Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (498)

Search Parameters:
Journal = Smart Cities
Section = General

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
1 pages, 136 KiB  
Retraction
RETRACTED: Raiyn, J. Improvement in Collision Avoidance in Cut-In Maneuvers Using Time-to-Collision Metrics. Smart Cities 2025, 8, 15
by Smart Cities Editorial Office
Smart Cities 2025, 8(4), 134; https://doi.org/10.3390/smartcities8040134 - 12 Aug 2025
Abstract
The Smart Cities journal retracts the article “Improvement in Collision Avoidance in Cut-In Maneuvers Using Time-to-Collision Metrics” [...] Full article
19 pages, 1138 KiB  
Article
Strategic Socio-Technical Innovation in Urban Living Labs: A Framework for Smart City Evolution
by Augusto Velasquez Mendez, Jorge Lozoya Santos and Jose Fernando Jimenez Vargas
Smart Cities 2025, 8(4), 131; https://doi.org/10.3390/smartcities8040131 - 8 Aug 2025
Viewed by 223
Abstract
Urban Living Labs (ULLs) are pivotal for promoting socio-technical innovation in smart cities, yet their role in achieving sustainable urban development remains underexplored. This study addresses this gap by proposing a systematic literature review (SLR) to develop effective implementation strategies. Unlike previous studies [...] Read more.
Urban Living Labs (ULLs) are pivotal for promoting socio-technical innovation in smart cities, yet their role in achieving sustainable urban development remains underexplored. This study addresses this gap by proposing a systematic literature review (SLR) to develop effective implementation strategies. Unlike previous studies focusing on individual aspects of these labs, our holistic approach emphasizes the orchestration of actors and innovative experiment design to co-create value with citizens. By addressing specific issues in current smart city practices—such as the misalignment between technology and community needs and among stakeholders, limited citizen engagement, and the lack of iterative testing environments—the study explores practical strategies for improvement. The proposed strategies illustrate how Urban Living Labs can serve as essential platforms for achieving sustainable and inclusive urban growth through effective socio-technical innovation integration. Full article
Show Figures

Figure 1

34 pages, 6115 KiB  
Article
Intelligent Rebar Optimization Framework for Urban Transit Infrastructure: A Case Study of a Diaphragm Wall in a Singapore Mass Rapid Transit Station
by Daniel Darma Widjaja and Sunkuk Kim
Smart Cities 2025, 8(4), 130; https://doi.org/10.3390/smartcities8040130 - 7 Aug 2025
Viewed by 219
Abstract
As cities densify, deep underground infrastructure construction such as mass rapid transit (MRT) systems increasingly demand smarter, digitalized, and more sustainable approaches. RC diaphragm walls, essential to these systems, present challenges due to complex rebar configurations, spatial constraints, and high material usage and [...] Read more.
As cities densify, deep underground infrastructure construction such as mass rapid transit (MRT) systems increasingly demand smarter, digitalized, and more sustainable approaches. RC diaphragm walls, essential to these systems, present challenges due to complex rebar configurations, spatial constraints, and high material usage and waste, factors that contribute significantly to carbon emissions. This study presents an AI-assisted rebar optimization framework to improve constructability and reduce waste in MRT-related diaphragm wall construction. The framework integrates the BIM concept with a custom greedy hybrid Python-based metaheuristic algorithm based on the WOA, enabling optimization through special-length rebar allocation and strategic coupler placement. Unlike conventional approaches reliant on stock-length rebars and lap splicing, this approach incorporates constructability constraints and reinforcement continuity into the optimization process. Applied to a high-density MRT project in Singapore, it demonstrated reductions of 19.76% in rebar usage, 84.57% in cutting waste, 17.4% in carbon emissions, and 14.57% in construction cost. By aligning digital intelligence with practical construction requirements, the proposed framework supports smart city goals through resource-efficient practices, construction innovation, and urban infrastructure decarbonization. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

17 pages, 1653 KiB  
Article
Corner Case Dataset for Autonomous Vehicle Testing Based on Naturalistic Driving Data
by Jian Zhao, Wenxu Li, Bing Zhu, Peixing Zhang, Zhaozheng Hu and Jie Meng
Smart Cities 2025, 8(4), 129; https://doi.org/10.3390/smartcities8040129 - 5 Aug 2025
Viewed by 350
Abstract
The safe and reliable operation of autonomous vehicles is contingent on comprehensive testing. However, the operational scenarios are inexhaustible. Corner cases, which critically influence autonomous vehicle safety, occur at an extremely low probability and follow a long-tail distribution. Corner cases can be defined [...] Read more.
The safe and reliable operation of autonomous vehicles is contingent on comprehensive testing. However, the operational scenarios are inexhaustible. Corner cases, which critically influence autonomous vehicle safety, occur at an extremely low probability and follow a long-tail distribution. Corner cases can be defined as combinations of driving task and scenario elements. These scenarios are characterized by low probability, high risk, and a tendency to reveal functional limitations inherent to autonomous driving systems, triggering anomalous behavior. This study constructs a novel corner case dataset using naturalistic driving data, specifically tailored for autonomous vehicle testing. A scenario marginality quantification method is designed to analyze multi-source naturalistic driving data, enabling efficient extraction of corner cases. Heterogeneous scenarios are systematically transformed, resulting in a dataset characterized by diverse interaction behaviors and standardized formatting. The results indicate that the scenario marginality of the dataset constructed in this study is 2.78 times that of mainstream naturalistic driving datasets, and the scenarios exhibit considerable diversity. The trajectory and velocity fluctuations, quantified at 0.013 m and 0.021 m/s, respectively, are consistent with the kinematic characteristics of real-world driving scenarios. These results collectively demonstrate the dataset’s high marginality, diversity, and applicability. Full article
Show Figures

Figure 1

28 pages, 14684 KiB  
Article
SDT4Solar: A Spatial Digital Twin Framework for Scalable Rooftop PV Planning in Urban Environments
by Athenee Teofilo, Qian (Chayn) Sun and Marco Amati
Smart Cities 2025, 8(4), 128; https://doi.org/10.3390/smartcities8040128 - 4 Aug 2025
Viewed by 333
Abstract
To sustainably power future urban communities, cities require advanced solar energy planning tools that overcome the limitations of traditional approaches, such as data fragmentation and siloed decision-making. SDTs present a transformative opportunity by enabling precision urban modelling, integrated simulations, and iterative decision support. [...] Read more.
To sustainably power future urban communities, cities require advanced solar energy planning tools that overcome the limitations of traditional approaches, such as data fragmentation and siloed decision-making. SDTs present a transformative opportunity by enabling precision urban modelling, integrated simulations, and iterative decision support. However, their application in solar energy planning remains underexplored. This study introduces SDT4Solar, a novel SDT-based framework designed to integrate city-scale rooftop solar planning through 3D building semantisation, solar modelling, and a unified geospatial database. By leveraging advanced spatial modelling and Internet of Things (IoT) technologies, SDT4Solar facilitates high-resolution 3D solar potential simulations, improving the accuracy and equity of solar infrastructure deployment. We demonstrate the framework through a proof-of-concept implementation in Ballarat East, Victoria, Australia, structured in four key stages: (a) spatial representation of the urban built environment, (b) integration of multi-source datasets into a unified geospatial database, (c) rooftop solar potential modelling using 3D simulation tools, and (d) dynamic visualization and analysis in a testbed environment. Results highlight SDT4Solar’s effectiveness in enabling data-driven, spatially explicit decision-making for rooftop PV deployment. This work advances the role of SDTs in urban energy transitions, demonstrating their potential to optimise efficiency in solar infrastructure planning. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

37 pages, 10560 KiB  
Article
Optimizing Building Performance with Dynamic Photovoltaic Shading Systems: A Comparative Analysis of Six Adaptive Designs
by Roshanak Roshan Kharrat, Giuseppe Perfetto, Roberta Ingaramo and Guglielmina Mutani
Smart Cities 2025, 8(4), 127; https://doi.org/10.3390/smartcities8040127 - 3 Aug 2025
Viewed by 381
Abstract
Dynamic and Adaptive solar systems demonstrate a greater potential to enhance the satisfaction of occupants, in terms of indoor environment quality and the energy efficiency of the buildings, than conventional shading solutions. This study has evaluated Dynamic and Adaptive Photovoltaic Shading Systems (DAPVSSs) [...] Read more.
Dynamic and Adaptive solar systems demonstrate a greater potential to enhance the satisfaction of occupants, in terms of indoor environment quality and the energy efficiency of the buildings, than conventional shading solutions. This study has evaluated Dynamic and Adaptive Photovoltaic Shading Systems (DAPVSSs) through a comprehensive analysis of six shading designs in which their energy production and the comfort of occupants were considered. Energy generation, thermal comfort, daylight, and glare control have been assessed in this study, considering multiple orientations throughout the seasons, and a variety of tools, such as Rhino 6.0, Grasshopper, ClimateStudio 2.1, and Ladybug, have been exploited for these purposes. The results showed that the prototypes that were geometrically more complex, designs 5 and 6 in particular, had approximately 485 kWh higher energy production and energy savings for cooling and 48% better glare control than the other simplified configurations while maintaining the minimum daylight as the threshold (min DF: 2%) due to adaptive and control methodologies. Design 6 demonstrated optimal balanced performance for all the aforementioned criteria, achieving 587 kWh/year energy production while maintaining the daylight factor within the 2.1–2.9% optimal range and ensuring visual comfort compliance during 94% of occupied hours. This research has established a framework that can be used to make well-informed design decisions that could balance energy production, occupants’ wellbeing, and architectural integration, while advancing sustainable building envelope technologies. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

18 pages, 3269 KiB  
Article
Long-Term Traffic Prediction Using Deep Learning Long Short-Term Memory
by Ange-Lionel Toba, Sameer Kulkarni, Wael Khallouli and Timothy Pennington
Smart Cities 2025, 8(4), 126; https://doi.org/10.3390/smartcities8040126 - 29 Jul 2025
Viewed by 594
Abstract
Traffic conditions are a key factor in our society, contributing to quality of life and the economy, as well as access to professional, educational, and health resources. This emphasizes the need for a reliable road network to facilitate traffic fluidity across the nation [...] Read more.
Traffic conditions are a key factor in our society, contributing to quality of life and the economy, as well as access to professional, educational, and health resources. This emphasizes the need for a reliable road network to facilitate traffic fluidity across the nation and improve mobility. Reaching these characteristics demands good traffic volume prediction methods, not only in the short term but also in the long term, which helps design transportation strategies and road planning. However, most of the research has focused on short-term prediction, applied mostly to short-trip distances, while effective long-term forecasting, which has become a challenging issue in recent years, is lacking. The team proposes a traffic prediction method that leverages K-means clustering, long short-term memory (LSTM) neural network, and Fourier transform (FT) for long-term traffic prediction. The proposed method was evaluated on a real-world dataset from the U.S. Travel Monitoring Analysis System (TMAS) database, which enhances practical relevance and potential impact on transportation planning and management. The forecasting performance is evaluated with real-world traffic flow data in the state of California, in the western USA. Results show good forecasting accuracy on traffic trends and counts over a one-year period, capturing periodicity and variation. Full article
(This article belongs to the Collection Smart Governance and Policy)
Show Figures

Figure 1

22 pages, 14160 KiB  
Article
Commute Networks as a Signature of Urban Socioeconomic Performance: Evaluating Mobility Structures with Deep Learning Models
by Devashish Khulbe, Alexander Belyi and Stanislav Sobolevsky
Smart Cities 2025, 8(4), 125; https://doi.org/10.3390/smartcities8040125 - 29 Jul 2025
Viewed by 330
Abstract
Urban socioeconomic modeling has predominantly concentrated on extensive location and neighborhood-based features, relying on the localized population footprint. However, networks in urban systems are common, and many urban modeling methods do not account for network-based effects. Additionally, network-based research has explored a multitude [...] Read more.
Urban socioeconomic modeling has predominantly concentrated on extensive location and neighborhood-based features, relying on the localized population footprint. However, networks in urban systems are common, and many urban modeling methods do not account for network-based effects. Additionally, network-based research has explored a multitude of data from urban landscapes. However, achieving a comprehensive understanding of urban mobility proves challenging without exhaustive datasets. In this study, we propose using commute information records from the census as a reliable and comprehensive source to construct mobility networks across cities. Leveraging deep learning architectures, we employ these commute networks across U.S. metro areas for socioeconomic modeling. We show that mobility network structures provide significant predictive performance without considering any node features. Consequently, we use mobility networks to present a supervised learning framework to model a city’s socioeconomic indicator directly, combining Graph Neural Network and Vanilla Neural Network models to learn all parameters in a single learning pipeline. In experiments in 12 major U.S. cities, the proposed model achieves considerable explanatory performance and is able to outperform previous conventional machine learning models based on extensive regional-level features. Providing researchers with methods to incorporate network effects in urban modeling, this work also informs stakeholders of wider network-based effects in urban policymaking and planning. Full article
Show Figures

Figure 1

36 pages, 1201 KiB  
Article
Between Smart Cities Infrastructure and Intention: Mapping the Relationship Between Urban Barriers and Bike-Sharing Usage
by Radosław Wolniak and Katarzyna Turoń
Smart Cities 2025, 8(4), 124; https://doi.org/10.3390/smartcities8040124 - 29 Jul 2025
Viewed by 444
Abstract
Society’s adaptation to shared mobility services is a growing topic that requires detailed understanding of the local circumstances of potential and current users. This paper focuses on analyzing barriers to the adoption of urban bike-sharing systems in post-industrial cities, using a case study [...] Read more.
Society’s adaptation to shared mobility services is a growing topic that requires detailed understanding of the local circumstances of potential and current users. This paper focuses on analyzing barriers to the adoption of urban bike-sharing systems in post-industrial cities, using a case study of the Silesian agglomeration in Poland. Methodologically, the article integrates quantitative survey methods with multivariate statistical analysis to analyze the demographic, socioeconomic, and motivational factors that underline the adoption of shared micromobility. The study highlights a detailed segmentation of users by income, age, professional status, and gender, as well as the observation of profound disparities in access and perceived usefulness. Of note is the study’s identification of a highly concentrated segment of young, low-income users (mostly students), which largely accounts for the general perception of economic and infrastructural barriers. These include the use of factor analysis and regression to plot the interaction patterns between individual user characteristics and certain system-level constraints, such as cost, infrastructure coverage, weather, and health. The study’s findings prioritize problem-specific interventions in urban mobility planning: bridging equity gaps between user groups. This research contributes to the current literature by providing detailed insights into the heterogeneity of user mobility behavior, offering evidence-based recommendations for inclusive and adaptive options for shared transportation infrastructure in a changing urban context. Full article
Show Figures

Figure 1

22 pages, 3476 KiB  
Article
Digital Inequality and Smart Inclusion: A Socio-Spatial Perspective from the Region of Xanthi, Greece
by Kyriaki Kourtidou, Yannis Frangopoulos, Asimenia Salepaki and Dimitris Kourkouridis
Smart Cities 2025, 8(4), 123; https://doi.org/10.3390/smartcities8040123 - 28 Jul 2025
Viewed by 428
Abstract
This study explores digital inequality as a socio-spatial phenomenon within the context of smart inclusion, focusing on the Regional Unit of Xanthi, Greece—a region marked by ethno-cultural diversity and pronounced urban–rural contrasts. Using a mixed-methods design, this research integrates secondary quantitative data with [...] Read more.
This study explores digital inequality as a socio-spatial phenomenon within the context of smart inclusion, focusing on the Regional Unit of Xanthi, Greece—a region marked by ethno-cultural diversity and pronounced urban–rural contrasts. Using a mixed-methods design, this research integrates secondary quantitative data with qualitative insights from semi-structured interviews, aiming to uncover how spatial, demographic, and cultural variables shape digital engagement. Geographic Information System (GIS) tools are employed to map disparities in internet access and ICT infrastructure, revealing significant gaps linked to geography, education, and economic status. The findings demonstrate that digital inequality is particularly acute in rural, minority, and economically marginalized communities, where limited infrastructure intersects with low digital literacy and socio-economic disadvantage. Interview data further illuminate how residents navigate exclusion, emphasizing generational divides, perceptions of technology, and place-based constraints. By bridging spatial analysis with lived experience, this study advances the conceptualization of digitally inclusive smart regions. It offers policy-relevant insights into how territorial inequality undermines the goals of smart development and proposes context-sensitive interventions to promote equitable digital participation. The case of Xanthi underscores the importance of integrating spatial justice into smart city and regional planning agendas. Full article
Show Figures

Figure 1

20 pages, 3386 KiB  
Article
Evaluating Acoustic vs. AI-Based Satellite Leak Detection in Aging US Water Infrastructure: A Cost and Energy Savings Analysis
by Prashant Nagapurkar, Naushita Sharma, Susana Garcia and Sachin Nimbalkar
Smart Cities 2025, 8(4), 122; https://doi.org/10.3390/smartcities8040122 - 22 Jul 2025
Viewed by 540
Abstract
The aging water distribution system in the United States, constructed mainly during the 1970s with some pipes dating back 125 years, is experiencing significant deterioration leading to substantial water losses. Along with the potential for water loss savings, improvements in the distribution system [...] Read more.
The aging water distribution system in the United States, constructed mainly during the 1970s with some pipes dating back 125 years, is experiencing significant deterioration leading to substantial water losses. Along with the potential for water loss savings, improvements in the distribution system by using leak detection technologies can create net energy and cost savings. In this work, a new framework has been presented to calculate the economic level of leakage within water supply and distribution systems for two primary leak detection technologies (acoustic vs. satellite). In this work, a new framework is presented to calculate the economic level of leakage (ELL) within water supply and distribution systems to support smart infrastructure in smart cities. A case study focused using water audit data from Atlanta, Georgia, compared the costs of two leak mitigation technologies: conventional acoustic leak detection and artificial intelligence–assisted satellite leak detection technology, which employs machine learning algorithms to identify potential leak signatures from satellite imagery. The ELL results revealed that conducting one survey would be optimum for an acoustic survey, whereas the method suggested that it would be expensive to utilize satellite-based leak detection technology. However, results for cumulative financial analysis over a 3-year period for both technologies revealed both to be economically favorable with conventional acoustic leak detection technology generating higher net economic benefits of USD 2.4 million, surpassing satellite detection by 50%. A broader national analysis was conducted to explore the potential benefits of US water infrastructure mirroring the exemplary conditions of Germany and The Netherlands. Achieving similar infrastructure leakage index (ILI) values could result in annual cost savings of $4–$4.8 billion and primary energy savings of 1.6–1.9 TWh. These results demonstrate the value of combining economic modeling with advanced leak detection technologies to support sustainable, cost-efficient water infrastructure strategies in urban environments, contributing to more sustainable smart living outcomes. Full article
Show Figures

Figure 1

17 pages, 2256 KiB  
Article
Performance Analysis of Different Borehole Heat Exchanger Configurations: A Case Study in NW Italy
by Jessica Maria Chicco, Nicolò Giordano, Cesare Comina and Giuseppe Mandrone
Smart Cities 2025, 8(4), 121; https://doi.org/10.3390/smartcities8040121 - 21 Jul 2025
Viewed by 351
Abstract
The central role of heating and cooling in energy transition has been recognised in recent years, especially with geopolitical developments since February 2022 which demand an acceleration in deploying local energy sources to increase the resilience of the energy sector. Geothermal energy is [...] Read more.
The central role of heating and cooling in energy transition has been recognised in recent years, especially with geopolitical developments since February 2022 which demand an acceleration in deploying local energy sources to increase the resilience of the energy sector. Geothermal energy is a promising and vital option to optimize heating and cooling systems, promoting sustainability of urban environments. To this end, a proper design is of paramount importance to guarantee the energy performance of the whole system. This work deals with the optimization of the technical and geometrical characteristics of borehole heat exchangers (BHEs) as part of a shallow geothermal plant that is assumed to be integrated in an already operating gas-fired DH grid. Thermal performances of three different configurations were analysed according to the geological information that revealed an aquifer at −36 m overlying a poorly permeable marly succession. Numerical simulations validated the geological, hydrogeological, and thermo-physical models by back-analysing the experimental results of a thermal response test (TRT) on a pilot 150 m deep BHE. Five-year simulations were then performed to compare 150 m and 36 m polyethylene 2U, and 36 m steel coaxial BHEs. The coaxial configuration shows the best performance both in terms of specific power (74.51 W/m) and borehole thermal resistance (0.02 mK/W). Outcomes of the study confirm that coupling the best geological and technical parameters ensure the best energy performance and economic sustainability. Full article
(This article belongs to the Special Issue Energy Strategies of Smart Cities)
Show Figures

Figure 1

16 pages, 26966 KiB  
Article
Nonlinear Heat Effects of Building Material Stock in Chinese Megacities
by Leizhen Liu, Yi Zhou, Liqing Tan and Rukun Jiang
Smart Cities 2025, 8(4), 119; https://doi.org/10.3390/smartcities8040119 - 17 Jul 2025
Viewed by 321
Abstract
Urbanization is accompanied by an increased use of building materials. However, the lack of high-resolution building material stock (BMS) maps limits our understanding of the relationship between BMS and urban heat. To address this, we estimated BMS across eight typical Chinese megacities using [...] Read more.
Urbanization is accompanied by an increased use of building materials. However, the lack of high-resolution building material stock (BMS) maps limits our understanding of the relationship between BMS and urban heat. To address this, we estimated BMS across eight typical Chinese megacities using multi-source geographic data and investigated the relationship between BMS and land surface temperature (LST). The results showed that (1) the total BMS for the eight megacities was 9175.07 Mt, with Beijing and Shanghai having the largest shares. While BMS correlated significantly with population, growth patterns varied across cities. (2) Spatial autocorrelation between BMS and LST was evident. Around 16% of urban areas exhibited High–High clustering between BMS and LST, decreasing to 10% during the daytime. The relationship between BMS and LST is nonlinear, and also prominent at night, especially in Beijing. (3) Diverse building forms, especially building height, contribute to a nonlinear relationship between BMS and LST. Full article
Show Figures

Figure 1

43 pages, 2816 KiB  
Article
Generative AI-Driven Smart Contract Optimization for Secure and Scalable Smart City Services
by Sameer Misbah, Muhammad Farrukh Shahid, Shahbaz Siddiqui, Tariq Jamil S. Khanzada, Rehab Bahaaddin Ashari, Zahid Ullah and Mona Jamjoom
Smart Cities 2025, 8(4), 118; https://doi.org/10.3390/smartcities8040118 - 16 Jul 2025
Viewed by 744
Abstract
Smart cities use advanced infrastructure and technology to improve the quality of life for their citizens. Collaborative services in smart cities are making the smart city ecosystem more reliable. These services are required to enhance the operation of interoperable systems, such as smart [...] Read more.
Smart cities use advanced infrastructure and technology to improve the quality of life for their citizens. Collaborative services in smart cities are making the smart city ecosystem more reliable. These services are required to enhance the operation of interoperable systems, such as smart transportation services that share their data with smart safety services to execute emergency response, surveillance, and criminal prevention measures. However, an important issue in this ecosystem is data security, which involves the protection of sensitive data exchange during the interoperability of heterogeneous smart services. Researchers have addressed these issues through blockchain integration and the implementation of smart contracts, where collaborative applications can enhance both the efficiency and security of the smart city ecosystem. Despite these facts, complexity is an issue in smart contracts since complex coding associated with their deployment might influence the performance and scalability of collaborative applications in interconnected systems. These challenges underscore the need to optimize smart contract code to ensure efficient and scalable solutions in the smart city ecosystem. In this article, we propose a new framework that integrates generative AI with blockchain in order to eliminate the limitations of smart contracts. We make use of models such as GPT-2, GPT-3, and GPT4, which natively can write and optimize code in an efficient manner and support multiple programming languages, including Python 3.12.x and Solidity. To validate our proposed framework, we integrate these models with already existing frameworks for collaborative smart services to optimize smart contract code, reducing resource-intensive processes while maintaining security and efficiency. Our findings demonstrate that GPT-4-based optimized smart contracts outperform other optimized and non-optimized approaches. This integration reduces smart contract execution overhead, enhances security, and improves scalability, paving the way for a more robust and efficient smart contract ecosystem in smart city applications. Full article
Show Figures

Figure 1

17 pages, 4758 KiB  
Article
QESIF: A Lightweight Quantum-Enhanced IoT Security Framework for Smart Cities
by Abdul Rehman and Omar Alharbi
Smart Cities 2025, 8(4), 116; https://doi.org/10.3390/smartcities8040116 - 10 Jul 2025
Viewed by 501
Abstract
Smart cities necessitate ultra-secure and scalable communication frameworks to manage billions of interconnected IoT devices, particularly in the face of the emerging quantum computing threats. This paper proposes the QESIF, a novel Quantum-Enhanced Secure IoT Framework that integrates Quantum Key Distribution (QKD) with [...] Read more.
Smart cities necessitate ultra-secure and scalable communication frameworks to manage billions of interconnected IoT devices, particularly in the face of the emerging quantum computing threats. This paper proposes the QESIF, a novel Quantum-Enhanced Secure IoT Framework that integrates Quantum Key Distribution (QKD) with classical IoT infrastructures via a hybrid protocol stack and a quantum-aware intrusion detection system (Q-IDS). The QESIF achieves high resilience against eavesdropping by monitoring quantum bit error rate (QBER) and leveraging entropy-weighted key generation. The simulation results, conducted using datasets TON IoT, Edge-IIoTset, and Bot-IoT, demonstrate the effectiveness of the QESIF. The framework records an average QBER of 0.0103 under clean channels and discards over 95% of the compromised keys in adversarial settings. It achieves Attack Detection Rates (ADRs) of 98.1%, 98.7%, and 98.3% across the three datasets, outperforming the baselines by 4–9%. Moreover, the QESIF delivers the lowest average latency of 20.3 ms and the highest throughput of 868 kbit/s in clean scenarios while maintaining energy efficiency with 13.4 mJ per session. Full article
Show Figures

Figure 1

Back to TopTop