Unveiling New Physics Models Through Meson Decays and Their Impact on Neutrino Experiments
Abstract
1. Introduction
2. Methodology
3. Results
4. Discussion
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BSM | Beyond standard model |
CC-NSI | Charged current non-standard interactions |
DUNE | Deep underground neutrino experiment |
EFT | Effective field theory |
Hyper-K | Hyper-Kamiokande |
IR | Infrared |
LHC | Large Hadron collider |
LEFT | Low energy effective field theory |
NC-NSI | Neutral current non-standard interactions |
NSI | Non-standard interactions |
SMEFT | Standard model effective field theory |
UV | Ultra-violet |
WEFT | Weak effective field theory |
WC | Wilson coefficient |
References
- Abi, B.; Acciarri, R.; Acero, M.A.; Adamowski, M.; Albright, C.H.; Andrieu, J.; Andrews, M.; Anjos, R.; Aoki, M.; Asaadi, J.; et al. Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics. arXiv 2020, arXiv:2002.03005. [Google Scholar]
- Abi, B.; Acciarri, R.; Acero, M.A.; Adamowski, M.; Albright, C.H.; Andrieu, J.; Andrews, M.; Anjos, R.; Aoki, M.; Asaadi, J.; et al. Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment. Eur. Phys. J. C 2021, 81, 322. [Google Scholar] [CrossRef]
- Abe, K.; Bronner, C.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kanemura, Y.; Kato, Y.; Mine, S.; et al. Hyper-Kamiokande Design Report. arXiv 2018, arXiv:1805.04163. [Google Scholar]
- Mammen Abraham, R.; Ahdida, C.; Ariga, A.; Ariga, T.; Bai, Y.; Boyd, J.; Cheng, C.; Chou, J.P.; De Vries, J.; Dobson, M.; et al. First Measurement of νe and νμ Interaction Cross Sections at the LHC with FASER’s Emulsion Detector. Phys. Rev. Lett. 2024, 133, 021802. [Google Scholar] [CrossRef]
- Abreu, H.; Ahdida, C.; Ariga, A.; Ariga, T.; Bai, Y.; Boyd, J.; Cheng, C.; Chou, J.P.; De Vries, J.; Dobson, M.; et al. First Direct Observation of Collider Neutrinos with FASER at the LHC. Phys. Rev. Lett. 2023, 131, 031801. [Google Scholar] [CrossRef]
- Albanese, R.; Ahdida, C.; Aleksandrov, A.; An, F.; Andreazza, A.; Andrieu, B.; Arduini, G.; Ariga, A.; Ariga, T.; Bai, Y.; et al. Observation of Collider Muon Neutrinos with the SND@LHC Experiment. Phys. Rev. Lett. 2023, 131, 031802. [Google Scholar] [CrossRef]
- Cortina Gil, E.; Romano, A.; Fantechi, R.; Hahn, F.; Lamanna, M.; Sozzi, M.; Ceccucci, A.; Cenci, P.; Ruggiero, G.; Lurkin, N.; et al. Measurement of the very rare K+→π+ν decay. J. High Energy Phys. 2021, 6, 93. [Google Scholar] [CrossRef]
- Li, T.; Ma, X.D.; Schmidt, M.A. Implication of K→πν for generic neutrino interactions in effective field theories. Phys. Rev. D 2020, 101, 055019. [Google Scholar] [CrossRef]
- Gorbahn, M.; Moldanazarova, U.; Sieja, K.H.; Stamou, E.; Tabet, M. The anatomy of K+→π+ν distributions. Eur. Phys. J. C 2024, 84, 680. [Google Scholar] [CrossRef]
- Deppisch, F.F.; Fridell, K.; Harz, J. Constraining lepton number violating interactions in rare kaon decays. J. High Energy Phys. 2020, 12, 186. [Google Scholar] [CrossRef]
- Wolfenstein, L. Neutrino Oscillations in Matter. Phys. Rev. D 1978, 17, 2369–2374. [Google Scholar] [CrossRef]
- Ohlsson, T. Status of non-standard neutrino interactions. Rept. Prog. Phys. 2013, 76, 044201. [Google Scholar] [CrossRef]
- Farzan, Y.; Tortola, M. Neutrino oscillations and Non-Standard Interactions. Front. Phys. 2018, 6, 10. [Google Scholar] [CrossRef]
- Coloma, P.; Gonzalez-Garcia, M.C.; Maltoni, M.; Pinheiro, J.a.P.; Urrea, S. Global constraints on non-standard neutrino interactions with quarks and electrons. J. High Energy Phys. 2023, 8, 32. [Google Scholar] [CrossRef]
- Bhupal Dev, P.S.; Babu, K.S.; Brdar, V.; Dutta, B.; Fernandez-Martinez, E.; Gonzalez-Garcia, M.C.; Han, T.; Lindner, M.; Machado, P.A.N.; Maltoni, M.; et al. Neutrino Non-Standard Interactions: A Status Report. SciPost Phys. Proc. 2019, 2, 001. [Google Scholar] [CrossRef]
- Arguelles, C.A.; Brdar, V.; Coloma, P.; Denton, P.B.; de Gouvêa, A.; Kelly, K.J.; Machado, P.A.N.; Maltoni, M.; Parke, S.; Peñaranda, S.; et al. Snowmass white paper: Beyond the standard model effects on neutrino flavor: Submitted to the proceedings of the US community study on the future of particle physics (Snowmass 2021). Eur. Phys. J. C 2023, 83, 15. [Google Scholar] [CrossRef]
- Mikheyev, S.P.; Smirnov, A.Y. Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos. Sov. J. Nucl. Phys. 1985, 42, 913–917. [Google Scholar]
- Bergmann, S.; Grossman, Y.; Pierce, D.M. Can lepton flavor violating interactions explain the atmospheric neutrino problem? Phys. Rev. D 2000, 61, 053005. [Google Scholar] [CrossRef]
- Antusch, S.; Baumann, J.P.; Fernandez-Martinez, E. Non-Standard Neutrino Interactions with Matter from Physics Beyond the Standard Model. Nucl. Phys. B 2009, 810, 369–388. [Google Scholar] [CrossRef]
- Gavela, M.B.; Hernandez, D.; Ota, T.; Winter, W. Large gauge invariant non-standard neutrino interactions. Phys. Rev. D 2009, 79, 013007. [Google Scholar] [CrossRef]
- Meloni, D.; Ohlsson, T.; Winter, W.; Zhang, H. Non-standard interactions versus non-unitary lepton flavor mixing at a neutrino factory. J. High Energy Phys. 2010, 4, 41. [Google Scholar] [CrossRef]
- Altmannshofer, W.; Tammaro, M.; Zupan, J. Non-standard neutrino interactions and low energy experiments. J. High Energy Phys. 2019, 9, 83, Erratum in J. High Energy Phys. 2021, 11, 113. [Google Scholar] [CrossRef]
- Babu, K.S.; Dev, P.S.B.; Jana, S.; Thapa, A. Non-Standard Interactions in Radiative Neutrino Mass Models. J. High Energy Phys. 2020, 3, 6. [Google Scholar] [CrossRef]
- Bischer, I.; Rodejohann, W. General neutrino interactions from an effective field theory perspective. Nucl. Phys. B 2019, 947, 114746. [Google Scholar] [CrossRef]
- Davidson, S.; Gorbahn, M. Charged lepton flavor change and nonstandard neutrino interactions. Phys. Rev. D 2020, 101, 015010. [Google Scholar] [CrossRef]
- Terol-Calvo, J.; Tórtola, M.; Vicente, A. High-energy constraints from low-energy neutrino nonstandard interactions. Phys. Rev. D 2020, 101, 095010. [Google Scholar] [CrossRef]
- Babu, K.S.; Gonçalves, D.; Jana, S.; Machado, P.A.N. Neutrino Non-Standard Interactions: Complementarity Between LHC and Oscillation Experiments. Phys. Lett. B 2021, 815, 136131. [Google Scholar] [CrossRef]
- Du, Y.; Li, H.L.; Tang, J.; Vihonen, S.; Yu, J.H. Non-standard interactions in SMEFT confronted with terrestrial neutrino experiments. J. High Energy Phys. 2021, 3, 19. [Google Scholar] [CrossRef]
- Du, Y.; Li, H.L.; Tang, J.; Vihonen, S.; Yu, J.H. Exploring SMEFT induced nonstandard interactions: From COHERENT to neutrino oscillations. Phys. Rev. D 2022, 105, 075022. [Google Scholar] [CrossRef]
- Jenkins, E.E.; Manohar, A.V.; Stoffer, P. Low-Energy Effective Field Theory below the Electroweak Scale: Operators and Matching. J. High Energy Phys. 2018, 3, 16, Erratum in J. High Energy Phys. 2023, 12, 43. [Google Scholar] [CrossRef]
- Dekens, W.; Stoffer, P. Low-energy effective field theory below the electroweak scale: Matching at one loop. J. High Energy Phys. 2019, 10, 197, Erratum in J. High Energy Phys. 2022, 11, 148. [Google Scholar] [CrossRef]
- Straub, D.M. Flavio: A Python package for flavour and precision phenomenology in the Standard Model and beyond. arXiv 2018, arXiv:1810.08132. [Google Scholar]
- Aebischer, J.; Kumar, J.; Straub, D.M. Wilson: A Python package for the running and matching of Wilson coefficients above and below the electroweak scale. Eur. Phys. J. C 2018, 78, 1026. [Google Scholar] [CrossRef]
- Aebischer, J.; Kumar, J.; Stangl, P.; Straub, D.M. A Global Likelihood for Precision Constraints and Flavour Anomalies. Eur. Phys. J. C 2019, 79, 509. [Google Scholar] [CrossRef]
- Carmona, A.; Lazopoulos, A.; Olgoso, P.; Santiago, J. Matchmakereft: Automated tree-level and one-loop matching. SciPost Phys. 2022, 12, 198. [Google Scholar] [CrossRef]
- Fuentes-Martín, J.; König, M.; Pagès, J.; Thomsen, A.E.; Wilsch, F. A proof of concept for matchete: An automated tool for matching effective theories. Eur. Phys. J. C 2023, 83, 662. [Google Scholar] [CrossRef]
- Guedes, G.; Olgoso, P.; Santiago, J. Towards the one loop IR/UV dictionary in the SMEFT: One loop generated operators from new scalars and fermions. SciPost Phys. 2023, 15, 143. [Google Scholar] [CrossRef]
- Guedes, G.; Olgoso, P. From the EFT to the UV: The complete SMEFT one-loop dictionary. arXiv 2024, arXiv:2412.14253. [Google Scholar]
- de Blas, J.; Criado, J.C.; Perez-Victoria, M.; Santiago, J. Effective description of general extensions of the Standard Model: The complete tree-level dictionary. J. High Energy Phys. 2018, 3, 109. [Google Scholar] [CrossRef]
- Cherchiglia, A.; Santiago, J. DUNE potential as a new physics probe. J. High Energy Phys. 2024, 3, 18. [Google Scholar] [CrossRef]
- Cirigliano, V.; Jenkins, J.; Gonzalez-Alonso, M. Semileptonic decays of light quarks beyond the Standard Model. Nucl. Phys. B 2010, 830, 95–115. [Google Scholar] [CrossRef]
- Giunti, C.; Kim, C.W.; Lee, J.A.; Lee, U.W. On the treatment of neutrino oscillations without resort to weak eigenstates. Phys. Rev. D 1993, 48, 4310–4317. [Google Scholar] [CrossRef]
- Akhmedov, E.K.; Kopp, J. Neutrino Oscillations: Quantum Mechanics vs. Quantum Field Theory. J. High Energy Phys. 2010, 4, 8, Erratum in J. High Energy Phys. 2013, 10, 52. [Google Scholar] [CrossRef]
- Kobach, A.; Manohar, A.V.; McGreevy, J. Neutrino Oscillation Measurements Computed in Quantum Field Theory. Phys. Lett. B 2018, 783, 59–75. [Google Scholar] [CrossRef]
- Falkowski, A.; González-Alonso, M.; Tabrizi, Z. Consistent QFT description of non-standard neutrino interactions. J. High Energy Phys. 2020, 11, 48. [Google Scholar] [CrossRef]
- Bresó-Pla, V.; Falkowski, A.; González-Alonso, M.; Monsálvez-Pozo, K. EFT analysis of New Physics at COHERENT. J. High Energy Phys. 2023, 5, 74. [Google Scholar] [CrossRef]
- Falkowski, A.; González-Alonso, M.; Kopp, J.; Soreq, Y.; Tabrizi, Z. EFT at FASERν. J. High Energy Phys. 2021, 10, 86. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cherchiglia, A. Unveiling New Physics Models Through Meson Decays and Their Impact on Neutrino Experiments. Universe 2025, 11, 225. https://doi.org/10.3390/universe11070225
Cherchiglia A. Unveiling New Physics Models Through Meson Decays and Their Impact on Neutrino Experiments. Universe. 2025; 11(7):225. https://doi.org/10.3390/universe11070225
Chicago/Turabian StyleCherchiglia, Adriano. 2025. "Unveiling New Physics Models Through Meson Decays and Their Impact on Neutrino Experiments" Universe 11, no. 7: 225. https://doi.org/10.3390/universe11070225
APA StyleCherchiglia, A. (2025). Unveiling New Physics Models Through Meson Decays and Their Impact on Neutrino Experiments. Universe, 11(7), 225. https://doi.org/10.3390/universe11070225