Inclusive Neutrino and Antineutrino Scattering on the 12C Nucleus Within the Coherent Density Fluctuation Model
Abstract
:1. Introduction
2. Theoretical Scheme
3. Results and Discussion
4. Conclusions
- (i)
- The scaling function , which has been constructed within the Coherent Density Fluctuation Model () using the new scaling variable from the interacting relativistic Fermi gas model with scalar and vector interactions, is used for analyses of (anti)neutrino scattering processes. The interacting relativistic Fermi gas model is known to generate a relativistic effective mass for the interacting nucleons. The model itself is based on the -function limit of the generator coordinate method and is a natural extension of the relativistic Fermi gas model to finite nuclei. It keeps the gauge invariance and describes the dynamical enhancement of both the lower components of the relativistic spinors and transverse response function. We should emphasize that it makes it possible to explain quantitatively the superscaling in realistic finite systems on the basis of the similar behaviour of the high-momentum components of the nucleon momentum distribution from light to heavy nuclei. As is known, the latter is a result of the effects of NN correlations in nuclei.
- (ii)
- The scaling approach of is used to calculate inclusive (anti)neutrino charge-changing (CC) quasielastic (QE) differential cross-sections and to compare the theoretical results with the experimental data from MINERA [43,44] and T2K [45] experiments in addition to our previous consideration [19] of the data from the MiniBooNE [26,27] and NOMAD [46] experiments. In the calculations, a value of relativistic effective mass is used. The only free parameter present in our model is the latter one. In Ref. [20], the authors explore the scaling idea in the context of the RMF for nuclear matter. In the study, the best value of the effective mass is obtained. This value provides the best scaling behavior of the data with a large fraction of data concentrated around the universal scaling function of the RFG model while the CDFM model is its natural extension to finite nuclei.We note also that the Fermi momentum is not a free parameter and is calculated in the model for a given nucleus. In the present work, we used the 2p-2h MEC model developed in Ref. [34] with a general parametrization of the MEC responses.
- (iii)
- The results of the flux-folded CCQE –12C and –CH scattering cross-section per target nucleon as a function of including MEC are presented and compared with the data from the MINERA [43,44] in Figure 1. The results of our calculations for the CCQE process on 12C versus the momentum for various bins of including MEC are given in Figure 2 and compared with the data from the T2K experiment Refs. [26,27]. The theoretical results obtained within the model, including both QE and 2p-2h MEC, are in very good agreement with the data from the considered MINERA and T2K experiments in most of the kinematical situations considered in the present work. It is shown that the contribution of the 2p-2h MEC effects can be of the order of ∼20–30% compared with the pure QE responses in the case of Minera and ∼10% in the T2K kinematics (only for very forward angles up to 25%). The results of the present work allow us to conclude that our approach is capable of being applied to analyses of (anti)neutrino scattering on the 12C nucleus. Our choice of 12C is mainly due to the available experimental data of neutrino (antineutrino) scattering on this nucleus. Here, it is important to emphasize that our approach is easily extendable to heavier nuclei, as the foundation of the superscaling phenomenon is that the scaling function is the same for all nuclei. The latter is due to the similar behaviour of the high-momentum tail of the nucleon momentum distribution, being effects of nucleon-nucleon correlations. Our previous studies have established that the scaling function obtained within the CDFM model demonstrates a superscaling behavior.
- (iv)
- As a general conclusion, we note that in the present work, we consider the important problem of the neutrino–nuclei interaction, which is related to the fundamental question of the neutrino oscillations. Our approach uses the model, which is gauge-invariant, and allows one to transform the nuclear matter quantities to the corresponding ones in finite nuclei. The model includes the possibility of accounting for the nucleon–nucleon correlations in nuclei whose effects are responsible for the superscaling, which is one of the most important phenomena when it comes to lepton interactions with nuclei.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alberico, W.M.; Molinari, A.; Donnelly, T.W.; Kronenberg, E.L.; Van Orden, J.W. Scaling in electron scattering from a relativistic Fermi gas. Phys. Rev. C 1988, 38, 1801–1810. [Google Scholar] [CrossRef] [PubMed]
- Barbaro, M.; Cenni, R.; Pace, A.D.; Donnelly, T.; Molinari, A. Relativistic y-scaling and the Coulomb sum rule in nuclei. Nucl. Phys. A 1998, 643, 137–160. [Google Scholar] [CrossRef]
- Donnelly, T.W.; Sick, I. Superscaling in Inclusive Electron-Nucleus Scattering. Phys. Rev. Lett. 1999, 82, 3212–3215. [Google Scholar] [CrossRef]
- Donnelly, T.W.; Sick, I. Superscaling of inclusive electron scattering from nuclei. Phys. Rev. C 1999, 60, 065502. [Google Scholar] [CrossRef]
- Maieron, C.; Donnelly, T.W.; Sick, I. Extended superscaling of electron scattering from nuclei. Phys. Rev. C 2002, 65, 025502. [Google Scholar] [CrossRef]
- Barbaro, M.B.; Caballero, J.A.; Donnelly, T.W.; Maieron, C. Inelastic electron-nucleus scattering and scaling at high inelasticity. Phys. Rev. C 2004, 69, 035502. [Google Scholar] [CrossRef]
- Antonov, A.N.; Gaidarov, M.K.; Kadrev, D.N.; Ivanov, M.V.; Moya de Guerra, E.; Udias, J.M. Superscaling in nuclei: A search for a scaling function beyond the relativistic Fermi gas model. Phys. Rev. C 2004, 69, 044321. [Google Scholar] [CrossRef]
- Antonov, A.N.; Gaidarov, M.K.; Ivanov, M.V.; Kadrev, D.N.; Moya de Guerra, E.; Sarriguren, P.; Udias, J.M. Superscaling, scaling functions, and nucleon momentum distributions in nuclei. Phys. Rev. C 2005, 71, 014317. [Google Scholar] [CrossRef]
- Antonov, A.N.; Hodgson, P.E.; Petkov, I.Z. Nucleon Momentum and Density Distributions in Nuclei; Clarendon Press: Oxford, UK, 1988. [Google Scholar]
- Antonov, A.N.; Hodgson, P.E.; Petkov, I.Z. Nucleon Correlations in Nuclei; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1993. [Google Scholar]
- Antonov, A.N.; Nikolaev, V.A.; Petkov, I.Z. A Model of coherent fluctuations of nuclear density. Bulg. J. Phys. 1979, 6, 151. [Google Scholar]
- Antonov, A.N.; Nikolaev, V.A.; Petkov, I.Z. Nucleon momentum and density distributions of nuclei. Z. Phys. A Atoms Nucl. 1980, 297, 257–260. [Google Scholar] [CrossRef]
- Antonov, A.N.; Nikolaev, V.A.; Petkov, I.Z. Spectral functions and hole nuclear states. Z. Phys. A Atoms Nucl. 1982, 304, 239–243. [Google Scholar] [CrossRef]
- Griffin, J.J.; Wheeler, J.A. Collective Motions in Nuclei by the Method of Generator Coordinates. Phys. Rev. 1957, 108, 311–327. [Google Scholar] [CrossRef]
- Amaro, J.E.; Barbaro, M.B.; Caballero, J.A.; González-Jiménez, R.; Megias, G.D.; Simo, I.R. Electron- versus neutrino-nucleus scattering. J. Phys. G Nucl. Part. Phys. 2020, 47, 124001. [Google Scholar] [CrossRef]
- Benhar, O.; Farina, N. Neutrino-nucleus cross section in the impulse approximation regime. Nucl. Phys. B-Proc. Suppl. 2005, 139, 230–233. [Google Scholar] [CrossRef]
- Ivanov, M.V.; Antonov, A.N.; Caballero, J.A.; Megias, G.D.; Barbaro, M.B.; de Guerra, E.M.; Udías, J.M. Charged-current quasielastic neutrino scattering cross sections on 12C with realistic spectral and scaling functions. Phys. Rev. C 2014, 89, 014607. [Google Scholar] [CrossRef]
- Antonov, A.N.; Ivanov, M.V.; Gaidarov, M.K.; Moya de Guerra, E.; Caballero, J.A.; Barbaro, M.B.; Udias, J.M.; Sarriguren, P. Superscaling analysis of inclusive electron scattering and its extension to charge-changing neutrino-nucleus cross sections beyond the relativistic Fermi gas approach. Phys. Rev. C 2006, 74, 054603. [Google Scholar] [CrossRef]
- Ivanov, M.V.; Antonov, A.N. Superscaling analysis of inclusive electron and (anti)neutrino scattering within the coherent density fluctuation model. Phys. Rev. C 2024, 109, 064621. [Google Scholar] [CrossRef]
- Amaro, J.E.; Ruiz Arriola, E.; Ruiz Simo, I. Scaling violation and relativistic effective mass from quasi-elastic electron scattering: Implications for neutrino reactions. Phys. Rev. C 2015, 92, 054607. [Google Scholar] [CrossRef]
- Amaro, J.E.; Ruiz Arriola, E.; Ruiz Simo, I. Superscaling analysis of quasielastic electron scattering with relativistic effective mass. Phys. Rev. D 2017, 95, 076009. [Google Scholar] [CrossRef]
- Martinez-Consentino, V.L.; Ruiz Simo, I.; Amaro, J.E.; Ruiz Arriola, E. Fermi-momentum dependence of relativistic effective mass below saturation from superscaling of quasielastic electron scattering. Phys. Rev. C 2017, 96, 064612. [Google Scholar] [CrossRef]
- Amaro, J.E.; Martinez-Consentino, V.L.; Ruiz Arriola, E.; Ruiz Simo, I. Global superscaling analysis of quasielastic electron scattering with relativistic effective mass. Phys. Rev. C 2018, 98, 024627. [Google Scholar] [CrossRef]
- Ruiz Simo, I.; Martinez-Consentino, V.L.; Amaro, J.E.; Ruiz Arriola, E. Quasielastic charged-current neutrino scattering in the scaling model with relativistic effective mass. Phys. Rev. D 2018, 97, 116006. [Google Scholar] [CrossRef]
- Benhar, O.; Day, D.; Sick, I. Inclusive quasielastic electron-nucleus scattering. Rev. Mod. Phys. 2008, 80, 189–224. [Google Scholar] [CrossRef]
- Aguilar-Arevalo, A. et al. [MiniBooNE Collaboration] First measurement of the muon neutrino charged current quasielastic double differential cross section. Phys. Rev. D 2010, 81, 092005. [Google Scholar] [CrossRef]
- Aguilar-Arevalo, A.A. et al. [MiniBooNE Collaboration] First measurement of the muon antineutrino double-differential charged-current quasielastic cross section. Phys. Rev. D 2013, 88, 032001. [Google Scholar] [CrossRef]
- Amaro, J.E.; Barbaro, M.B.; Caballero, J.A.; Donnelly, T.W.; Molinari, A.; Sick, I. Using electron scattering superscaling to predict charge-changing neutrino cross sections in nuclei. Phys. Rev. C 2005, 71, 015501. [Google Scholar] [CrossRef]
- Amaro, J.E.; Barbaro, M.B.; Caballero, J.A.; Donnelly, T.W.; Maieron, C. Semirelativistic description of quasielastic neutrino reactions and superscaling in a continuum shell model. Phys. Rev. C 2005, 71, 065501. [Google Scholar] [CrossRef]
- Galster, S.; Klein, H.; Moritz, J.; Schmidt, K.; Wegener, D.; Bleckwenn, J. Elastic electron-deuteron scattering and the electric neutron form factor at four-momentum transfers 5 fm−2<q2<14 fm−2. Nucl. Phys. B 1971, 32, 221–237. [Google Scholar] [CrossRef]
- Hill, D.L.; Wheeler, J.A. Nuclear Constitution and the Interpretation of Fission Phenomena. Phys. Rev. 1953, 89, 1102–1145. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Note on Exchange Phenomena in the Thomas Atom. Math. Proc. Camb. Philos. Soc. 1930, 26, 376–385. [Google Scholar] [CrossRef]
- Gaidarov, M.K.; Ivanov, M.V.; Katsarov, Y.I.; Antonov, A.N. Isoscalar Giant Monopole Resonance in Spherical Nuclei as a Nuclear Matter Incompressibility Indicator. Astronomy 2023, 2, 1–13. [Google Scholar] [CrossRef]
- Ruiz Simo, I.; Amaro, J.E.; Barbaro, M.B.; De Pace, A.; Caballero, J.A.; Donnelly, T.W. Relativistic model of 2p-2h meson exchange currents in (anti)neutrino scattering. J. Phys. G 2017, 44, 065105. [Google Scholar] [CrossRef]
- Van Orden, J.W.; Donnelly, T.W. Mesonic processes in deep inelastic electron scattering from nuclei. Annals Phys. 1981, 131, 451–493. [Google Scholar] [CrossRef]
- De Pace, A.; Nardi, M.; Alberico, W.; Donnelly, T.; Molinari, A. The 2p-2h electromagnetic response in the quasielastic peak and beyond. Nucl. Phys. A 2003, 726, 303–326. [Google Scholar] [CrossRef]
- Amaro, J.E.; Maieron, C.; Barbaro, M.B.; Caballero, J.A.; Donnelly, T.W. Pionic correlations and meson-exchange currents in two-particle emission induced by electron scattering. Phys. Rev. C 2010, 82, 044601. [Google Scholar] [CrossRef]
- Megias, G.D.; Amaro, J.E.; Barbaro, M.B.; Caballero, J.A.; Donnelly, T.W.; Simo, I.R. Charged-current neutrino-nucleus reactions within the superscaling meson-exchange current approach. Phys. Rev. D 2016, 94, 093004. [Google Scholar] [CrossRef]
- Megias, G.D.; Amaro, J.E.; Barbaro, M.B.; Caballero, J.A.; Donnelly, T.W. Inclusive electron scattering within the SuSAv2 meson-exchange current approach. Phys. Rev. D 2016, 94, 013012. [Google Scholar] [CrossRef]
- Megias, G.D.; Barbaro, M.B.; Caballero, J.A.; Amaro, J.E.; Donnelly, T.W.; Simo, I.R.; Orden, J.W.V. Neutrino–oxygen CC0π scattering in the SuSAv2-MEC model. J. Phys. G Nucl. Part. Phys. 2018, 46, 015104. [Google Scholar] [CrossRef]
- Martinez-Consentino, V.L.; Ruiz Simo, I.; Amaro, J.E. Meson-exchange currents and superscaling analysis with relativistic effective mass of quasielastic electron scattering from 12C. Phys. Rev. C 2021, 104, 025501. [Google Scholar] [CrossRef]
- Martinez-Consentino, V.L.; Amaro, J.E.; Ruiz Simo, I. Semiempirical formula for electroweak response functions in the two-nucleon emission channel in neutrino-nucleus scattering. Phys. Rev. D 2021, 104, 113006. [Google Scholar] [CrossRef]
- Fiorentini, G.A. et al. [MINERvA Collaboration] Measurement of Muon Neutrino Quasielastic Scattering on a Hydrocarbon Target at Eν∼3.5 GeV. Phys. Rev. Lett. 2013, 111, 022502. [Google Scholar] [CrossRef]
- Fields, L. et al. [MINERvA Collaboration] Measurement of Muon Antineutrino Quasielastic Scattering on a Hydrocarbon Target at Eν∼3.5 GeV. Phys. Rev. Lett. 2013, 111, 022501. [Google Scholar] [CrossRef]
- Abe, K. et al. [T2K Collaboration] Measurement of double-differential muon neutrino charged-current interactions on C8H8 without pions in the final state using the T2K off-axis beam. Phys. Rev. D 2016, 93, 112012. [Google Scholar] [CrossRef]
- Lyubushkin, V.; Popov, B.; Kim, J.J.; Camilleri, L.; Levy, J.M.; Mezzetto, M.; Naumov, D.; Alekhin, S.; Astier, P.; Autiero, D.; et al. A study of quasi-elastic muon neutrino and antineutrino scattering in the NOMAD experiment. Eur. Phys. J. C 2009, 63, 355–381. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, M.V.; Antonov, A.N. Inclusive Neutrino and Antineutrino Scattering on the 12C Nucleus Within the Coherent Density Fluctuation Model. Universe 2025, 11, 119. https://doi.org/10.3390/universe11040119
Ivanov MV, Antonov AN. Inclusive Neutrino and Antineutrino Scattering on the 12C Nucleus Within the Coherent Density Fluctuation Model. Universe. 2025; 11(4):119. https://doi.org/10.3390/universe11040119
Chicago/Turabian StyleIvanov, Martin V., and Anton N. Antonov. 2025. "Inclusive Neutrino and Antineutrino Scattering on the 12C Nucleus Within the Coherent Density Fluctuation Model" Universe 11, no. 4: 119. https://doi.org/10.3390/universe11040119
APA StyleIvanov, M. V., & Antonov, A. N. (2025). Inclusive Neutrino and Antineutrino Scattering on the 12C Nucleus Within the Coherent Density Fluctuation Model. Universe, 11(4), 119. https://doi.org/10.3390/universe11040119