Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,026)

Search Parameters:
Journal = Processes
Section = Biological Processes and Systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 904 KiB  
Review
Edible Mushroom Cultivation in Liquid Medium: Impact of Microparticles and Advances in Control Systems
by Juan Carlos Ferrer Romero, Oana Bianca Oprea, Liviu Gaceu, Siannah María Más Diego, Humberto J. Morris Quevedo, Laura Galindo Alonso, Lilianny Rivero Ramírez and Mihaela Badea
Processes 2025, 13(8), 2452; https://doi.org/10.3390/pr13082452 (registering DOI) - 2 Aug 2025
Abstract
Mushrooms are eukaryotic organisms with absorptive heterotrophic nutrition, capable of feeding on organic matter rich in cellulose and lignocellulose. Since ancient times, they have been considered allies and, in certain cultures, they were seen as magical beings or food of the gods. Of [...] Read more.
Mushrooms are eukaryotic organisms with absorptive heterotrophic nutrition, capable of feeding on organic matter rich in cellulose and lignocellulose. Since ancient times, they have been considered allies and, in certain cultures, they were seen as magical beings or food of the gods. Of the great variety of edible mushrooms identified worldwide, less than 2% are traded on the market. Although mushrooms have been valued for their multiple nutritional and healing benefits, some cultures perceive them as toxic and do not accept them in their culinary practices. Despite the existing skepticism, several researchers are promoting the potential of edible mushrooms. There are two main methods of mushroom cultivation: solid-state fermentation and submerged fermentation. The former is the most widely used and simplest, since the fungus grows in its natural environment; in the latter, the fungus grows suspended without developing a fruiting body. In addition, submerged fermentation is easily monitored and scalable. Both systems are important and have their limitations. This article discusses the main methods used to increase the performance of submerged fermentation with emphasis on the modes of operation used, types of bioreactors and application of morphological bioengineering of filamentous fungi, and especially the use of intelligent automatic control technologies and the use of non-invasive monitoring in fermentation systems thanks to the development of machine learning (ML), neural networks, and the use of big data, which will allow more accurate decisions to be made in the fermentation of filamentous fungi in submerged environments with improvements in production yields. Full article
Show Figures

Figure 1

24 pages, 1722 KiB  
Article
Design and Construction of an Aerated Accumulation Bioreactor for Solid Waste Treatment
by Margarita Ramírez-Carmona, Leidy Rendón-Castrillón, Carlos Ocampo-López and Valentina Álvarez-Flórez
Processes 2025, 13(7), 2312; https://doi.org/10.3390/pr13072312 - 21 Jul 2025
Viewed by 382
Abstract
Aerated accumulation bioreactors represent a promising alternative for the aerobic bioremediation of solid contaminated substrates. However, achieving homogeneous mixing and effective air distribution remains a key design challenge in solid-phase systems. This study presents the design and construction of a novel pilot-scale aerated [...] Read more.
Aerated accumulation bioreactors represent a promising alternative for the aerobic bioremediation of solid contaminated substrates. However, achieving homogeneous mixing and effective air distribution remains a key design challenge in solid-phase systems. This study presents the design and construction of a novel pilot-scale aerated bioreactor equipped with an angled-paddle agitation system, specifically developed to improve solid mixing and aeration. To evaluate the geometric configuration, a series of simulations were performed using the Discrete Element Method (DEM), with particle dynamics analyzed through the Lacey Mixing Index (LMI). Four paddle angles (0°, 15°, 45°, and 55°) were compared, with the 45° configuration achieving optimal performance, reaching LMI values above 0.95 in less than 15 s and maintaining high homogeneity at a filling volume of 70%. These results confirm that the paddle angle significantly influences mixing efficiency in granular media. While this work focuses on engineering design and DEM-based validation, future studies will include experimental trials to evaluate biodegradation kinetics. The proposed design offers a scalable and adaptable solution for ex situ bioremediation applications. This work reinforces the value of integrating DEM simulations early in the bioreactor development process and opens pathways for further optimization and implementation in real-world environmental remediation scenarios. Full article
(This article belongs to the Special Issue Bioreactor Design and Optimization Process)
Show Figures

Figure 1

20 pages, 2869 KiB  
Article
Influence of Polyester and Denim Microfibers on the Treatment and Formation of Aerobic Granules in Sequencing Batch Reactors
by Victoria Okhade Onyedibe, Hassan Waseem, Hussain Aqeel, Steven N. Liss, Kimberley A. Gilbride, Roxana Sühring and Rania Hamza
Processes 2025, 13(7), 2272; https://doi.org/10.3390/pr13072272 - 16 Jul 2025
Viewed by 462
Abstract
This study examines the effects of polyester and denim microfibers (MFs) on aerobic granular sludge (AGS) over a 42-day period. Treatment performance, granulation, and microbial community changes were assessed at 0, 10, 70, 210, and 1500 MFs/L. Reactors with 70 MFs/L achieved rapid [...] Read more.
This study examines the effects of polyester and denim microfibers (MFs) on aerobic granular sludge (AGS) over a 42-day period. Treatment performance, granulation, and microbial community changes were assessed at 0, 10, 70, 210, and 1500 MFs/L. Reactors with 70 MFs/L achieved rapid granulation and showed improved settling by day 9, while 0 and 10 MFs/L reactors showed delayed granule formation, which was likely due to limited nucleation and weaker shear conditions. Severe clogging and frequent maintenance occurred at 1500 MFs/L. Despite > 98% MF removal in all reactors, treatment performance declined at higher MF loads. Nitrogen removal dropped from 93% to 68%. Phosphate removal slightly increased in reactors with no or low microfiber loads (96–99%), declined in reactors with 70 or 210 MFs/L (92–91%, 89–88%), and dropped significantly in the reactor with1500 MFs/L (86–70%, p < 0.05). COD removal declined with increasing MF load. Paracoccus (denitrifiers) dominated low-MF reactors; Acinetobacter (associated with complex organic degradation) and Nitrospira (nitrite-oxidizing genus) were enriched at 1500 MFs/L. Performance decline likely stemmed from nutrient transport blockage and toxic leachates, highlighting the potential threat of MFs to wastewater treatment and the need for upstream MF control. Full article
(This article belongs to the Special Issue State-of-the-Art Wastewater Treatment Techniques)
Show Figures

Figure 1

11 pages, 344 KiB  
Communication
Lactic Acid Bacteria Succession, Identification and Antilisterial Capacity in Traditionally Produced Dry-Fermented Chicken Sausage
by Nevijo Zdolec, Marta Kiš, Mladenka Vukšić, Hrvoje Mazija, Ivana Bazina and Snježana Kazazić
Processes 2025, 13(7), 2216; https://doi.org/10.3390/pr13072216 - 11 Jul 2025
Viewed by 347
Abstract
The production of fermented sausages from poultry meat using traditional technologies and natural maturation conditions is a major challenge. The aim of this study was to identify indigenous microbiota with antilisterial activity from an innovative, additive-free, traditionally fermented chicken sausage. Isolates (n [...] Read more.
The production of fermented sausages from poultry meat using traditional technologies and natural maturation conditions is a major challenge. The aim of this study was to identify indigenous microbiota with antilisterial activity from an innovative, additive-free, traditionally fermented chicken sausage. Isolates (n = 88) of lactic acid bacteria (LAB) were collected during maturation and subjected to MALDI-TOF mass spectrometry identification. The capacity to combat Listeria was screened against five strains using the agar well diffusion method in 63 selected LAB isolates. MALDI-TOF mass spectrometry identified four different LAB genera, namely Enterococcus, Lactococcus, Leuconostoc and Lactobacillus, the proportions of which differed significantly during the production phases (p < 0.001). Enterococcus faecalis was the most prevalent LAB species in the initial sausage dough. The presence of lactococci (Lactococcus lactis) and enterococci was detected during the 14- and 30-day ripening period and was gradually displaced by leuconostocs and lactobacilli. Lactobacilli appeared to be abundant during the central and late maturation phases, and consisted of only two species—Latilactobacillus sakei and Latilactobacillus curvatus. In total, 38 LAB isolates (60%) showed antilisterial activity toward at least one Listeria indicator strain. The proportions of antilisterial LAB differed significantly during sausage maturation. Inhibitory activity against all indicator Listeria was detected in the neutralized cell-free supernatants of five strains of Enterococcus faecalis, two L. sakei strains and one Leuconostoc mesenteroides strain. The antilisterial activity observed in the indigenous LAB revealed the possible role of L. sakei as a bioprotective culture, as well as the role of Ln. mesenteroides and E. faecalis as bacteriocin producers, for practical applications. Full article
Show Figures

Figure 1

15 pages, 1399 KiB  
Article
Content of Phytomelatonin in Acorns (Quercus sp.) in Its Possible Use as a Phytogenic in Animal Nutrition
by Soundouss Kaabi, Brahim El Bouzdoudi, Mohammed L’bachir El Kbiach, Antonio Cano, Josefa Hernández-Ruiz and Marino B. Arnao
Processes 2025, 13(7), 2202; https://doi.org/10.3390/pr13072202 - 9 Jul 2025
Viewed by 315
Abstract
Phytogenics are functional compounds with a growing interest in animal nutrition. These plant-derived compounds are often used to improve health and behavioral aspects in livestock, and used as antipathogenic agents. Melatonin, an indolic hormonal compound, has been studied as an interesting phytogenic in [...] Read more.
Phytogenics are functional compounds with a growing interest in animal nutrition. These plant-derived compounds are often used to improve health and behavioral aspects in livestock, and used as antipathogenic agents. Melatonin, an indolic hormonal compound, has been studied as an interesting phytogenic in animal nutrition. This study analyzes the possibilities of acorn-fed flour as a phytomelatonin contributor and its beneficial roles for health. The fruits of two varieties of acorns (Quercus suber var. Maamora and var. Bouhachem), recollected in two different regions of Morocco, have been studied according to their eco-physiological origin. The content in phytomelatonin was analyzed using a solid extractive method and determined by liquid chromatography with fluorescence detection. The results show great morphological differences between the two varieties, and also significant differences in their phytomelatonin content. It is concluded that acorn-fed flour can be an interesting raw material as a phytomelatonin contributor for the functionality of certain feeds and animals. More specific studies using phytomelatonin-rich plants as feed have been proposed to implement specific functionalities in livestock. Full article
Show Figures

Figure 1

16 pages, 2838 KiB  
Article
Transcriptomic Response of Azospirillum brasilense Co-Cultured with Green Microalgae Chlorella sp. and Scenedesmus sp. During CO2 Biogas Fixation
by Carolina Garciglia-Mercado, Oskar A. Palacios, Claudia A. Contreras-Godínez, Jony Ramiro Torres-Velázquez and Francisco J. Choix
Processes 2025, 13(7), 2177; https://doi.org/10.3390/pr13072177 - 8 Jul 2025
Viewed by 682
Abstract
Microalgal–bacterial consortia are the environmentally sustainable biotechnological strategy to enhance the potential of microalgae. Understanding the regulatory mechanisms that enable bacteria to adapt to culture conditions of each bioprocess is crucial to ensure a successful synergic interaction. Thus, the present study evaluated the [...] Read more.
Microalgal–bacterial consortia are the environmentally sustainable biotechnological strategy to enhance the potential of microalgae. Understanding the regulatory mechanisms that enable bacteria to adapt to culture conditions of each bioprocess is crucial to ensure a successful synergic interaction. Thus, the present study evaluated the transcriptomic response of microalgal growth-promoting bacteria (MGPB) A. brasilense separately co-cultured with both green microalgae Scenedesmus sp. and Chlorella sorokiniana during CO2 fixation from biogas through a microarray-based approach. The transcriptome profiling revealed a total of 416 differentially expressed genes (DEGs) in A. brasilense: 228 (140 upregulated and 88 downregulated) interacting with Scenedesmus sp. and 188 (40 upregulated and 148 downregulated) associated with C. sorokiniana. These results support the modulation of signal molecules: indole-3-acetic acid (IAA), riboflavin, and biotin, during co-cultivation with both microalgae. The findings suggest that the metabolic A. brasilense adaptation was mainly favored during the mutualistic interaction with Scenedesmus sp. Finally, a valuable contribution is provided to the biotechnological potential of the microalga–Azospirillum consortium as an environmentally sustainable strategy to improve the bio-refinery capacity of these microalgae and biogas upgrading by valorizing CO2 of these gaseous effluent. Full article
Show Figures

Figure 1

14 pages, 9354 KiB  
Article
Dynamics of Bacterial Communities and Identification of Microbial Indicators in a Cylindrospermopsis-Bloom Reservoir in Western Guangdong Province, China
by Yingwen Mai, Changhong Hong, Da Liu, Fengjuan Yang, Gengfeng Xiao, Zhilin Zhang and Shuai Liu
Processes 2025, 13(7), 2129; https://doi.org/10.3390/pr13072129 - 4 Jul 2025
Viewed by 554
Abstract
Blue-green algae blooms present persistent environmental challenges in freshwater ecosystems, yet ecological interactions within the bacterial communities of Cylindrospermopsis-bloom reservoirs remain poorly understood. In this study, water samples were collected from February to May 2024 from 11 sampling sites in a Cylindrospermopsis [...] Read more.
Blue-green algae blooms present persistent environmental challenges in freshwater ecosystems, yet ecological interactions within the bacterial communities of Cylindrospermopsis-bloom reservoirs remain poorly understood. In this study, water samples were collected from February to May 2024 from 11 sampling sites in a Cylindrospermopsis-bloom reservoir in western Guangdong province, China. At each sampling point, a water sample was collected every month. High-throughput sequencing was applied to analyze the interaction between Cylindrospermopsis and other bacteria. As shown in our results, the phyla Actinobacteriota, Proteobacteria, Bacteroidota, Verrucomicrobiota, and Cyanobacteria were revealed as dominant phyla. Bacterial communities exhibited significant seasonal differences between flood and non-flood periods (ANOSIM: R = 0.472, p = 0.001). Cylindrospermopsis (dominance index Y = 0.53) acted as the keystone in the co-occurrence network (Zi < 2.5, Pi > 0.62) and closely interacted with other bacteria. For better management of the blue-green algae bloom reservoir, the phyla of Actinobacteriota, Dependentiae, Acidobacteriota, Armatimonadota, Gemmatimonadota, and Desulfobacterota were proposed as microbial indicators for the eutrophic process. This study provides a new insight into the interactions of Cyanobacteria with other bacteria and the management of blue-green algae outbreaks in reservoirs. Full article
(This article belongs to the Special Issue State-of-the-Art Wastewater Treatment Techniques)
Show Figures

Figure 1

12 pages, 2246 KiB  
Article
Digital Twin for Upstream and Downstream Integration of Virus-like Particle Manufacturing
by Simon Baukmann, Alina Hengelbrock, Kristina Katsoutas, Jörn Stitz, Axel Schmidt and Jochen Strube
Processes 2025, 13(7), 2101; https://doi.org/10.3390/pr13072101 - 2 Jul 2025
Viewed by 372
Abstract
Virus-like particles (VLPs) have the potential to become a versatile carrier platform for vaccination against multiple diseases. In the light of short process development timelines and the demand for reliable and robust processes, metabolic modeling of cell culture processes offers great advantages when [...] Read more.
Virus-like particles (VLPs) have the potential to become a versatile carrier platform for vaccination against multiple diseases. In the light of short process development timelines and the demand for reliable and robust processes, metabolic modeling of cell culture processes offers great advantages when coupled with a Quality-by-Design (QbD) development approach. A previous work was able to demonstrate the accurate prediction of HEK293F PiggyBac cell concentration as well as VLP titer and metabolite production with a reduced metabolic model. This work presents the reduced metabolic model for a more productive cell line Sleeping Beauty and emphasizes the need for model re-parameterization when the producer cell line changes. The goal of precise prediction for a fed-batch and continuous HEK293 cultivation can, therefore, be achieved. In terms of decision-making for downstream unit operations, a soft sensor for the prediction of main impurities like proteins and DNA was introduced for the first time for the production of lentiviral vectors with several terms describing the release of impurities like DNA and proteins, growth-related protein production, and enzymatic degradation activity associated with cell dissociation in an accurate manner. The additional information can contribute to a more efficient design phase by reducing experimental effort as well as during cultivation with data-based decision-making. With the aid of real-time process data acquisition through process analytical technology (PAT), its predictive power can be enhanced and lead to more reliable processes. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

14 pages, 1154 KiB  
Article
Enhancing Biomethane Yield from Microalgal Biomass via Enzymatic Hydrolysis: Optimization and Predictive Modeling Using RSM Approach
by Souhaila Hangri, Kerroum Derbal, Abderrezzaq Benalia, Grazia Policastro, Antonio Panico and Antonio Pizzi
Processes 2025, 13(7), 2086; https://doi.org/10.3390/pr13072086 - 1 Jul 2025
Viewed by 321
Abstract
This study investigates the optimization of enzymatic hydrolysis for enhancing carbohydrate release from microalgal biomass and its subsequent impact on methane production during anaerobic digestion. Using Response Surface Methodology with a Box–Behnken design comprising 15 experimental runs, the effects of enzyme loading (20–40 [...] Read more.
This study investigates the optimization of enzymatic hydrolysis for enhancing carbohydrate release from microalgal biomass and its subsequent impact on methane production during anaerobic digestion. Using Response Surface Methodology with a Box–Behnken design comprising 15 experimental runs, the effects of enzyme loading (20–40 mg/gVS), pH (4.5–5.5), and incubation time (24–72 h) were evaluated. A quadratic regression model was developed to predict carbohydrate release, revealing significant interactions between these factors. The optimal conditions for enzymatic hydrolysis were determined to be a cellulase dose of 20 mg/gVS, pH 5.0, and an incubation period of 72 h. The model demonstrated excellent predictive accuracy, with an R2 value of 0.9894 and an adjusted R2 of 0.9704. Enzymatic hydrolysis significantly improved methane and biogas yields, with cumulative production reaching 52.50 mL/gVS and 95.62 mL/gVS, respectively, compared to 6.98 mL/gVS and 20.94 mL/gVS for untreated samples. The findings highlight the importance of optimizing enzyme loading and reaction time, while pH variations within the studied range had minimal impact. This study underscores the potential of enzymatic hydrolysis to enhance the bioavailability of organic matter, thereby improving the efficiency of anaerobic digestion for biogas production. Full article
(This article belongs to the Special Issue Advanced Biofuel Production Processes and Technologies)
Show Figures

Figure 1

16 pages, 2144 KiB  
Article
Bioprocessed Guishe Juice (Agave lechuguilla Residue) as a Dual-Action Bioagent for Weed and Fungal Control in Sustainable Agriculture
by José Humberto Sánchez-Robles, Ana G. Reyes, Leopoldo J. Ríos-González, Elan I. Laredo-Alcalá, Marisol Cruz-Requena, Roberto Arredondo-Valdés, Thelma K. Morales-Martínez and Miguel A. Medina-Morales
Processes 2025, 13(7), 2064; https://doi.org/10.3390/pr13072064 - 30 Jun 2025
Viewed by 415
Abstract
Biopesticides represent a safe and sustainable strategy for biological pest management, applicable to weed and fungal control. Biotechnological processing offers a promising approach to enhance the bioactivity of natural products for agricultural use. In this study, guishe juice, an agroindustrial residue derived from [...] Read more.
Biopesticides represent a safe and sustainable strategy for biological pest management, applicable to weed and fungal control. Biotechnological processing offers a promising approach to enhance the bioactivity of natural products for agricultural use. In this study, guishe juice, an agroindustrial residue derived from Agave lechuguilla, was bioprocessed via inoculation with Fusarium chlamydosporum, and its fungicidal and herbicidal potentials were evaluated. The fungal biotransformation led to the accumulation of phytochemicals, including flavonoids and polyphenols, significantly enhancing antioxidant activity to 76% and 96% as measured by DPPH and ABTS assays, respectively. The resulting bioprocessed guishe extract (BGE), particularly at 10% concentration (BGE-10), exhibited strong fungicidal activity, achieving 100% control of phytopathogenic fungi Fusarium spp. and Penicillium spp. Additionally, BGE-10 demonstrated a bioherbicidal effect, with a 77% weed control rate against Verbesina encelioides. These findings emphasize the potential of bioprocessed agave residues as dual-action bioagents, supporting the development of novel, eco-friendly agricultural solutions. Full article
Show Figures

Figure 1

14 pages, 3247 KiB  
Review
Biological Approach for Lead (Pb) Removal from Meat and Meat Products in Bangladesh
by Nowshin Sharmily Maisa, Sumaya Binte Hoque and Sazzad Hossen Toushik
Processes 2025, 13(7), 2018; https://doi.org/10.3390/pr13072018 - 25 Jun 2025
Viewed by 467
Abstract
Heavy metal contamination, particularly lead (Pb) poisoning, is a significant public health issue worldwide. In Bangladesh, Pb contamination of water, soil, air, and food is detected alarmingly. Chronic exposure to Pb leads to severe health complications in the human body, including neurotoxicity, cardiovascular [...] Read more.
Heavy metal contamination, particularly lead (Pb) poisoning, is a significant public health issue worldwide. In Bangladesh, Pb contamination of water, soil, air, and food is detected alarmingly. Chronic exposure to Pb leads to severe health complications in the human body, including neurotoxicity, cardiovascular disease, developmental delays, and kidney damage. Research has established that there is “no safe level” of Pb exposure, as even minimal exposure can cause detrimental effects. Although existing physical and chemical methods are widely used, they come with limitations, such as high costs and the generation of toxic byproducts. As a green, sustainable alternative, the potential of probiotics as an effective biosorption agent has been explored to reduce Pb contamination in food, especially meat, while preserving its nutritional and sensory properties. This paper aims to integrate current knowledge from these two fields and highlight their capacity to decontaminate Pb-laden meat, the primary protein source in Bangladesh. The study also investigates optimal biosorption parameters, including temperature, pH, and exposure time, to enhance effectiveness. The proposed application of lactic acid bacteria (LAB) in meat processing and packaging is expected to significantly lower Pb levels in meat, ensuring safer consumption. Full article
(This article belongs to the Special Issue Biological Methods of Diagnosis in the Microbiology)
Show Figures

Figure 1

43 pages, 2607 KiB  
Review
Cutting-Edge Solutions for Soil and Sediment Remediation in Shipyard Environments
by Jae Ho Jung, Md Akhte Khirul, Dohyoung Kang, Hobin Jee, Chanwoo Park, Yudam Jung, Seunghyun Song and Euntae Yang
Processes 2025, 13(7), 2010; https://doi.org/10.3390/pr13072010 - 25 Jun 2025
Viewed by 592
Abstract
Shipyards are significant industrial sources of environmental pollution, releasing substantial amounts of heavy metals, petroleum hydrocarbons, and organic solvents into soil and groundwater during shipbuilding and maintenance operations. Such contamination not only affects the shipyard premises but also poses serious environmental threats to [...] Read more.
Shipyards are significant industrial sources of environmental pollution, releasing substantial amounts of heavy metals, petroleum hydrocarbons, and organic solvents into soil and groundwater during shipbuilding and maintenance operations. Such contamination not only affects the shipyard premises but also poses serious environmental threats to nearby communities, raising concerns about the long-term sustainability of the shipbuilding industry. Given the increasing global emphasis on sustainable industrial practices, addressing shipyard-related pollution has become a critical environmental challenge. This review aims to provide a comprehensive understanding of the pollution issues associated with shipyards and explore effective remediation strategies. It focuses on contamination in both soil and groundwater, and covers pollution generated throughout the shipbuilding and maintenance lifecycle. First, it examines previous studies to identify the major contaminants and pollution sources typically found at shipyard sites. Next, the paper reviews recent advances in soil and groundwater remediation technologies, including physical, chemical, and biological methods tailored to the unique challenges of shipyard environments. Finally, the review discusses current limitations in remediation practices and outlines potential directions for future research and technological development. Full article
(This article belongs to the Special Issue State-of-the-Art Wastewater Treatment Techniques)
Show Figures

Figure 1

16 pages, 980 KiB  
Article
Statistical Analysis of Temperature Sensors Applied to a Biological Material Transport System: Challenges, Discrepancies, and a Proposed Monitoring Methodology
by Felipe Roque de Albuquerque Neto, José Eduardo Ferreira de Oliveira, Rodrigo Gustavo Dourado da Silva, Andrezza Carolina Carneiro Tomás, Alvaro Antonio Villa Ochoa, José Ângelo Peixoto da Costa, Alisson Cocci de Souza and Paula Suemy Arruda Michima
Processes 2025, 13(6), 1904; https://doi.org/10.3390/pr13061904 - 16 Jun 2025
Viewed by 486
Abstract
Conventional methods for transporting biological materials typically use dry ice or ice for preservation but often overlook important aspects of temperature monitoring and metrological control. These methods generally do not include temperature sensors to track the thermal conditions of the materials during transport, [...] Read more.
Conventional methods for transporting biological materials typically use dry ice or ice for preservation but often overlook important aspects of temperature monitoring and metrological control. These methods generally do not include temperature sensors to track the thermal conditions of the materials during transport, nor do they apply essential metrological practices such as regular sensor calibration and stability checks. This lack of precise monitoring poses significant risks to the integrity of temperature-sensitive biological materials. This study presents a statistical analysis of DS18B20 digital temperature sensors used in an experimental refrigeration system based on thermoelectric modules. The aim was to verify sensor consistency and investigate sources of measurement error. The research was motivated by a prior phase of study, which revealed significant discrepancies of approximately 3 °C between experimental temperature data and numerical simulations. To investigate a potential cause, we conducted a case study analyzing measurements from three identical temperature sensors (same model, brand, and manufacturer). Statistical analyses included ANOVA (analysis of variance) and Tukey’s test with a 95% confidence interval. Since the data did not follow a normal distribution (p-value < 0.05), non-parametric methods such as the Kruskal–Wallis and Levene’s procedures were also applied. The results showed that all sensors recorded statistically significant different temperature values (p-value < 0.05). Although experimental conditions were kept consistent, temperature differences of up to 0.37 °C were observed between sensors. This finding demonstrates an inherent inter-sensor variability that, while within manufacturer specifications, represents a source of systematic error that can contribute to larger discrepancies in complex systems, highlighting the need for individual calibration. Full article
(This article belongs to the Special Issue Multiscale Modeling and Control of Biomedical Systems)
Show Figures

Figure 1

25 pages, 794 KiB  
Review
Metabolic and Evolutionary Engineering of Food Yeasts
by Sakshi Dagariya, Janvi Bhatankar, Tikam Chand Dakal, Bhana Ram Gadi and Paolo Giudici
Processes 2025, 13(6), 1852; https://doi.org/10.3390/pr13061852 - 12 Jun 2025
Viewed by 1146
Abstract
The yeast metabolic and evolutionary engineering, especially Saccharomyces cerevisiae, plays a significant role in the enhancement of its industrial applications in food, beverage, and biofuel production. This review integrates genetic engineering, systems biology, and evolutionary principles to optimize yeast performance, adaptability, and [...] Read more.
The yeast metabolic and evolutionary engineering, especially Saccharomyces cerevisiae, plays a significant role in the enhancement of its industrial applications in food, beverage, and biofuel production. This review integrates genetic engineering, systems biology, and evolutionary principles to optimize yeast performance, adaptability, and productivity. The key strategies which enable targeted genome modifications to improve substrate utilization, stress tolerance, and the biosynthesis of valuable metabolites such as flavor compounds, organic acids, vitamins, and antioxidants, including precise gene editing, notably CRISPR-Cas9. The metabolic pathway optimization through gene overexpression, deletion, and heterologous pathway integration, supported by multi-omics analyses and the Subcellular compartmentalization of metabolic pathways, which enhances biosynthetic efficiency. This review then discusses evolutionary engineering and global transcription machinery engineering by leveraging natural selection and global gene regulation to improve complex traits. The exploration of non-Saccharomyces species and genome shuffling expands the genetic toolkit for strain development. Emerging approaches, including machine learning and synthetic biology, are accelerating rational strain design. By critically synthesizing these diverse methodologies, this review highlights current advancements, identifies key challenges, and outlines future directions in engineering robust yeast strains for sustainable food biotechnology. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

15 pages, 4683 KiB  
Article
The Effect of Storage on the Absorption and Fluorescence Spectra of Petal Extracts of Selected Anthocyanin-Containing Flowers
by Kacper Kut, Grzegorz Bartosz and Izabela Sadowska-Bartosz
Processes 2025, 13(6), 1826; https://doi.org/10.3390/pr13061826 - 9 Jun 2025
Viewed by 441
Abstract
The biological role of the fluorescence of flowers is a matter of debate. Anthocyanins are a group of compounds that are weakly fluorescent; their fluorescence in flowers has been rarely studied. This study aimed to compare the absorption and fluorescence spectra of anthocyanins [...] Read more.
The biological role of the fluorescence of flowers is a matter of debate. Anthocyanins are a group of compounds that are weakly fluorescent; their fluorescence in flowers has been rarely studied. This study aimed to compare the absorption and fluorescence spectra of anthocyanins extracted from several anthocyanin-containing autumn flowers and examine changes in these spectra during the storage of petals at cold-room and room temperatures and during the storage of dried petals. Petals of red clover Trifolium pratense, pink petunia Petunia × hybrida, Pelargonium horatum, Pelargonium. zonale, Pelargonium. peltatum, red and pink Begonia semperflorens, Buddleja japonica, and purple Chrysanthemum were studied. The results demonstrate that it is possible to distinguish between petals of various flowers based on the absorption spectra of petal extracts and the fluorescence spectra of petal extracts and intact petals. Spectral changes during storage were not always unidirectional and progressive; the most common one was the increase in the intensity of the fluorescence band at 500–560 nm at the excitation wavelength of 460 nm. These results point to the possibility of using fluorescence measurements to identify and estimate the freshness of petal-based material in herbalism, forensic analysis, and the food industry. The measurement of the spectra of whole petals or their fragments by front-face fluorimetry, including common plate readers, may be especially useful due to its simplicity and rapidity. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Graphical abstract

Back to TopTop