Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,564)

Search Parameters:
Keywords = (AI) techniques

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1027 KiB  
Article
AI-Driven Security for Blockchain-Based Smart Contracts: A GAN-Assisted Deep Learning Approach to Malware Detection
by Imad Bourian, Lahcen Hassine and Khalid Chougdali
J. Cybersecur. Priv. 2025, 5(3), 53; https://doi.org/10.3390/jcp5030053 (registering DOI) - 1 Aug 2025
Abstract
In the modern era, the use of blockchain technology has been growing rapidly, where Ethereum smart contracts play an important role in securing decentralized application systems. However, these smart contracts are also susceptible to a large number of vulnerabilities, which pose significant threats [...] Read more.
In the modern era, the use of blockchain technology has been growing rapidly, where Ethereum smart contracts play an important role in securing decentralized application systems. However, these smart contracts are also susceptible to a large number of vulnerabilities, which pose significant threats to intelligent systems and IoT applications, leading to data breaches and financial losses. Traditional detection techniques, such as manual analysis and static automated tools, suffer from high false positives and undetected security vulnerabilities. To address these problems, this paper proposes an Artificial Intelligence (AI)-based security framework that integrates Generative Adversarial Network (GAN)-based feature selection and deep learning techniques to classify and detect malware attacks on smart contract execution in the blockchain decentralized network. After an exhaustive pre-processing phase yielding a dataset of 40,000 malware and benign samples, the proposed model is evaluated and compared with related studies on the basis of a number of performance metrics including training accuracy, training loss, and classification metrics (accuracy, precision, recall, and F1-score). Our combined approach achieved a remarkable accuracy of 97.6%, demonstrating its effectiveness in detecting malware and protecting blockchain systems. Full article
Show Figures

Figure 1

28 pages, 6624 KiB  
Article
YoloMal-XAI: Interpretable Android Malware Classification Using RGB Images and YOLO11
by Chaymae El Youssofi and Khalid Chougdali
J. Cybersecur. Priv. 2025, 5(3), 52; https://doi.org/10.3390/jcp5030052 (registering DOI) - 1 Aug 2025
Abstract
As Android malware grows increasingly sophisticated, traditional detection methods struggle to keep pace, creating an urgent need for robust, interpretable, and real-time solutions to safeguard mobile ecosystems. This study introduces YoloMal-XAI, a novel deep learning framework that transforms Android application files into RGB [...] Read more.
As Android malware grows increasingly sophisticated, traditional detection methods struggle to keep pace, creating an urgent need for robust, interpretable, and real-time solutions to safeguard mobile ecosystems. This study introduces YoloMal-XAI, a novel deep learning framework that transforms Android application files into RGB image representations by mapping DEX (Dalvik Executable), Manifest.xml, and Resources.arsc files to distinct color channels. Evaluated on the CICMalDroid2020 dataset using YOLO11 pretrained classification models, YoloMal-XAI achieves 99.87% accuracy in binary classification and 99.56% in multi-class classification (Adware, Banking, Riskware, SMS, and Benign). Compared to ResNet-50, GoogLeNet, and MobileNetV2, YOLO11 offers competitive accuracy with at least 7× faster training over 100 epochs. Against YOLOv8, YOLO11 achieves comparable or superior accuracy while reducing training time by up to 3.5×. Cross-corpus validation using Drebin and CICAndMal2017 further confirms the model’s generalization capability on previously unseen malware. An ablation study highlights the value of integrating DEX, Manifest, and Resources components, with the full RGB configuration consistently delivering the best performance. Explainable AI (XAI) techniques—Grad-CAM, Grad-CAM++, Eigen-CAM, and HiRes-CAM—are employed to interpret model decisions, revealing the DEX segment as the most influential component. These results establish YoloMal-XAI as a scalable, efficient, and interpretable framework for Android malware detection, with strong potential for future deployment on resource-constrained mobile devices. Full article
Show Figures

Figure 1

25 pages, 5899 KiB  
Review
Non-Invasive Medical Imaging in the Evaluation of Composite Scaffolds in Tissue Engineering: Methods, Challenges, and Future Directions
by Samira Farjaminejad, Rosana Farjaminejad, Pedram Sotoudehbagha and Mehdi Razavi
J. Compos. Sci. 2025, 9(8), 400; https://doi.org/10.3390/jcs9080400 (registering DOI) - 1 Aug 2025
Abstract
Tissue-engineered scaffolds, particularly composite scaffolds composed of polymers combined with ceramics, bioactive glasses, or nanomaterials, play a vital role in regenerative medicine by providing structural and biological support for tissue repair. As scaffold designs grow increasingly complex, the need for non-invasive imaging modalities [...] Read more.
Tissue-engineered scaffolds, particularly composite scaffolds composed of polymers combined with ceramics, bioactive glasses, or nanomaterials, play a vital role in regenerative medicine by providing structural and biological support for tissue repair. As scaffold designs grow increasingly complex, the need for non-invasive imaging modalities capable of monitoring scaffold integration, degradation, and tissue regeneration in real-time has become critical. This review summarizes current non-invasive imaging techniques used to evaluate tissue-engineered constructs, including optical methods such as near-infrared fluorescence imaging (NIR), optical coherence tomography (OCT), and photoacoustic imaging (PAI); magnetic resonance imaging (MRI); X-ray-based approaches like computed tomography (CT); and ultrasound-based modalities. It discusses the unique advantages and limitations of each modality. Finally, the review identifies major challenges—including limited imaging depth, resolution trade-offs, and regulatory hurdles—and proposes future directions to enhance translational readiness and clinical adoption of imaging-guided tissue engineering (TE). Emerging prospects such as multimodal platforms and artificial intelligence (AI) assisted image analysis hold promise for improving precision, scalability, and clinical relevance in scaffold monitoring. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

15 pages, 1635 KiB  
Article
Modeling the Abrasive Index from Mineralogical and Calorific Properties Using Tree-Based Machine Learning: A Case Study on the KwaZulu-Natal Coalfield
by Mohammad Afrazi, Chia Yu Huat, Moshood Onifade, Manoj Khandelwal, Deji Olatunji Shonuga, Hadi Fattahi and Danial Jahed Armaghani
Mining 2025, 5(3), 48; https://doi.org/10.3390/mining5030048 (registering DOI) - 1 Aug 2025
Abstract
Accurate prediction of the coal abrasive index (AI) is critical for optimizing coal processing efficiency and minimizing equipment wear in industrial applications. This study explores tree-based machine learning models; Random Forest (RF), Gradient Boosting Trees (GBT), and Extreme Gradient Boosting (XGBoost) to predict [...] Read more.
Accurate prediction of the coal abrasive index (AI) is critical for optimizing coal processing efficiency and minimizing equipment wear in industrial applications. This study explores tree-based machine learning models; Random Forest (RF), Gradient Boosting Trees (GBT), and Extreme Gradient Boosting (XGBoost) to predict AI using selected coal properties. A database of 112 coal samples from the KwaZulu-Natal Coalfield in South Africa was used. Initial predictions using all eight input properties revealed suboptimal testing performance (R2: 0.63–0.72), attributed to outliers and noisy data. Feature importance analysis identified calorific value, quartz, ash, and Pyrite as dominant predictors, aligning with their physicochemical roles in abrasiveness. After data cleaning and feature selection, XGBoost achieved superior accuracy (R2 = 0.92), outperforming RF (R2 = 0.85) and GBT (R2 = 0.81). The results highlight XGBoost’s robustness in modeling non-linear relationships between coal properties and AI. This approach offers a cost-effective alternative to traditional laboratory methods, enabling industries to optimize coal selection, reduce maintenance costs, and enhance operational sustainability through data-driven decision-making. Additionally, quartz and Ash content were identified as the most influential parameters on AI using the Cosine Amplitude technique, while calorific value had the least impact among the selected features. Full article
(This article belongs to the Special Issue Mine Automation and New Technologies)
Show Figures

Figure 1

26 pages, 1263 KiB  
Article
Identifying Key Digital Enablers for Urban Carbon Reduction: A Strategy-Focused Study of AI, Big Data, and Blockchain Technologies
by Rongyu Pei, Meiqi Chen and Ziyang Liu
Systems 2025, 13(8), 646; https://doi.org/10.3390/systems13080646 (registering DOI) - 1 Aug 2025
Abstract
The integration of artificial intelligence (AI), big data analytics, and blockchain technologies within the digital economy presents transformative opportunities for promoting low-carbon urban development. However, a systematic understanding of how these digital innovations influence urban carbon mitigation remains limited. This study addresses this [...] Read more.
The integration of artificial intelligence (AI), big data analytics, and blockchain technologies within the digital economy presents transformative opportunities for promoting low-carbon urban development. However, a systematic understanding of how these digital innovations influence urban carbon mitigation remains limited. This study addresses this gap by proposing two research questions (RQs): (1) What are the key success factors for artificial intelligence, big data, and blockchain in urban carbon emission reduction? (2) How do these technologies interact and support the transition to low-carbon cities? To answer these questions, the study employs a hybrid methodological framework combining the decision-making trial and evaluation laboratory (DEMATEL) and interpretive structural modeling (ISM) techniques. The data were collected through structured expert questionnaires, enabling the identification and hierarchical analysis of twelve critical success factors (CSFs). Grounded in sustainability transitions theory and institutional theory, the CSFs are categorized into three dimensions: (1) digital infrastructure and technological applications; (2) digital transformation of industry and economy; (3) sustainable urban governance. The results reveal that e-commerce and sustainable logistics, the adoption of the circular economy, and cross-sector collaboration are the most influential drivers of digital-enabled decarbonization, while foundational elements such as smart energy systems and digital infrastructure act as key enablers. The DEMATEL-ISM approach facilitates a system-level understanding of the causal relationships and strategic priorities among the CSFs, offering actionable insights for urban planners, policymakers, and stakeholders committed to sustainable digital transformation and carbon neutrality. Full article
Show Figures

Figure 1

21 pages, 552 KiB  
Article
AgentsBench: A Multi-Agent LLM Simulation Framework for Legal Judgment Prediction
by Cong Jiang and Xiaolei Yang
Systems 2025, 13(8), 641; https://doi.org/10.3390/systems13080641 (registering DOI) - 1 Aug 2025
Abstract
The justice system has increasingly applied AI techniques for legal judgment to enhance efficiency. However, most AI techniques focus on decision-making outcomes, failing to capture the deliberative nature of the real-world judicial process. To address these challenges, we propose a large language model-based [...] Read more.
The justice system has increasingly applied AI techniques for legal judgment to enhance efficiency. However, most AI techniques focus on decision-making outcomes, failing to capture the deliberative nature of the real-world judicial process. To address these challenges, we propose a large language model-based multi-agent framework named AgentsBench. Our approach leverages multiple LLM-driven agents that simulate the discussion process of the Chinese judicial bench, which is often composed of professional and lay judge agents. We conducted experiments on a legal judgment prediction task, and the results show that our framework outperforms existing LLM-based methods in terms of performance and decision quality. By incorporating these elements, our framework reflects real-world judicial processes more closely, enhancing accuracy, fairness, and societal consideration. While the simulation is based on China’s lay judge system, our framework is generalizable and can be adapted to various legal scenarios and other legal systems involving collective decision-making processes. Full article
(This article belongs to the Special Issue AI-Empowered Modeling and Simulation for Complex Systems)
Show Figures

Figure 1

19 pages, 2528 KiB  
Systematic Review
The Nexus Between Green Finance and Artificial Intelligence: A Systemic Bibliometric Analysis Based on Web of Science Database
by Katerina Fotova Čiković, Violeta Cvetkoska and Dinko Primorac
J. Risk Financial Manag. 2025, 18(8), 420; https://doi.org/10.3390/jrfm18080420 (registering DOI) - 1 Aug 2025
Abstract
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, [...] Read more.
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, and highlighting methodological trends at this nexus. A dataset of 268 peer-reviewed publications (2014–June 2025) was retrieved from the Web of Science Core Collection, filtered by the Business Economics category. Analytical techniques employed include Bibliometrix in R, VOSviewer, and science mapping tools such as thematic mapping, trend topic analysis, co-citation networks, and co-occurrence clustering. Results indicate an annual growth rate of 53.31%, with China leading in both productivity and impact, followed by Vietnam and the United Kingdom. The most prolific affiliations and authors, primarily based in China, underscore a concentrated regional research output. The most relevant journals include Energy Economics and Finance Research Letters. Network visualizations identified 17 clusters, with focused analysis on the top three: (1) Emission, Health, and Environmental Risk, (2) Institutional and Technological Infrastructure, and (3) Green Innovation and Sustainable Urban Development. The methodological landscape is equally diverse, with top techniques including blockchain technology, large language models, convolutional neural networks, sentiment analysis, and structural equation modeling, demonstrating a blend of traditional econometrics and advanced AI. This study not only uncovers intellectual structures and thematic evolution but also identifies underdeveloped areas and proposes future research directions. These include dynamic topic modeling, regional case studies, and ethical frameworks for AI in sustainable finance. The findings provide a strategic foundation for advancing interdisciplinary collaboration and policy innovation in green AI–finance ecosystems. Full article
(This article belongs to the Special Issue Commercial Banking and FinTech in Emerging Economies)
Show Figures

Figure 1

12 pages, 1346 KiB  
Article
A Language Vision Model Approach for Automated Tumor Contouring in Radiation Oncology
by Yi Luo, Hamed Hooshangnejad, Xue Feng, Gaofeng Huang, Xiaojian Chen, Rui Zhang, Quan Chen, Wil Ngwa and Kai Ding
Bioengineering 2025, 12(8), 835; https://doi.org/10.3390/bioengineering12080835 (registering DOI) - 31 Jul 2025
Abstract
Background: Lung cancer ranks as the leading cause of cancer-related mortality worldwide. The complexity of tumor delineation, crucial for radiation therapy, requires expertise often unavailable in resource-limited settings. Artificial Intelligence (AI), particularly with advancements in deep learning (DL) and natural language processing (NLP), [...] Read more.
Background: Lung cancer ranks as the leading cause of cancer-related mortality worldwide. The complexity of tumor delineation, crucial for radiation therapy, requires expertise often unavailable in resource-limited settings. Artificial Intelligence (AI), particularly with advancements in deep learning (DL) and natural language processing (NLP), offers potential solutions yet is challenged by high false positive rates. Purpose: The Oncology Contouring Copilot (OCC) system is developed to leverage oncologist expertise for precise tumor contouring using textual descriptions, aiming to increase the efficiency of oncological workflows by combining the strengths of AI with human oversight. Methods: Our OCC system initially identifies nodule candidates from CT scans. Employing Language Vision Models (LVMs) like GPT-4V, OCC then effectively reduces false positives with clinical descriptive texts, merging textual and visual data to automate tumor delineation, designed to elevate the quality of oncology care by incorporating knowledge from experienced domain experts. Results: The deployment of the OCC system resulted in a 35.0% reduction in the false discovery rate, a 72.4% decrease in false positives per scan, and an F1-score of 0.652 across our dataset for unbiased evaluation. Conclusions: OCC represents a significant advance in oncology care, particularly through the use of the latest LVMs, improving contouring results by (1) streamlining oncology treatment workflows by optimizing tumor delineation and reducing manual processes; (2) offering a scalable and intuitive framework to reduce false positives in radiotherapy planning using LVMs; (3) introducing novel medical language vision prompt techniques to minimize LVM hallucinations with ablation study; and (4) conducting a comparative analysis of LVMs, highlighting their potential in addressing medical language vision challenges. Full article
(This article belongs to the Special Issue Novel Imaging Techniques in Radiotherapy)
Show Figures

Figure 1

42 pages, 4490 KiB  
Review
Continuous Monitoring with AI-Enhanced BioMEMS Sensors: A Focus on Sustainable Energy Harvesting and Predictive Analytics
by Mingchen Cai, Hao Sun, Tianyue Yang, Hongxin Hu, Xubing Li and Yuan Jia
Micromachines 2025, 16(8), 902; https://doi.org/10.3390/mi16080902 (registering DOI) - 31 Jul 2025
Abstract
Continuous monitoring of environmental and physiological parameters is essential for early diagnostics, real-time decision making, and intelligent system adaptation. Recent advancements in bio-microelectromechanical systems (BioMEMS) sensors have significantly enhanced our ability to track key metrics in real time. However, continuous monitoring demands sustainable [...] Read more.
Continuous monitoring of environmental and physiological parameters is essential for early diagnostics, real-time decision making, and intelligent system adaptation. Recent advancements in bio-microelectromechanical systems (BioMEMS) sensors have significantly enhanced our ability to track key metrics in real time. However, continuous monitoring demands sustainable energy supply solutions, especially for on-site energy replenishment in areas with limited resources. Artificial intelligence (AI), particularly large language models, offers new avenues for interpreting the vast amounts of data generated by these sensors. Despite this potential, fully integrated systems that combine self-powered BioMEMS sensing with AI-based analytics remain in the early stages of development. This review first examines the evolution of BioMEMS sensors, focusing on advances in sensing materials, micro/nano-scale architectures, and fabrication techniques that enable high sensitivity, flexibility, and biocompatibility for continuous monitoring applications. We then examine recent advances in energy harvesting technologies, such as piezoelectric nanogenerators, triboelectric nanogenerators and moisture electricity generators, which enable self-powered BioMEMS sensors to operate continuously and reducereliance on traditional batteries. Finally, we discuss the role of AI in BioMEMS sensing, particularly in predictive analytics, to analyze continuous monitoring data, identify patterns, trends, and anomalies, and transform this data into actionable insights. This comprehensive analysis aims to provide a roadmap for future continuous BioMEMS sensing, revealing the potential unlocked by combining materials science, energy harvesting, and artificial intelligence. Full article
Show Figures

Figure 1

29 pages, 482 KiB  
Review
AI in Maritime Security: Applications, Challenges, Future Directions, and Key Data Sources
by Kashif Talpur, Raza Hasan, Ismet Gocer, Shakeel Ahmad and Zakirul Bhuiyan
Information 2025, 16(8), 658; https://doi.org/10.3390/info16080658 (registering DOI) - 31 Jul 2025
Abstract
The growth and sustainability of today’s global economy heavily relies on smooth maritime operations. The increasing security concerns to marine environments pose complex security challenges, such as smuggling, illegal fishing, human trafficking, and environmental threats, for traditional surveillance methods due to their limitations. [...] Read more.
The growth and sustainability of today’s global economy heavily relies on smooth maritime operations. The increasing security concerns to marine environments pose complex security challenges, such as smuggling, illegal fishing, human trafficking, and environmental threats, for traditional surveillance methods due to their limitations. Artificial intelligence (AI), particularly deep learning, has offered strong capabilities for automating object detection, anomaly identification, and situational awareness in maritime environments. In this paper, we have reviewed the state-of-the-art deep learning models mainly proposed in recent literature (2020–2025), including convolutional neural networks, recurrent neural networks, Transformers, and multimodal fusion architectures. We have highlighted their success in processing diverse data sources such as satellite imagery, AIS, SAR, radar, and sensor inputs from UxVs. Additionally, multimodal data fusion techniques enhance robustness by integrating complementary data, yielding more detection accuracy. There still exist challenges in detecting small or occluded objects, handling cluttered scenes, and interpreting unusual vessel behaviours, especially under adverse sea conditions. Additionally, explainability and real-time deployment of AI models in operational settings are open research areas. Overall, the review of existing maritime literature suggests that deep learning is rapidly transforming maritime domain awareness and response, with significant potential to improve global maritime security and operational efficiency. We have also provided key datasets for deep learning models in the maritime security domain. Full article
(This article belongs to the Special Issue Advances in Machine Learning and Intelligent Information Systems)
Show Figures

Figure 1

15 pages, 415 KiB  
Article
Enhancing MusicGen with Prompt Tuning
by Hohyeon Shin, Jeonghyeon Im and Yunsick Sung
Appl. Sci. 2025, 15(15), 8504; https://doi.org/10.3390/app15158504 (registering DOI) - 31 Jul 2025
Abstract
Generative AI has been gaining attention across various creative domains. In particular, MusicGen stands out as a representative approach capable of generating music based on text or audio inputs. However, it has limitations in producing high-quality outputs for specific genres and fully reflecting [...] Read more.
Generative AI has been gaining attention across various creative domains. In particular, MusicGen stands out as a representative approach capable of generating music based on text or audio inputs. However, it has limitations in producing high-quality outputs for specific genres and fully reflecting user intentions. This paper proposes a prompt tuning technique that effectively adjusts the output quality of MusicGen without modifying its original parameters and optimizes its ability to generate music tailored to specific genres and styles. Experiments were conducted to compare the performance of the traditional MusicGen with the proposed method and evaluate the quality of generated music using the Contrastive Language-Audio Pretraining (CLAP) and Kullback–Leibler Divergence (KLD) scoring approaches. The results demonstrated that the proposed method significantly improved the output quality and musical coherence, particularly for specific genres and styles. Compared with the traditional model, the CLAP score was increased by 0.1270, and the KLD score was increased by 0.00403 on average. The effectiveness of prompt tuning in optimizing the performance of MusicGen validated the proposed method and highlighted its potential for advancing generative AI-based music generation tools. Full article
Show Figures

Figure 1

30 pages, 894 KiB  
Review
From Tools to Creators: A Review on the Development and Application of Artificial Intelligence Music Generation
by Lijun Wei, Yuanyu Yu, Yuping Qin and Shuang Zhang
Information 2025, 16(8), 656; https://doi.org/10.3390/info16080656 (registering DOI) - 31 Jul 2025
Abstract
Artificial intelligence (AI) has emerged as a significant driving force in the development of technology and industry. It is also integrated with music as music AI in music generation and analysis. It originated from early algorithmic composition techniques in the mid-20th century. Recent [...] Read more.
Artificial intelligence (AI) has emerged as a significant driving force in the development of technology and industry. It is also integrated with music as music AI in music generation and analysis. It originated from early algorithmic composition techniques in the mid-20th century. Recent advancements in machine learning and neural networks have enabled innovative music generation and exploration. This article surveys the development history and technical route of music AI, analyzes the current status and limitations of music artificial intelligence across various areas, including music generation and composition, rehabilitation and treatment, as well as education and learning. It reveals that music AI has become a promising creator in the field of music generation. The influence of music AI on the music industry and the challenges it encounters are explored. Additionally, an emotional music generation system driven by multimodal signals is proposed. Although music artificial intelligence technology still needs to be further improved, with the continuous breakthroughs in technology, it will have a more profound impact on all areas of music. Full article
(This article belongs to the Special Issue Text-to-Speech and AI Music)
Show Figures

Figure 1

21 pages, 1750 KiB  
Article
Predictive Analytics Leveraging a Machine Learning Approach to Identify Students’ Reasons for Dropping out of University
by Asmaa El Mahmoudi, Nour El Houda Chaoui and Habiba Chaoui
Appl. Sci. 2025, 15(15), 8496; https://doi.org/10.3390/app15158496 (registering DOI) - 31 Jul 2025
Abstract
In today’s fast-changing world, the higher education system must evolve to enhance the quality of learning and teaching. Fulfilling the role of a university is a major challenge. Universities must implement strategies that place the student at the center of their concerns; so, [...] Read more.
In today’s fast-changing world, the higher education system must evolve to enhance the quality of learning and teaching. Fulfilling the role of a university is a major challenge. Universities must implement strategies that place the student at the center of their concerns; so, these strategies must be designed for and by the student. However, the high university dropout rate is one of the current problems faced by many universities. This suggests that there are some issues that hinder the learning process. Several studies have highlighted the advantage of artificial intelligence (AI) technologies in providing explorative and predictive analyses that explain why students are dropping out, with the aim of improving the quality of teaching and providing an integrated learning environment. This paper proposes a framework that predicts student dropout rates using machine learning techniques, based on data collected from various sources. Data collection was carried out between 2022 and 2024. We used a quantitative analysis method employed through a questionnaire distributed to 120 students (aged 18–26) from open access faculties of a Moroccan public university to identify the factors leading to an increase in university dropout rates. We discuss the impact of selected variables, and the findings show that several factors are related to university dropout rates, such as social background, psychological and health problems, insufficient motivation of professors, limited perspective on educational programs, changes in language and teaching methodologies, absenteeism, student attitude, and a lack of interaction between professors and students. Full article
(This article belongs to the Special Issue ICT in Education, 2nd Edition)
Show Figures

Figure 1

29 pages, 1119 KiB  
Systematic Review
Phishing Attacks in the Age of Generative Artificial Intelligence: A Systematic Review of Human Factors
by Raja Jabir, John Le and Chau Nguyen
AI 2025, 6(8), 174; https://doi.org/10.3390/ai6080174 - 31 Jul 2025
Abstract
Despite the focus on improving cybersecurity awareness, the number of cyberattacks has increased significantly, leading to huge financial losses, with their risks spreading throughout the world. This is due to the techniques deployed in cyberattacks that mainly aim at exploiting humans, the weakest [...] Read more.
Despite the focus on improving cybersecurity awareness, the number of cyberattacks has increased significantly, leading to huge financial losses, with their risks spreading throughout the world. This is due to the techniques deployed in cyberattacks that mainly aim at exploiting humans, the weakest link in any defence system. The existing literature on human factors in phishing attacks is limited and does not live up to the witnessed advances in phishing attacks, which have become exponentially more dangerous with the introduction of generative artificial intelligence (GenAI). This paper studies the implications of AI advancement, specifically the exploitation of GenAI and human factors in phishing attacks. We conduct a systematic literature review to study different human factors exploited in phishing attacks, potential solutions and preventive measures, and the complexity introduced by GenAI-driven phishing attacks. This paper aims to address the gap in the research by providing a deeper understanding of the evolving landscape of phishing attacks with the application of GenAI and associated human implications, thereby contributing to the field of knowledge to defend against phishing attacks by creating secure digital interactions. Full article
Show Figures

Figure 1

59 pages, 2417 KiB  
Review
A Critical Review on the Battery System Reliability of Drone Systems
by Tianren Zhao, Yanhui Zhang, Minghao Wang, Wei Feng, Shengxian Cao and Gong Wang
Drones 2025, 9(8), 539; https://doi.org/10.3390/drones9080539 (registering DOI) - 31 Jul 2025
Abstract
The reliability of unmanned aerial vehicle (UAV) energy storage battery systems is critical for ensuring their safe operation and efficient mission execution, and has the potential to significantly advance applications in logistics, monitoring, and emergency response. This paper reviews theoretical and technical advancements [...] Read more.
The reliability of unmanned aerial vehicle (UAV) energy storage battery systems is critical for ensuring their safe operation and efficient mission execution, and has the potential to significantly advance applications in logistics, monitoring, and emergency response. This paper reviews theoretical and technical advancements in UAV battery reliability, covering definitions and metrics, modeling approaches, state estimation, fault diagnosis, and battery management system (BMS) technologies. Based on international standards, reliability encompasses performance stability, environmental adaptability, and safety redundancy, encompassing metrics such as the capacity retention rate, mean time between failures (MTBF), and thermal runaway warning time. Modeling methods for reliability include mathematical, data-driven, and hybrid models, which are evaluated for accuracy and efficiency under dynamic conditions. State estimation focuses on five key battery parameters and compares neural network, regression, and optimization algorithms in complex flight scenarios. Fault diagnosis involves feature extraction, time-series modeling, and probabilistic inference, with multimodal fusion strategies being proposed for faults like overcharge and thermal runaway. BMS technologies include state monitoring, protection, and optimization, and balancing strategies and the potential of intelligent algorithms are being explored. Challenges in this field include non-unified standards, limited model generalization, and complexity in diagnosing concurrent faults. Future research should prioritize multi-physics-coupled modeling, AI-driven predictive techniques, and cybersecurity to enhance the reliability and intelligence of battery systems in order to support the sustainable development of unmanned systems. Full article
Show Figures

Figure 1

Back to TopTop