2025
Viewed by 1281
Abstract
The effects of Δ9-tetrahydrocannabinol (THC) on adipocyte function under obesogenic, free-fatty-acid (FFA)-rich conditions remain poorly characterized, particularly regarding adipogenesis, FFA buffering, and downstream hepatocyte lipid handling. We investigated THC’s effect on adipogenic differentiation, temporal FFA buffering in mature adipocytes under lipid [...] Read more.
The effects of Δ9-tetrahydrocannabinol (THC) on adipocyte function under obesogenic, free-fatty-acid (FFA)-rich conditions remain poorly characterized, particularly regarding adipogenesis, FFA buffering, and downstream hepatocyte lipid handling. We investigated THC’s effect on adipogenic differentiation, temporal FFA buffering in mature adipocytes under lipid stress, and hepatocyte lipid accumulation driven by extracellular FFAs. The 3T3-L1 preadipocytes were differentiated in 0.5 mM oleate: palmitate (2:1) medium with vehicle (EtOH), THC (1 μM), or rosiglitazone (30 μM). Adipogenesis was assessed using BODIPY/NucSpot 650 staining followed by lipid droplet (LD) analysis. Adipocytes (days 10–18) were monitored for lipid accumulation, LD morphology, lipolysis, extracellular non-esterified fatty acids (NEFA), and lipid-handling gene expression. Conditioned media (CM) were applied to AML12 hepatocytes to assess lipid uptake. By day 6, THC enhanced adipogenesis, increasing lipid accumulation. In mature adipocytes, THC induced a biphasic buffering response: on day 10, NEFA levels were elevated despite unchanged lipid content, with increased isoproterenol-stimulated lipolysis. By day 18, buffering improved, with enhanced lipid storage, elevated stimulated lipolysis, smaller LDs, and altered gene expression. AML12 lipid accumulation corresponded with residual NEFA in CM, indicating that adipocyte FFA sequestration modulates hepatocyte lipid uptake. These findings reveal that under FFA-rich conditions, THC promotes late-stage adipogenesis and remodels adipocyte lipid handling, regulating extracellular FFA availability and hepatocyte lipid loading. Full article
Show Figures

Graphical abstract

13 pages, 1465 KB  
Article
Isolating and Determining the Structures of Colored Products from the Reactions of Cannabinoids with Fast Blue RR
by Kayo Nakamura, Hikari Nishiguchi, Ryosuke Arai, Riho Hamajima, Hiroko Abe, Akihiko Ishida, Manabu Tokeshi, Kyohei Higashi, Akiyoshi Saitoh and Hideyo Takahashi
Molecules 2025, 30(17), 3462; https://doi.org/10.3390/molecules30173462 - 22 Aug 2025
Viewed by 1231
Abstract
Although cannabis is used in a wide range of fields, including medicine and pharmacology, its use is prohibited in Japan because it contains Δ9-tetrahydrocannabinol (Δ9-THC), a compound that exhibits narcotic effects. While cannabis is primarily detected via color-based screening [...] Read more.
Although cannabis is used in a wide range of fields, including medicine and pharmacology, its use is prohibited in Japan because it contains Δ9-tetrahydrocannabinol (Δ9-THC), a compound that exhibits narcotic effects. While cannabis is primarily detected via color-based screening methods at crime scenes, the reaction products and mechanisms associated with these screening methods have not been fully elucidated. To address this issue, the colored products were isolated via the diazo-coupling reactions of the major cannabinoids (cannabidiol, cannabinol, and Δ9-THC) in cannabis with the Fast Blue RR diazonium salt, and their structures were determined using NMR spectroscopy. As expected, azo compound 2 was formed from cannabidiol, whereas cannabinol and Δ9-THC produced quinoneimines 3 and 4, respectively. This study is expected to lead to the future development of more sensitive color-based reagents that produce fewer false positives. Full article
Show Figures

Figure 1

22 pages, 1078 KB  
Review
The Cannabinoid Pharmacology of Bone Healing: Developments in Fusion Medicine
by Gabriel Urreola, Michael Le, Alan Harris, Jose A. Castillo, Augustine M. Saiz, Hania Shahzad, Allan R. Martin, Kee D. Kim, Safdar Khan and Richard Price
Biomedicines 2025, 13(8), 1891; https://doi.org/10.3390/biomedicines13081891 - 3 Aug 2025
Cited by 1 | Viewed by 5079
Abstract
Background/Objectives: Cannabinoid use is rising among patients undergoing spinal fusion, yet its influence on bone healing is poorly defined. The endocannabinoid system (ECS)—through cannabinoid receptors 1 (CB1) and 2 (CB2)—modulates skeletal metabolism. We reviewed preclinical, mechanistic and clinical evidence to clarify how individual [...] Read more.
Background/Objectives: Cannabinoid use is rising among patients undergoing spinal fusion, yet its influence on bone healing is poorly defined. The endocannabinoid system (ECS)—through cannabinoid receptors 1 (CB1) and 2 (CB2)—modulates skeletal metabolism. We reviewed preclinical, mechanistic and clinical evidence to clarify how individual cannabinoids affect fracture repair and spinal arthrodesis. Methods: PubMed, Web of Science and Scopus were searched from inception to 31 May 2025 with the terms “cannabinoid”, “CB1”, “CB2”, “spinal fusion”, “fracture”, “osteoblast” and “osteoclast”. Animal studies, in vitro experiments and clinical reports that reported bone outcomes were eligible. Results: CB2 signaling was uniformly osteogenic. CB2-knockout mice developed high-turnover osteoporosis, whereas CB2 agonists (HU-308, JWH-133, HU-433, JWH-015) restored trabecular volume, enhanced osteoblast activity and strengthened fracture callus. Cannabidiol (CBD), a non-psychoactive phytocannabinoid with CB2 bias, accelerated early posterolateral fusion in rats and reduced the RANKL/OPG ratio without compromising final union. In contrast, sustained or high-dose Δ9-tetrahydrocannabinol (THC) activation of CB1 slowed chondrocyte hypertrophy, decreased mesenchymal-stromal-cell mineralization and correlated clinically with 6–10% lower bone-mineral density and a 1.8–3.6-fold higher pseudarthrosis or revision risk. Short-course or low-dose THC appeared skeletal neutral. Responses varied with sex, age and genetic background; no prospective trials defined safe perioperative dosing thresholds. Conclusions: CB2 activation and CBD consistently favor bone repair, whereas chronic high-THC exposure poses a modifiable risk for nonunion in spine surgery. Prospective, receptor-specific trials stratified by THC/CBD ratio, patient sex and ECS genotype are needed to establish evidence-based cannabinoid use in spinal fusion. Full article
(This article belongs to the Topic Cannabis, Cannabinoids and Its Derivatives)
Show Figures

Figure 1

39 pages, 2934 KB  
Review
Phytocannabinoids as Novel SGLT2 Modulators for Renal Glucose Reabsorption in Type 2 Diabetes Management
by Raymond Rubianto Tjandrawinata, Dante Saksono Harbuwono, Sidartawan Soegondo, Nurpudji Astuti Taslim and Fahrul Nurkolis
Pharmaceuticals 2025, 18(8), 1101; https://doi.org/10.3390/ph18081101 - 24 Jul 2025
Cited by 2 | Viewed by 2083
Abstract
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target [...] Read more.
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target pharmacology, including interactions with cannabinoid receptors, Peroxisome Proliferator-Activated Receptors (PPARs), Transient Receptor Potential (TRP) channels, and potentially SGLT2. Objective: To evaluate the potential of phytocannabinoids as novel modulators of renal glucose reabsorption via SGLT2 and to compare their efficacy, safety, and pharmacological profiles with synthetic SGLT2 inhibitors. Methods: We performed a narrative review encompassing the following: (1) the molecular and physiological roles of SGLT2; (2) chemical classification, natural sources, and pharmacokinetics/pharmacodynamics of major phytocannabinoids (Δ9-Tetrahydrocannabinol or Δ9-THC, Cannabidiol or CBD, Cannabigerol or CBG, Cannabichromene or CBC, Tetrahydrocannabivarin or THCV, and β-caryophyllene); (3) in silico docking and drug-likeness assessments; (4) in vitro assays of receptor binding, TRP channel modulation, and glucose transport; (5) in vivo rodent models evaluating glycemic control, weight change, and organ protection; (6) pilot clinical studies of THCV and case reports of CBD/BCP; (7) comparative analysis with established synthetic inhibitors. Results: In silico studies identify high-affinity binding of several phytocannabinoids within the SGLT2 substrate pocket. In vitro, CBG and THCV modulate SGLT2-related pathways indirectly via TRP channels and CB receptors; direct IC50 values for SGLT2 remain to be determined. In vivo, THCV and CBD demonstrate glucose-lowering, insulin-sensitizing, weight-reducing, anti-inflammatory, and organ-protective effects. Pilot clinical data (n = 62) show that THCV decreases fasting glucose, enhances β-cell function, and lacks psychoactive side effects. Compared to synthetic inhibitors, phytocannabinoids offer pleiotropic benefits but face challenges of low oral bioavailability, polypharmacology, inter-individual variability, and limited large-scale trials. Discussion: While preclinical and early clinical data highlight phytocannabinoids’ potential in SGLT2 modulation and broader metabolic improvement, their translation is impeded by significant challenges. These include low oral bioavailability, inconsistent pharmacokinetic profiles, and the absence of standardized formulations, necessitating advanced delivery system development. Furthermore, the inherent polypharmacology of these compounds, while beneficial, demands comprehensive safety assessments for potential off-target effects and drug interactions. The scarcity of large-scale, well-controlled clinical trials and the need for clear regulatory frameworks remain critical hurdles. Addressing these aspects is paramount to fully realize the therapeutic utility of phytocannabinoids as a comprehensive approach to T2DM management. Conclusion: Phytocannabinoids represent promising multi-target agents for T2DM through potential SGLT2 modulation and complementary metabolic effects. Future work should focus on pharmacokinetic optimization, precise quantification of SGLT2 inhibition, and robust clinical trials to establish efficacy and safety profiles relative to synthetic inhibitors. Full article
Show Figures

Graphical abstract

32 pages, 3113 KB  
Review
Exploring the Impact of Chirality of Synthetic Cannabinoids and Cathinones: A Systematic Review on Enantioresolution Methods and Enantioselectivity Studies
by Ana Sofia Almeida, Rita M. G. Santos, Paula Guedes de Pinho, Fernando Remião and Carla Fernandes
Int. J. Mol. Sci. 2025, 26(13), 6471; https://doi.org/10.3390/ijms26136471 - 4 Jul 2025
Cited by 1 | Viewed by 1521
Abstract
New psychoactive substances (NPSs) are emerging narcotics or psychotropics that pose a public health risk. The most commonly reported NPSs are synthetic cannabinoids and synthetic cathinones. Synthetic cannabinoids mimic the effects of Δ9-tetrahydrocannabinol (Δ9-THC), often with greater potency, while synthetic cathinones act as [...] Read more.
New psychoactive substances (NPSs) are emerging narcotics or psychotropics that pose a public health risk. The most commonly reported NPSs are synthetic cannabinoids and synthetic cathinones. Synthetic cannabinoids mimic the effects of Δ9-tetrahydrocannabinol (Δ9-THC), often with greater potency, while synthetic cathinones act as stimulants, frequently serving as cheaper alternatives to amphetamines, 3,4-methylenedioxymethamphetamine (MDMA) and cocaine. While some synthetic cannabinoids exhibit chirality depending on their synthesis precursors, synthetic cathinones are intrinsically chiral. Biotargets can recognize and differentiate between enantiomers, leading to distinct biological responses (enantioselectivity). Understanding these differences is crucial; therefore, the development of enantioresolution methods to assess the biological and toxicological effects of enantiomer is necessary. This work systematically compiles enantioselectivity studies and enantioresolution methods of synthetic cannabinoids and synthetic cathinones, following PRISMA guidelines. The main aim of this review is to explore the impact of chirality on these NPSs, improving our understanding of their toxicological behavior and evaluating advances in analytical techniques for their enantioseparation. Key examples from both groups are presented. This review highlights the importance of continuing research in this field, as demonstrated by the differing properties of synthetic cannabinoid and synthetic cathinone enantiomers, which are closely linked to variations in biological and toxicological outcomes. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

17 pages, 1064 KB  
Article
Assessment of Abuse Potential of Three Indazole-Carboxamide Synthetic Cannabinoids 5F-ADB, MDMB-4en-PINACA and ADB-4en-PINACA
by Yanling Qiao, Xuesong Shi, Kaixi Li, Lixin Kuai, Xiangyu Li, Bin Di and Peng Xu
Int. J. Mol. Sci. 2025, 26(13), 6409; https://doi.org/10.3390/ijms26136409 - 3 Jul 2025
Cited by 1 | Viewed by 3585
Abstract
5F-ADB, MDMB-4en-PINACA and ADB-4en-PINACA are three potent indazole-carboxamide synthetic cannabinoids (SCs) that have been widely abused in recent years. However, the pharmacological research on these compounds remains limited, especially in vivo research data. The purpose of the present study was to investigate the [...] Read more.
5F-ADB, MDMB-4en-PINACA and ADB-4en-PINACA are three potent indazole-carboxamide synthetic cannabinoids (SCs) that have been widely abused in recent years. However, the pharmacological research on these compounds remains limited, especially in vivo research data. The purpose of the present study was to investigate the pharmacological effects of 5F-ADB, MDMB-4en-PINACA and ADB-4en-PINACA in mice, comparing their in vivo effects with those caused by Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoactive substance in cannabis. We evaluated the cannabinoid-specific pharmacological effects of 5F-ADB, MDMB-4en-PINACA and ADB-4en-PINACA using the tetrad assay (locomotion inhibition, hypothermia, analgesia and catalepsy). Then we conducted conditioned place preference (CPP) and precipitated withdrawal assay to assess the rewarding effect and physical dependence, with Δ9-THC as a positive control. The results showed that all of the three SCs exhibited potential tetrad effects in a dose-dependent manner, with median effective dose (ED50) values ranging from 0.03 to 0.77 mg/kg. In the CPP tests, they all exhibited a significant biphasic effect of conditioned place preference (CPP) and conditioned place aversion (CPA). A significant increase in paw tremors and head twitches was observed in the rimonabant-precipitated withdrawal assay, indicating that the repeated administration of these SCs can lead to potential physical dependence. All effective doses were lower than Δ9-THC. These findings strongly suggested that the three SCs exhibited similar but stronger cannabinoid-specific tetrad effects, rewarding effect and physical dependence compared with Δ9-THC, indicating their high abuse potential and possible threats to human health. The rank order of abuse potential for these drugs was 5F-ADB > MDMB-4en-PINACA > ADB-4en-PINACA > Δ9-THC. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

24 pages, 2105 KB  
Article
Process Development for GMP-Grade Full Extract Cannabis Oil: Towards Standardized Medicinal Use
by Maria do Céu Costa, Ana Patrícia Gomes, Iva Vinhas, Joana Rosa, Filipe Pereira, Sara Moniz, Elsa M. Gonçalves, Miguel Pestana, Mafalda Silva, Luís Monteiro Rodrigues, Anthony DeMeo, Logan Marynissen, António Marques da Costa, Patrícia Rijo and Michael Sassano
Pharmaceutics 2025, 17(7), 848; https://doi.org/10.3390/pharmaceutics17070848 - 28 Jun 2025
Viewed by 4000
Abstract
Background/Objectives: The industrial extraction and purification processes of Cannabis sativa L. compounds are critical steps in creating formulations with reliable and reproducible therapeutic and sensorial attributes. Methods: For this study, standardized preparations of chemotype I were chemically analyzed, and the sensory attributes were [...] Read more.
Background/Objectives: The industrial extraction and purification processes of Cannabis sativa L. compounds are critical steps in creating formulations with reliable and reproducible therapeutic and sensorial attributes. Methods: For this study, standardized preparations of chemotype I were chemically analyzed, and the sensory attributes were studied to characterize the extraction and purification processes, ensuring the maximum retention of cannabinoids and minimization of other secondary metabolites. The industrial process used deep-cooled ethanol for selective extraction. Results: Taking into consideration that decarboxylation occurs in the process, the cannabinoid profile composition was preserved from the herbal substance to the herbal preparations, with wiped-film distillation under deep vacuum conditions below 0.2 mbar, as a final purification step. The profiles of the terpenes and cannabinoids in crude and purified Full-spectrum Extract Cannabis Oil (FECO) were analyzed at different stages to evaluate compositional changes that occurred throughout processing. Subjective intensity and acceptance ratings were received for taste, color, overall appearance, smell, and mouthfeel of FECO preparations. Conclusions: According to sensory analysis, purified FECO was more accepted than crude FECO, which had a stronger and more polarizing taste, and received higher ratings for color and overall acceptance. In contrast, a full cannabis extract in the market resulted in lower acceptance due to taste imbalance. The purification process effectively removed non-cannabinoids, improving sensory quality while maintaining therapeutic potency. Terpene markers of the flower were remarkably preserved in SOMAÍ’s preparations’ fingerprint, highlighting a major qualitative profile reproducibility and the opportunity for their previous separation and/or controlled reintroduction. The study underscores the importance of monitoring the extraction and purification processes to optimize the cannabinoid content and sensory characteristics in cannabis preparations. Full article
(This article belongs to the Collection Advanced Pharmaceutical Science and Technology in Portugal)
Show Figures

Graphical abstract

14 pages, 890 KB  
Article
Species-Specific Chemotactic Responses of Entomopathogenic and Slug-Parasitic Nematodes to Cannabinoids from Cannabis sativa L.
by Marko Flajšman, Stanislav Trdan and Žiga Laznik
Agronomy 2025, 15(6), 1469; https://doi.org/10.3390/agronomy15061469 - 16 Jun 2025
Viewed by 865
Abstract
The increasing environmental and health concerns associated with synthetic pesticides underscore the need for sustainable alternatives in pest management. This study investigates the chemotactic responses of five nematode species—Heterorhabditis bacteriophora, Steinernema carpocapsae, Steinernema feltiae, Phasmarhabditis papillosa, and Oscheius [...] Read more.
The increasing environmental and health concerns associated with synthetic pesticides underscore the need for sustainable alternatives in pest management. This study investigates the chemotactic responses of five nematode species—Heterorhabditis bacteriophora, Steinernema carpocapsae, Steinernema feltiae, Phasmarhabditis papillosa, and Oscheius myriophilus—to three major cannabinoids from Cannabis sativa: Δ9-tetrahydrocannabinol (THC), cannabigerol (CBG), and cannabidiol (CBD). Using a standardized chemotaxis assay, we quantified infective juvenile movement and calculated Chemotaxis Index (CI) values across varying cannabinoid concentrations. Our results revealed strong species-specific and dose-dependent responses. THC and CBG elicited significant attractant effects in P. papillosa, S. feltiae, and H. bacteriophora, with CI values ≥ 0.2, indicating their potential as behavioral modulators. In contrast, CBD had weaker or repellent effects, particularly at higher concentrations. O. myriophilus exhibited no consistent response, underscoring species-specific variation in chemosensory sensitivity. These findings demonstrate the potential utility of cannabinoids, especially THC and CBG, as biocompatible cues to enhance the efficacy of nematode-based biological control agents in integrated pest management (IPM). Further field-based studies are recommended to validate these results under realistic agricultural conditions. Full article
(This article belongs to the Special Issue Nematode Diseases and Their Management in Crop Plants)
Show Figures

Figure 1

26 pages, 771 KB  
Review
Are Cannabis-Based Medicines a Useful Treatment for Neuropathic Pain? A Systematic Review
by Nawaf Almuntashiri, Basma M. El Sharazly and Wayne G. Carter
Biomolecules 2025, 15(6), 816; https://doi.org/10.3390/biom15060816 - 4 Jun 2025
Cited by 2 | Viewed by 8375
Abstract
Neuropathic pain is a chronic disorder that arises from damaged or malfunctioning nerves. Hypersensitivity to stimuli, also known as hyperalgesia, can cause a person to experience pain from non-painful stimuli, termed allodynia. Cannabis-based medicines (CBMs) may provide new treatment options to manage neuropathic [...] Read more.
Neuropathic pain is a chronic disorder that arises from damaged or malfunctioning nerves. Hypersensitivity to stimuli, also known as hyperalgesia, can cause a person to experience pain from non-painful stimuli, termed allodynia. Cannabis-based medicines (CBMs) may provide new treatment options to manage neuropathic pain. A review of the relevant studies was conducted to evaluate the effectiveness of CBMs in treating neuropathic pain. Scientific literature was systematically searched from January 2003 to December 2024 using the Web of Science Core Collection, PubMed, and MEDLINE. A total of 22 randomized controlled trials (RCTs) were identified that considered the use of 1′,1′-dimethylheptyl-Δ8-tetrahydrocannabinol-11-oic acid (CT-3), Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), combinations of Δ9-THC with CBD, and cannabidivarin for treatment of neuropathic pain. Significant reductions in pain were reported in 15 studies focused on the treatment of multiple sclerosis, spinal cord injuries, diabetic neuropathy, postherpetic neuralgia, HIV-associated sensory neuropathy, peripheral neuropathic pain, complex regional pain syndrome, chronic radicular neuropathic pain, and peripheral neuropathy of the lower extremities. These positive outcomes often adopted personalized and adjusted dosing strategies. By contrast, seven RCTs observed no significant pain relief compared to placebo, although some had minor improvements in secondary outcomes, such as mood and sleep. Collectively, CBM treatments may improve pain scores, but study limitations such as small sample sizes and study durations, high placebo response rates, and trial unblinding because of the psychoactive effects of cannabinoids all hinder data interpretation and the extrapolation to chronic pain conditions. Hence, future RCTs will need to have larger numbers and be more extended studies that explore optimal dosing and delivery methods and identify patient subgroups that are most likely to benefit. While CBMs show potential, their current use balances modest benefits against possible adverse effects and variable outcomes. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

28 pages, 2910 KB  
Article
Study to Develop a Value for Cultivation and Use (VCU) Field Trial Protocol for Cannabis sativa L. Flower Varieties
by Tiziana Vonlanthen, Zora Fuchs, Christelle Cronje, Leron Katsir, Maximilian Vogt, Gavin George, Michael E. Ruckle and Jürg Hiltbrunner
Agronomy 2025, 15(6), 1338; https://doi.org/10.3390/agronomy15061338 - 29 May 2025
Viewed by 2156
Abstract
Variety testing systems in Europe do not account for cannabis varieties selected specifically for flower and cannabinoid production. These “flower varieties” are morphologically distinct from industrial varieties, with significant implications for agronomic characterization in the Value for Cultivation and Use (VCU) testing system. [...] Read more.
Variety testing systems in Europe do not account for cannabis varieties selected specifically for flower and cannabinoid production. These “flower varieties” are morphologically distinct from industrial varieties, with significant implications for agronomic characterization in the Value for Cultivation and Use (VCU) testing system. However, they are not considered as drug-type varieties due to their low Δ9-tetrahydrocannabinol (Δ9-THC) content. Identifying specific traits that can objectively describe these varieties is integral to establishing stable and high-quality production standards. We evaluated specific traits tailored to the VCU testing of flower varieties in two field trials. The assessed phenological traits showed significant differences between varieties (p < 0.0001) for all traits except ease of harvest (EH) and lodging, with significant differences also found in all yield-related traits. The number of branches per plant (NBP), flower and leaf yield (FLY), harvest index (HI) and raceme compactness index (RCI) could therefore be considered for VCU testing. The varieties differed significantly in their cannabinoid content, with all falling below the THC limit under Swiss regulation (1%) but not all meeting the 0.3% limit set by European countries. Variations in THC content were dependent on the testing year, the timing of sampling and the number of plants sampled, underscoring the need to clarify VCU testing methodologies. Incorporating cannabinoid content along with morphological and phenological traits is crucial in introducing a new “flower” category within the VCU system for cannabis. Full article
Show Figures

Figure 1

20 pages, 3280 KB  
Article
Cellular and Transcriptional Responses of Human Bronchial Epithelial Cells to Delta-9-Tetrahydrocannabinol In Vitro
by Megan S. Doldron, Sourav Chakraborty, Santosh Anand, Mehwish Faheem, Beh Reh, Xuegeng Wang, Saurav Mallik, Zhenquan Jia and Ramji Kumar Bhandari
Int. J. Mol. Sci. 2025, 26(11), 5212; https://doi.org/10.3390/ijms26115212 - 29 May 2025
Viewed by 1368
Abstract
Delta-9-tetrahydrocannabinol (Δ-9-THC or THC), the primary psychoactive constituent of cannabis, can lead to adverse health conditions, including mental health issues, brain impairment, and cardiac and respiratory problems. The amount of THC in cannabis has steadily climbed over the past few decades, with today’s [...] Read more.
Delta-9-tetrahydrocannabinol (Δ-9-THC or THC), the primary psychoactive constituent of cannabis, can lead to adverse health conditions, including mental health issues, brain impairment, and cardiac and respiratory problems. The amount of THC in cannabis has steadily climbed over the past few decades, with today’s cannabis having three times the concentration of THC compared to 25 years ago. Inhalation is a major route of exposure, allowing substances to enter the body via the respiratory tract. THC exposure causes cell death in the airway epithelium; however, the molecular underpinning of THC exposure-induced bronchial epithelial cell death is not clearly understood. To address the mechanisms involved in this process, the present study examined the cell viability, oxidative stress, lipid peroxidation, and transcriptional alterations caused by various concentrations of Δ-9-THC (0, 800, 1000, 1200, and 1500 ng/mL) in a human bronchial epithelial cell line (BEAS-2B) in vitro. Δ-9-THC exposure caused a significant dose-dependent decrease in cell viability after 24 h exposure. Transcriptome analysis showed a distinct dose-dependent response. HIF-1 signaling, ferroptosis, AMPK signaling, and immunogenic pathways were activated by Δ-9-THC-upregulated genes. Glutathione and fatty acid metabolic pathways were significantly altered by Δ-9-THC-dependent downregulated genes. Ingenuity Pathway Analysis (IPA) revealed several top canonical pathways altered by Δ-9-THC exposure, including ferroptosis, NRF-2-mediated oxidative stress response, caveolar-mediated endocytosis (loss of cell adhesion to the substrate), tumor microenvironment, HIF1alpha signaling, and the unfolded protein response pathway. Δ-9-THC-induced cell death was ameliorated by inhibiting the ferroptosis pathway, whereas treatments with ferroptosis agonist exacerbated the cell death process, suggesting that Δ-9-THC-induced bronchial epithelial cell death potentially involves the ferroptosis pathway. Full article
(This article belongs to the Special Issue Toxicology of Psychoactive Drugs)
Show Figures

Figure 1

Back to TopTop