Unveiling New Physics Models Through Meson Decays and Their Impact on Neutrino Experiments
Abstract
1. Introduction
2. Methodology
3. Results
4. Discussion
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| BSM | Beyond standard model |
| CC-NSI | Charged current non-standard interactions |
| DUNE | Deep underground neutrino experiment |
| EFT | Effective field theory |
| Hyper-K | Hyper-Kamiokande |
| IR | Infrared |
| LHC | Large Hadron collider |
| LEFT | Low energy effective field theory |
| NC-NSI | Neutral current non-standard interactions |
| NSI | Non-standard interactions |
| SMEFT | Standard model effective field theory |
| UV | Ultra-violet |
| WEFT | Weak effective field theory |
| WC | Wilson coefficient |
References
- Abi, B.; Acciarri, R.; Acero, M.A.; Adamowski, M.; Albright, C.H.; Andrieu, J.; Andrews, M.; Anjos, R.; Aoki, M.; Asaadi, J.; et al. Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics. arXiv 2020, arXiv:2002.03005. [Google Scholar]
- Abi, B.; Acciarri, R.; Acero, M.A.; Adamowski, M.; Albright, C.H.; Andrieu, J.; Andrews, M.; Anjos, R.; Aoki, M.; Asaadi, J.; et al. Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment. Eur. Phys. J. C 2021, 81, 322. [Google Scholar] [CrossRef]
- Abe, K.; Bronner, C.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kanemura, Y.; Kato, Y.; Mine, S.; et al. Hyper-Kamiokande Design Report. arXiv 2018, arXiv:1805.04163. [Google Scholar]
- Mammen Abraham, R.; Ahdida, C.; Ariga, A.; Ariga, T.; Bai, Y.; Boyd, J.; Cheng, C.; Chou, J.P.; De Vries, J.; Dobson, M.; et al. First Measurement of νe and νμ Interaction Cross Sections at the LHC with FASER’s Emulsion Detector. Phys. Rev. Lett. 2024, 133, 021802. [Google Scholar] [CrossRef]
- Abreu, H.; Ahdida, C.; Ariga, A.; Ariga, T.; Bai, Y.; Boyd, J.; Cheng, C.; Chou, J.P.; De Vries, J.; Dobson, M.; et al. First Direct Observation of Collider Neutrinos with FASER at the LHC. Phys. Rev. Lett. 2023, 131, 031801. [Google Scholar] [CrossRef]
- Albanese, R.; Ahdida, C.; Aleksandrov, A.; An, F.; Andreazza, A.; Andrieu, B.; Arduini, G.; Ariga, A.; Ariga, T.; Bai, Y.; et al. Observation of Collider Muon Neutrinos with the SND@LHC Experiment. Phys. Rev. Lett. 2023, 131, 031802. [Google Scholar] [CrossRef]
- Cortina Gil, E.; Romano, A.; Fantechi, R.; Hahn, F.; Lamanna, M.; Sozzi, M.; Ceccucci, A.; Cenci, P.; Ruggiero, G.; Lurkin, N.; et al. Measurement of the very rare K+→π+ν decay. J. High Energy Phys. 2021, 6, 93. [Google Scholar] [CrossRef]
- Li, T.; Ma, X.D.; Schmidt, M.A. Implication of K→πν for generic neutrino interactions in effective field theories. Phys. Rev. D 2020, 101, 055019. [Google Scholar] [CrossRef]
- Gorbahn, M.; Moldanazarova, U.; Sieja, K.H.; Stamou, E.; Tabet, M. The anatomy of K+→π+ν distributions. Eur. Phys. J. C 2024, 84, 680. [Google Scholar] [CrossRef]
- Deppisch, F.F.; Fridell, K.; Harz, J. Constraining lepton number violating interactions in rare kaon decays. J. High Energy Phys. 2020, 12, 186. [Google Scholar] [CrossRef]
- Wolfenstein, L. Neutrino Oscillations in Matter. Phys. Rev. D 1978, 17, 2369–2374. [Google Scholar] [CrossRef]
- Ohlsson, T. Status of non-standard neutrino interactions. Rept. Prog. Phys. 2013, 76, 044201. [Google Scholar] [CrossRef]
- Farzan, Y.; Tortola, M. Neutrino oscillations and Non-Standard Interactions. Front. Phys. 2018, 6, 10. [Google Scholar] [CrossRef]
- Coloma, P.; Gonzalez-Garcia, M.C.; Maltoni, M.; Pinheiro, J.a.P.; Urrea, S. Global constraints on non-standard neutrino interactions with quarks and electrons. J. High Energy Phys. 2023, 8, 32. [Google Scholar] [CrossRef]
- Bhupal Dev, P.S.; Babu, K.S.; Brdar, V.; Dutta, B.; Fernandez-Martinez, E.; Gonzalez-Garcia, M.C.; Han, T.; Lindner, M.; Machado, P.A.N.; Maltoni, M.; et al. Neutrino Non-Standard Interactions: A Status Report. SciPost Phys. Proc. 2019, 2, 001. [Google Scholar] [CrossRef]
- Arguelles, C.A.; Brdar, V.; Coloma, P.; Denton, P.B.; de Gouvêa, A.; Kelly, K.J.; Machado, P.A.N.; Maltoni, M.; Parke, S.; Peñaranda, S.; et al. Snowmass white paper: Beyond the standard model effects on neutrino flavor: Submitted to the proceedings of the US community study on the future of particle physics (Snowmass 2021). Eur. Phys. J. C 2023, 83, 15. [Google Scholar] [CrossRef]
- Mikheyev, S.P.; Smirnov, A.Y. Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos. Sov. J. Nucl. Phys. 1985, 42, 913–917. [Google Scholar]
- Bergmann, S.; Grossman, Y.; Pierce, D.M. Can lepton flavor violating interactions explain the atmospheric neutrino problem? Phys. Rev. D 2000, 61, 053005. [Google Scholar] [CrossRef]
- Antusch, S.; Baumann, J.P.; Fernandez-Martinez, E. Non-Standard Neutrino Interactions with Matter from Physics Beyond the Standard Model. Nucl. Phys. B 2009, 810, 369–388. [Google Scholar] [CrossRef]
- Gavela, M.B.; Hernandez, D.; Ota, T.; Winter, W. Large gauge invariant non-standard neutrino interactions. Phys. Rev. D 2009, 79, 013007. [Google Scholar] [CrossRef]
- Meloni, D.; Ohlsson, T.; Winter, W.; Zhang, H. Non-standard interactions versus non-unitary lepton flavor mixing at a neutrino factory. J. High Energy Phys. 2010, 4, 41. [Google Scholar] [CrossRef]
- Altmannshofer, W.; Tammaro, M.; Zupan, J. Non-standard neutrino interactions and low energy experiments. J. High Energy Phys. 2019, 9, 83, Erratum in J. High Energy Phys. 2021, 11, 113. [Google Scholar] [CrossRef]
- Babu, K.S.; Dev, P.S.B.; Jana, S.; Thapa, A. Non-Standard Interactions in Radiative Neutrino Mass Models. J. High Energy Phys. 2020, 3, 6. [Google Scholar] [CrossRef]
- Bischer, I.; Rodejohann, W. General neutrino interactions from an effective field theory perspective. Nucl. Phys. B 2019, 947, 114746. [Google Scholar] [CrossRef]
- Davidson, S.; Gorbahn, M. Charged lepton flavor change and nonstandard neutrino interactions. Phys. Rev. D 2020, 101, 015010. [Google Scholar] [CrossRef]
- Terol-Calvo, J.; Tórtola, M.; Vicente, A. High-energy constraints from low-energy neutrino nonstandard interactions. Phys. Rev. D 2020, 101, 095010. [Google Scholar] [CrossRef]
- Babu, K.S.; Gonçalves, D.; Jana, S.; Machado, P.A.N. Neutrino Non-Standard Interactions: Complementarity Between LHC and Oscillation Experiments. Phys. Lett. B 2021, 815, 136131. [Google Scholar] [CrossRef]
- Du, Y.; Li, H.L.; Tang, J.; Vihonen, S.; Yu, J.H. Non-standard interactions in SMEFT confronted with terrestrial neutrino experiments. J. High Energy Phys. 2021, 3, 19. [Google Scholar] [CrossRef]
- Du, Y.; Li, H.L.; Tang, J.; Vihonen, S.; Yu, J.H. Exploring SMEFT induced nonstandard interactions: From COHERENT to neutrino oscillations. Phys. Rev. D 2022, 105, 075022. [Google Scholar] [CrossRef]
- Jenkins, E.E.; Manohar, A.V.; Stoffer, P. Low-Energy Effective Field Theory below the Electroweak Scale: Operators and Matching. J. High Energy Phys. 2018, 3, 16, Erratum in J. High Energy Phys. 2023, 12, 43. [Google Scholar] [CrossRef]
- Dekens, W.; Stoffer, P. Low-energy effective field theory below the electroweak scale: Matching at one loop. J. High Energy Phys. 2019, 10, 197, Erratum in J. High Energy Phys. 2022, 11, 148. [Google Scholar] [CrossRef]
- Straub, D.M. Flavio: A Python package for flavour and precision phenomenology in the Standard Model and beyond. arXiv 2018, arXiv:1810.08132. [Google Scholar]
- Aebischer, J.; Kumar, J.; Straub, D.M. Wilson: A Python package for the running and matching of Wilson coefficients above and below the electroweak scale. Eur. Phys. J. C 2018, 78, 1026. [Google Scholar] [CrossRef]
- Aebischer, J.; Kumar, J.; Stangl, P.; Straub, D.M. A Global Likelihood for Precision Constraints and Flavour Anomalies. Eur. Phys. J. C 2019, 79, 509. [Google Scholar] [CrossRef]
- Carmona, A.; Lazopoulos, A.; Olgoso, P.; Santiago, J. Matchmakereft: Automated tree-level and one-loop matching. SciPost Phys. 2022, 12, 198. [Google Scholar] [CrossRef]
- Fuentes-Martín, J.; König, M.; Pagès, J.; Thomsen, A.E.; Wilsch, F. A proof of concept for matchete: An automated tool for matching effective theories. Eur. Phys. J. C 2023, 83, 662. [Google Scholar] [CrossRef]
- Guedes, G.; Olgoso, P.; Santiago, J. Towards the one loop IR/UV dictionary in the SMEFT: One loop generated operators from new scalars and fermions. SciPost Phys. 2023, 15, 143. [Google Scholar] [CrossRef]
- Guedes, G.; Olgoso, P. From the EFT to the UV: The complete SMEFT one-loop dictionary. arXiv 2024, arXiv:2412.14253. [Google Scholar]
- de Blas, J.; Criado, J.C.; Perez-Victoria, M.; Santiago, J. Effective description of general extensions of the Standard Model: The complete tree-level dictionary. J. High Energy Phys. 2018, 3, 109. [Google Scholar] [CrossRef]
- Cherchiglia, A.; Santiago, J. DUNE potential as a new physics probe. J. High Energy Phys. 2024, 3, 18. [Google Scholar] [CrossRef]
- Cirigliano, V.; Jenkins, J.; Gonzalez-Alonso, M. Semileptonic decays of light quarks beyond the Standard Model. Nucl. Phys. B 2010, 830, 95–115. [Google Scholar] [CrossRef]
- Giunti, C.; Kim, C.W.; Lee, J.A.; Lee, U.W. On the treatment of neutrino oscillations without resort to weak eigenstates. Phys. Rev. D 1993, 48, 4310–4317. [Google Scholar] [CrossRef]
- Akhmedov, E.K.; Kopp, J. Neutrino Oscillations: Quantum Mechanics vs. Quantum Field Theory. J. High Energy Phys. 2010, 4, 8, Erratum in J. High Energy Phys. 2013, 10, 52. [Google Scholar] [CrossRef]
- Kobach, A.; Manohar, A.V.; McGreevy, J. Neutrino Oscillation Measurements Computed in Quantum Field Theory. Phys. Lett. B 2018, 783, 59–75. [Google Scholar] [CrossRef]
- Falkowski, A.; González-Alonso, M.; Tabrizi, Z. Consistent QFT description of non-standard neutrino interactions. J. High Energy Phys. 2020, 11, 48. [Google Scholar] [CrossRef]
- Bresó-Pla, V.; Falkowski, A.; González-Alonso, M.; Monsálvez-Pozo, K. EFT analysis of New Physics at COHERENT. J. High Energy Phys. 2023, 5, 74. [Google Scholar] [CrossRef]
- Falkowski, A.; González-Alonso, M.; Kopp, J.; Soreq, Y.; Tabrizi, Z. EFT at FASERν. J. High Energy Phys. 2021, 10, 86. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cherchiglia, A. Unveiling New Physics Models Through Meson Decays and Their Impact on Neutrino Experiments. Universe 2025, 11, 225. https://doi.org/10.3390/universe11070225
Cherchiglia A. Unveiling New Physics Models Through Meson Decays and Their Impact on Neutrino Experiments. Universe. 2025; 11(7):225. https://doi.org/10.3390/universe11070225
Chicago/Turabian StyleCherchiglia, Adriano. 2025. "Unveiling New Physics Models Through Meson Decays and Their Impact on Neutrino Experiments" Universe 11, no. 7: 225. https://doi.org/10.3390/universe11070225
APA StyleCherchiglia, A. (2025). Unveiling New Physics Models Through Meson Decays and Their Impact on Neutrino Experiments. Universe, 11(7), 225. https://doi.org/10.3390/universe11070225

