Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (381)

Search Parameters:
Journal = Universe
Section = High Energy Nuclear and Particle Physics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 694 KiB  
Article
Nuclear Matter and Finite Nuclei: Relativistic Thomas–Fermi Approximation Versus Relativistic Mean-Field Approach
by Shuying Li, Hong Shen and Jinniu Hu
Universe 2025, 11(8), 255; https://doi.org/10.3390/universe11080255 - 1 Aug 2025
Viewed by 195
Abstract
The Thomas–Fermi approximation is a powerful method that has been widely used to describe atomic structures, finite nuclei, and nonuniform matter in supernovae and neutron-star crusts. Nonuniform nuclear matter at subnuclear density is assumed to be composed of a lattice of heavy nuclei [...] Read more.
The Thomas–Fermi approximation is a powerful method that has been widely used to describe atomic structures, finite nuclei, and nonuniform matter in supernovae and neutron-star crusts. Nonuniform nuclear matter at subnuclear density is assumed to be composed of a lattice of heavy nuclei surrounded by dripped nucleons, and the Wigner–Seitz cell is commonly introduced to simplify the calculations. The self-consistent Thomas–Fermi approximation can be employed to study both a nucleus surrounded by nucleon gas in the Wigner–Seitz cell and an isolated nucleus in the nuclide chart. A detailed comparison is made between the self-consistent Thomas–Fermi approximation and the relativistic mean-field approach for the description of finite nuclei, based on the same nuclear interaction. These results are then examined using experimental data from the corresponding nuclei. Full article
(This article belongs to the Special Issue Advances in Nuclear Astrophysics)
Show Figures

Figure 1

30 pages, 25151 KiB  
Article
Prospects for Multimessenger Observations of the Shapley Supercluster
by Valentyna Babur, Olexandr Gugnin and Bohdan Hnatyk
Universe 2025, 11(7), 239; https://doi.org/10.3390/universe11070239 - 21 Jul 2025
Viewed by 262
Abstract
The Shapley Supercluster, one of the largest and most massive structures in the nearby (redshift z0.1) Universe, located approximately 200 Mpc away, is a unique laboratory for high-energy astrophysics. Galaxy clusters that comprise it are promising targets for multimessenger study [...] Read more.
The Shapley Supercluster, one of the largest and most massive structures in the nearby (redshift z0.1) Universe, located approximately 200 Mpc away, is a unique laboratory for high-energy astrophysics. Galaxy clusters that comprise it are promising targets for multimessenger study due to the presence in the intracluster medium of the necessary conditions for the acceleration of cosmic rays up to ultra-high energies and the generation by them of non-thermal electromagnetic and neutrino emission. Using the Shapley Supercluster’s observational data from the recent eROSITA-DE Data Release, we recover the physical parameters of 45 X-ray luminous galaxy clusters and calculate the expected multiwavelength—from radio to very-high-energy γ-ray as well as neutrino emission, with a particular focus on hadronic interactions of accelerated cosmic ray nuclei with the nuclei of the intracluster medium. The results obtained allow verification of cluster models based on multimessenger observations of clusters, especially in γ-ray (Fermi-LAT, H.E.S.S., CTAO-South for the Shapley Supercluster case), and neutrino (Ice Cube, KM3NeT). We also estimate the ability of the Shapley Supercluster to manifest as cosmic Zevatrons and show that it can contribute to the PAO Hot Spot in the Cen A region at UHECR energies over 50 EeV. Full article
(This article belongs to the Special Issue Ultra-High-Energy Cosmic Rays)
Show Figures

Figure 1

26 pages, 2204 KiB  
Review
Recent Advances in Understanding R-Process Nucleosynthesis in Metal-Poor Stars and Stellar Systems
by Avrajit Bandyopadhyay and Timothy C. Beers
Universe 2025, 11(7), 229; https://doi.org/10.3390/universe11070229 - 11 Jul 2025
Viewed by 395
Abstract
The rapid neutron-capture process (r-process) is responsible for the creation of roughly half of the elements heavier than iron, including precious metals like silver, gold, and platinum, as well as radioactive elements such as thorium and uranium. Despite its importance, the [...] Read more.
The rapid neutron-capture process (r-process) is responsible for the creation of roughly half of the elements heavier than iron, including precious metals like silver, gold, and platinum, as well as radioactive elements such as thorium and uranium. Despite its importance, the nature of the astrophysical sites where the r-process occurs, and the detailed mechanisms of its formation, remain elusive. The key to resolving these mysteries lies in the study of chemical signatures preserved in ancient, metal-poor stars. These stars, which formed in the early Universe, retain the chemical fingerprints of early nucleosynthetic events and offer a unique opportunity to trace the origins of r-process elements in the early Galaxy. In this review, we explore the state-of-the-art understanding of r-process nucleosynthesis, focusing on the sites, progenitors, and formation mechanisms. We discuss the role of potential astrophysical sites such as neutron star mergers, core-collapse supernovae, magneto-rotational supernovae, and collapsars, that can play a key role in producing the heavy elements. We also highlight the importance of studying these signatures through high-resolution spectroscopic surveys, stellar archaeology, and multi-messenger astronomy. Recent advancements, such as the gravitational wave event GW170817 and detection of the r-process in the ejecta of its associated kilonovae, have established neutron star mergers as one of the confirmed sites. However, questions remain regarding whether they are the only sites that could have contributed in early epochs or if additional sources are needed to explain the signatures of r-process found in the oldest stars. Additionally, there are strong indications pointing towards additional sources of r-process-rich nuclei in the context of Galactic evolutionary timescales. These are several of the outstanding questions that led to the formation of collaborative efforts such as the R-Process Alliance, which aims to consolidate observational data, modeling techniques, and theoretical frameworks to derive better constraints on deciphering the astrophysical sites and timescales of r-process enrichment in the Galaxy. This review summarizes what has been learned so far, the challenges that remain, and the exciting prospects for future discoveries. The increasing synergy between observational facilities, computational models, and large-scale surveys is poised to transform our understanding of r-process nucleosynthesis in the coming years. Full article
(This article belongs to the Special Issue Advances in Nuclear Astrophysics)
Show Figures

Figure 1

12 pages, 694 KiB  
Article
Unveiling New Physics Models Through Meson Decays and Their Impact on Neutrino Experiments
by Adriano Cherchiglia
Universe 2025, 11(7), 225; https://doi.org/10.3390/universe11070225 - 9 Jul 2025
Viewed by 198
Abstract
As neutrino experiments enter the precision era, it is desirable to identify any deviation between data and theoretical predictions and to provide possible models as explanation. Particularly useful is the description in terms of non-standard interactions (NSIs), which can be related to neutral [...] Read more.
As neutrino experiments enter the precision era, it is desirable to identify any deviation between data and theoretical predictions and to provide possible models as explanation. Particularly useful is the description in terms of non-standard interactions (NSIs), which can be related to neutral (NC-NSI) or charged (CC-NSI) currents. Previously, we have developed the code eft-neutrino that connects NSI with generic ultraviolet (UV) models at tree-level matching. In this work, we integrate our code with other tools, increasing the matching between the UV and infrared (IR) theories to a one-loop level. As a working example, we consider the pion and kaon decay, the main production mechanisms in accelerator neutrino experiments. We provide up-to-date allowed regions on a set of Wilson coefficients related to pion and kaon decay. We also illustrate how our chain of codes can be applied to particular UV models, showing that a seemingly large allowed CC-NSI value can be significantly reduced when considering a specific UV model. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

26 pages, 491 KiB  
Article
Remarkable Scale Relation, Approximate SU(5), Fluctuating Lattice
by Holger B. Nielsen
Universe 2025, 11(7), 211; https://doi.org/10.3390/universe11070211 - 26 Jun 2025
Viewed by 178
Abstract
In this study, we discuss a series of eight energy scales, some of which are our own speculations, and fit the logarithms of these energies as a straight line versus a quantity related to the dimensionalities of action terms in a way to [...] Read more.
In this study, we discuss a series of eight energy scales, some of which are our own speculations, and fit the logarithms of these energies as a straight line versus a quantity related to the dimensionalities of action terms in a way to be defined in the article. These terms in the action are related to the energy scales in question. So, for example, the dimensionality of the Einstein–Hilbert action coefficient is one related to the Planck scale. In fact, we suppose that, in the cases described with quantum field theory, there is, for each of our energy scales, a pair of associated terms in the Lagrangian density, one “kinetic” and one “mass or current” term. To plot the energy scales, we use the ratio of the dimensionality of, say, the “non-kinetic” term to the dimensionality of the “kinetic” one. For an explanation of our phenomenological finding that the logarithm of the energies depends, as a straight line, on the dimensionality defined integer q, we give an ontological—i.e., it really exists in nature in our model—“fluctuating lattice” with a very broad distribution of, say, the link size a. We take the Gaussian in the logarithm, ln(a). A fluctuating lattice is very natural in a theory with general relativity, since it corresponds to fluctuations in the gauge depth of the field of general relativity. The lowest on our energy scales are intriguing, as they are not described by quantum field theory like the others but by actions for a single particle or single string, respectively. The string scale fits well with hadronic strings, and the particle scale is presumably the mass scale of Standard Model group monopoles, the bound state of a couple of which might be the dimuon resonance (or statistical fluctuation) found in LHC with a mass of 28 GeV. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

17 pages, 1029 KiB  
Article
Hot Holographic 2-Flavor Quark Star
by Le-Feng Chen, Jing-Yi Wu, Hao Feng, Tian-Shun Chen and Kilar Zhang
Universe 2025, 11(7), 199; https://doi.org/10.3390/universe11070199 - 20 Jun 2025
Viewed by 247
Abstract
Applying the holographic 2-flavor Einstein–Maxwell-dilaton model, the parameters of which are fixed by lattice QCD, we extract the equations of state for hot quark–gluon plasma around the critical point at T=182 MeV, and have corresponding quark star cores constructed. By further [...] Read more.
Applying the holographic 2-flavor Einstein–Maxwell-dilaton model, the parameters of which are fixed by lattice QCD, we extract the equations of state for hot quark–gluon plasma around the critical point at T=182 MeV, and have corresponding quark star cores constructed. By further adding hadron shells, the mass range of the whole stars spans from 2 to 17 solar masses, with the maximum compactness around 0.22. This result allows them to be black hole mimickers and candidates for gap events. The I–Love–Q–C relations are also analyzed, which show consistency with the neutron star cases when the discontinuity at the quark–hadron interface is not large. Furthermore, we illustrate the full parameter maps of the energy density and pressure as functions of the temperature and chemical potential and discuss the constant thermal conductivity case supposing a heat source inside. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

14 pages, 1816 KiB  
Article
On Optimally Selecting Candidate Detectors with High Predicted Radio Signals from Energetic Cosmic Ray-Induced Extensive Air Showers
by Tudor Alexandru Calafeteanu, Paula Gina Isar and Emil Ioan Slușanschi
Universe 2025, 11(6), 192; https://doi.org/10.3390/universe11060192 - 18 Jun 2025
Viewed by 256
Abstract
Monte Carlo simulations of induced extensive air showers (EASs) by ultra-high-energy cosmic rays are widely used in comparison with measured events at experiments to estimate the main cosmic ray characteristics, such as mass, energy, and arrival direction. However, these simulations are computationally expensive, [...] Read more.
Monte Carlo simulations of induced extensive air showers (EASs) by ultra-high-energy cosmic rays are widely used in comparison with measured events at experiments to estimate the main cosmic ray characteristics, such as mass, energy, and arrival direction. However, these simulations are computationally expensive, with running time scaling proportionally with the number of radio antennas included. The AugerPrime upgrade of the Pierre Auger Observatory will feature an array of 1660 radio antennas. As a result, simulating a single EAS using the full detector array will take weeks on a single CPU thread. To reduce the simulation time, detectors are commonly pre-selected based on their proximity to the shower core, using a selection ellipse based on the Cherenkov radiation footprint scaled by a fixed constant factor. While effective, this approach often includes many noisy antennas at high zenith angles, reducing computational efficiency. In this paper, we introduce an optimal method for selecting candidate detectors with high predicted signal-to-noise ratio for proton and iron primary cosmic rays, replacing the constant scaling factor with a function of the zenith angle. This approach significantly reduces simulation time—by more than 50% per CPU thread for the heaviest, most inclined showers—without compromising signal quality. Full article
(This article belongs to the Special Issue Ultra-High-Energy Cosmic Rays)
Show Figures

Figure 1

12 pages, 2754 KiB  
Article
μPPET: Investigating the Muon Puzzle with J-PET Detectors
by Alessio Porcelli, Kavya Valsan Eliyan, Gabriel Moskal, Nousaba Nasrin Protiti, Diana Laura Sirghi, Ermias Yitayew Beyene, Neha Chug, Catalina Curceanu, Eryk Czerwiński, Manish Das, Marek Gorgol, Jakub Hajduga, Sharareh Jalali, Bożena Jasińska, Krzysztof Kacprzak, Tevfik Kaplanoglu, Łukasz Kapłon, Kamila Kasperska, Aleksander Khreptak, Grzegorz Korcyl, Tomasz Kozik, Deepak Kumar, Karol Kubat, Edward Lisowski, Filip Lisowski, Justyna Mędrala-Sowa, Wiktor Mryka, Simbarashe Moyo, Szymon Niedźwiecki, Szymon Parzych, Piyush Pandey, Elena Perez del Rio, Bartłomiej Rachwał, Martin Rädler, Sushil Sharma, Magdalena Skurzok, Ewa Łucja Stȩpień, Tomasz Szumlak, Pooja Tanty, Keyvan Tayefi Ardebili, Satyam Tiwari and Paweł Moskaladd Show full author list remove Hide full author list
Universe 2025, 11(6), 180; https://doi.org/10.3390/universe11060180 - 2 Jun 2025
Viewed by 965
Abstract
The μPPET [mu(μ)on Probe with J-PET] project aims to investigate the “Muon Puzzle” seen in cosmic ray air showers. This puzzle arises from the observation of a significantly larger number of muons on Earth’s surface than that predicted by the [...] Read more.
The μPPET [mu(μ)on Probe with J-PET] project aims to investigate the “Muon Puzzle” seen in cosmic ray air showers. This puzzle arises from the observation of a significantly larger number of muons on Earth’s surface than that predicted by the current theoretical models. The investigated hypothesis is based on recently observed asymmetries in the parameters for the strong interaction cross-section and trajectory of an outgoing particle due to projectile–target polarization. The measurements require detailed information about muons at the ground level, including their track and charge distributions. To achieve this, the two PET scanners developed at the Jagiellonian University in Krakow (Poland), the J-PET detectors, will be employed, taking advantage of their well-known resolution and convenient location for detecting muons that reach long depths in the atmosphere. One station will be used as a muon tracker, while the second will reconstruct the core of the air shower. In parallel, the existing hadronic interaction models will be modified and fine-tuned based on the experimental results. In this work, we present the conceptualization and preliminary designs of μPPET. Full article
(This article belongs to the Special Issue Ultra-High-Energy Cosmic Rays)
Show Figures

Figure 1

9 pages, 5171 KiB  
Article
Squeezed Fermion Back-to-Back Correlation for Expanding Sources
by Yong Zhang
Universe 2025, 11(6), 166; https://doi.org/10.3390/universe11060166 - 22 May 2025
Viewed by 241
Abstract
The interaction between particles and their surrounding medium can induce a squeezed back-to-back correlation between particles and antiparticles. In this paper, the squeezed fermion back-to-back correlation (fBBC) for expanding sources is studied. The formulas of the fBBC correlation function of fermion–antifermion pairs for [...] Read more.
The interaction between particles and their surrounding medium can induce a squeezed back-to-back correlation between particles and antiparticles. In this paper, the squeezed fermion back-to-back correlation (fBBC) for expanding sources is studied. The formulas of the fBBC correlation function of fermion–antifermion pairs for expanding sources are given. The expanding flow leads to a decrease in the fBBC of proton–antiproton pairs and Λ-Λ¯ pairs in the high-momentum region, an increase in the fBBC in the low-momentum region, and a narrowing width of the fBBC varies with in-medium mass in the low-momentum region. Even though the expanding flow influences fBBC, the fBBC of proton–antiproton pairs and Λ-Λ¯ pairs can still offer possible observation signals as the collision energy varies from a few GeV to 200 GeV. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

9 pages, 17914 KiB  
Article
Measurement of Ion Mobilities for the Ion-TPC of NvDEx Experiment
by Tianyu Liang, Meiqiang Zhan, Hulin Wang, Xianglun Wei, Dongliang Zhang, Jun Liu, Chengui Lu, Qiang Hu, Yichen Yang, Chaosong Gao, Le Xiao, Xiangming Sun, Feng Liu, Chengxin Zhao, Hao Qiu and Kai Chen
Universe 2025, 11(5), 163; https://doi.org/10.3390/universe11050163 - 16 May 2025
Viewed by 270
Abstract
In the NνDEx collaboration, a high-pressure gas TPC is being developed to search for the neutrinoless double beta decay. The use of electronegative 82SeF6 gas mandates an ion-TPC. The reconstruction of the z coordinate is to be realized by [...] Read more.
In the NνDEx collaboration, a high-pressure gas TPC is being developed to search for the neutrinoless double beta decay. The use of electronegative 82SeF6 gas mandates an ion-TPC. The reconstruction of the z coordinate is to be realized by exploiting the feature of multiple species of charge carriers. As the initial stage of the development, we studied the properties of the SF6 gas, which is non-toxic and has a similar molecular structure to SeF6. In the paper, we present the measurement of drift velocities and mobilities of the majority and minority negative charge carriers found in SF6 at a pressure of 750 Torr, slightly higher than the local atmospheric pressure. The reduced fields range between 3.0 and 5.5 Td. This was performed using a laser beam to ionize the gas inside a small TPC, with a drift length of 3.7 cm. A customized charge-sensitive amplifier was developed to read out the anode signals induced by the slowly drifting ions. The closure test of the reconstruction of the z coordinate using the difference in the velocities of the two carriers was also demonstrated. Full article
Show Figures

Figure 1

10 pages, 399 KiB  
Article
Correlating the 0νββ-Decay Amplitudes of 136Xe with the Ordinary Muon Capture (OMC) Rates of 136Ba
by Aagrah Agnihotri, Vikas Kumar and Jouni Suhonen
Universe 2025, 11(5), 138; https://doi.org/10.3390/universe11050138 - 27 Apr 2025
Cited by 1 | Viewed by 383
Abstract
The potential correlation between the ordinary muon capture (OMC) on 136Ba and 0νββ decay of 136Xe is explored. For this, we compute 0νββ-decay amplitudes for intermediate states in 136Cs below 1 MeV of [...] Read more.
The potential correlation between the ordinary muon capture (OMC) on 136Ba and 0νββ decay of 136Xe is explored. For this, we compute 0νββ-decay amplitudes for intermediate states in 136Cs below 1 MeV of excitation and for angular-momentum values J5 by using the proton–neutron quasiparticle random-phase approximation (pnQRPA) and nuclear shell model (NSM). We compare these amplitudes with the corresponding OMC rates, computed in a previous Universe article (Universe 2023, 9, 270) for the same energy and angular-momentum ranges. The obtained results suggest that an extension of the present analysis to a wider energy and angular-momentum region could be highly beneficial for probing the 0νββ-decay nuclear matrix elements using experimental data on OMC rates to intermediate states of 0νββ decays. Full article
Show Figures

Figure 1

15 pages, 828 KiB  
Article
New Results of the Experiment to Search for Double Beta Decay of 106Cd with Enriched 106CdWO4 Scintillator
by P. Belli, R. Bernabei, F. Cappella, V. Caracciolo, R. Cerulli, F. A. Danevich, A. Incicchitti, D. V. Kasperovych, V. R. Klavdiienko, V. V. Kobychev, A. Leoncini, V. Merlo, O. G. Polischuk and V. I. Tretyak
Universe 2025, 11(4), 123; https://doi.org/10.3390/universe11040123 - 7 Apr 2025
Viewed by 377
Abstract
In this article, we present current results of the experiment searching for double beta decay of 106Cd with the help of an enriched 106CdWO4 crystal scintillator in coincidence with two CdWO4 scintillation detectors. The experiment is carried out at [...] Read more.
In this article, we present current results of the experiment searching for double beta decay of 106Cd with the help of an enriched 106CdWO4 crystal scintillator in coincidence with two CdWO4 scintillation detectors. The experiment is carried out at the Gran Sasso underground laboratory of the National Institute for Nuclear Physics (LNGS INFN, Italy). After 1075 days of data-taking, no double-beta effects were observed. New half-life limits have been set for the different modes and channels of double beta processes in 106Cd at the level of limT1/2=10201022 years. Full article
Show Figures

Figure 1

11 pages, 432 KiB  
Article
Inclusive Neutrino and Antineutrino Scattering on the 12C Nucleus Within the Coherent Density Fluctuation Model
by Martin V. Ivanov and Anton N. Antonov
Universe 2025, 11(4), 119; https://doi.org/10.3390/universe11040119 - 4 Apr 2025
Viewed by 382
Abstract
We investigate quasielastic (anti)neutrino scattering on the 12C nucleus utilizing a novel scaling variable, ψ*. This variable is derived from the interacting relativistic Fermi gas model, which incorporates both scalar and vector interactions, leading to a relativistic effective mass for [...] Read more.
We investigate quasielastic (anti)neutrino scattering on the 12C nucleus utilizing a novel scaling variable, ψ*. This variable is derived from the interacting relativistic Fermi gas model, which incorporates both scalar and vector interactions, leading to a relativistic effective mass for the interacting nucleons. For inclusive lepton scattering from nuclei, we develop a new scaling function, denoted as fQE(ψ*), based on the coherent density fluctuation model (CDFM). This model serves as a natural extension of the relativistic Fermi gas (RFG) model applicable to finite nuclei. In this study, we compute theoretical predictions and compare them with experimental data from Minerνa and T2K for inclusive (anti)neutrino cross-sections. The scaling function is derived within the CDFM framework, employing a relativistic effective mass of mN*=0.8mN. The findings demonstrate a high degree of consistency with experimental data across all (anti)neutrino energy ranges. Full article
(This article belongs to the Special Issue Neutrino Insights: Peering into the Subatomic Universe)
Show Figures

Figure 1

16 pages, 22205 KiB  
Article
Properties of Heavy Higgs Bosons and Dark Matter Under Current Experimental Limits in the μNMSSM
by Zhaoxia Heng, Xingjuan Li and Liangliang Shang
Universe 2025, 11(3), 103; https://doi.org/10.3390/universe11030103 - 20 Mar 2025
Cited by 3 | Viewed by 226
Abstract
Searches for new particles beyond the Standard Model (SM) are an important task for the Large Hadron Collider (LHC). In this paper, we investigate the properties of the heavy non-SM Higgs bosons in the μ-term extended Next-to-Minimal Supersymmetric Standard Model (μ [...] Read more.
Searches for new particles beyond the Standard Model (SM) are an important task for the Large Hadron Collider (LHC). In this paper, we investigate the properties of the heavy non-SM Higgs bosons in the μ-term extended Next-to-Minimal Supersymmetric Standard Model (μNMSSM). We scan the parameter space of the μNMSSM considering the basic constraints from Higgs data, dark matter (DM) relic density, and LHC searches for sparticles. And we also consider the constraints from the LZ2022 experiment and the muon anomaly constraint at the 2σ level. We find that the LZ2022 experiment has a strict constraint on the parameter space of the μNMSSM, and the limits from the DM-nucleon spin-independent (SI) and spin-dependent (SD) cross-sections are complementary. Then, we discuss the exotic decay modes of heavy Higgs bosons decaying into SM-like Higgs bosons. We find that for doublet-dominated Higgs h3 and A2, the main exotic decay channels are h3ZA1, h3h1h2, A2A1h1, and A2Zh2, and the branching ratio can reach to about 23%, 10%, 35%, and 10% respectively. Full article
(This article belongs to the Special Issue Search for New Physics Through Combined Approaches)
Show Figures

Figure 1

8 pages, 385 KiB  
Article
Looking for New Strategies to Probe Low-Mass Axion-like Particles in Ultraperipheral Heavy-Ion Collisions at the LHC
by Pedro Nogarolli, Victor P. Gonçalves and Murilo S. Rangel
Universe 2025, 11(3), 80; https://doi.org/10.3390/universe11030080 - 1 Mar 2025
Viewed by 615
Abstract
The possibility to search for long-lived axion-like particles (ALPs) decaying into photons is investigated in ultraperipheral PbPb collisions at the Large Hadron Collider (LHC). We propose a search strategy for low-mass ALPs using the LHCb and ALICE experiments. The ALP identification is performed [...] Read more.
The possibility to search for long-lived axion-like particles (ALPs) decaying into photons is investigated in ultraperipheral PbPb collisions at the Large Hadron Collider (LHC). We propose a search strategy for low-mass ALPs using the LHCb and ALICE experiments. The ALP identification is performed by requiring the decay vertex be reconstructed outside the region where a primary vertex is expected, which strongly suppress the contribution associated with the decay of light mesons. We also use the fact that a fraction of the photons convert into electron–positron pairs, allowing the reconstruction of the particle decay position. We present the predictions for the pseudorapidity and transverse momentum distributions of the ALPs and photons. Moreover, predictions for the fiducial cross-sections, derived considering the characteristics of the ALICE and LHCb detectors, are presented for different values of the ALP mass and the ALP—photon coupling. Full article
Show Figures

Figure 1

Back to TopTop