Bioprocessed Guishe Juice (Agave lechuguilla Residue) as a Dual-Action Bioagent for Weed and Fungal Control in Sustainable Agriculture
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. Bioprocessing of Guishe Extract
2.3. Biotransformed Extracts Recovery and Sample Analysis
2.4. Spectrophotometric Analysis
2.5. Bioassays
2.5.1. Inhibition Assay on Phytopathogenic Fungi
2.5.2. Allelopathic Assay on Verbesina encelioides Seeds by BGE
2.6. Statistical Analysis
3. Results and Discussion
3.1. Bioprocess of Guishe Extract
3.2. Antioxidant Activity
3.3. Evaluation of Bioprocessed Guishe Extract as a Fungicide
3.4. Allelopathic Activity on Verbesina Encelioides Plants In Vivo
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, V.; Jamwa, G.; Rai, G.K.; Gupta, S.K.; Shukla, R.M.; Dadrwal, B.K.; Prabhakar, P.; Tripathy, S.; Rajpoot, S.K.; Singh, A.K.; et al. Biosynthesis of biomolecules from saffron as an industrial crop and their regulation, with emphasis on the chemistry, extraction methods, identification techniques, and potential applications in human health and food: A critical comprehensive review. Biocatal. Agric. Biotechnol. 2024, 59, 103260. [Google Scholar] [CrossRef]
- Iqbal, M.M.; Nishimura, M.; Tsukamoto, Y.; Yoshizawa, S. Changes in microbial community structure related to biodegradation of eelgrass (Zostera marina). Sci. Total Environ. 2024, 930, 172798. [Google Scholar] [CrossRef]
- Parhizkar, H.; Taddei, P.; Weziak-Bialowolska, D.; Mcneely, E.; Spengler, D.; Guillermo, J.; Laurent, C. Higher-order interactions and emergent properties of microbial communities: The power of synthetic ecology. Heliyon 2023, 10, e33896. [Google Scholar] [CrossRef]
- Dulf, F.V.; Vodnar, D.C.; Toşa, M.I.; Dulf, E.H. Simultaneous enrichment of grape pomace with γ-linolenic acid and carotenoids by solid-state fermentation with Zygomycetes fungi and antioxidant potential of the bioprocessed substrates. Food Chem. 2020, 310, 125927. [Google Scholar] [CrossRef]
- Sidana, J.; Singh, B.; Sharma, O.P. Saponins of agave: Chemistry and bioactivity. Phytochemistry 2016, 130, 22–46. [Google Scholar] [CrossRef]
- Álvarez-Chávez, J.; Villamiel, M.; Santos-Zea, L.; Ramírez-Jiménez, A.K. Agave by-products: An overview of their nutraceutical value, current applications, and processing methods. Polysaccharides 2021, 2, 720–743. [Google Scholar] [CrossRef]
- Díaz-Jiménez, L.; Carlos-Hernández, S.; Jasso de Rodriguez, D.; Rodríguez-García, R. Conceptualization of a biorefinery for guishe revalorization. Ind. Crops Prod. 2019, 138, 111441. [Google Scholar] [CrossRef]
- Morreeuw, Z.; Escobedo-Fregoso, C.; Ríos-González, L.J.; Castillo-Quiroz, D.; Reyes, A.G. Transcriptome-based metabolic profiling of flavonoids in Agave lechuguilla waste biomass. Plant Sci. 2021, 305, 110748. [Google Scholar] [CrossRef]
- Reyna, C.T. Phytochemical Identification and Isolation of Endophytic Microorganisms from Agave Americana; María Auxiliadora University: Lima, Perú, 2019; p. 51. Available online: https://hdl.handle.net/20.500.12970/238 (accessed on 24 February 2025).
- Sánchez Robles, J.H.; Luna Enríquez, C.F.; Reyes, A.G.; Cruz Requena, M.; Ríos González, L.J.; Morales Martínez, T.K.; Ascacio Valdés, J.A.; Medina Morales, M.A. Initial study of fungal bioconversion of guishe (Agave lechuguilla residue) juice for bioherbicide activity on model seeds. Fermentation 2023, 9, 421. [Google Scholar] [CrossRef]
- Wang, Z.F.; Zhang, W.; Xiao, L.; Zhou, Y.M.; Du, F.Y. Characterization and bioactive potentials of secondary metabolites from Fusarium chlamydosporum. Nat. Prod. Res 2020, 34, 889–892. [Google Scholar] [CrossRef]
- Qin, Y.; Li, Q.; Luo, F.; Fu, Y.; He, H. One-step purification of two novel thermotolerant β-1,4-glucosidases from a newly isolated strain of Fusarium chlamydosporum HML278 and their characterization. AMB Express 2020, 10, 182. [Google Scholar] [CrossRef]
- Thomas, T.A.; Tirumale, S. Production of lycopene by Fusarium chlamydosporum and its anti-inflammatory activity on raw macrophage cell line. Appl. Biochem. Microbiol. 2023, 59, 308–315. [Google Scholar] [CrossRef]
- Gupta, V.K.; Kubicek, C.P.; Berrin, J.G.; Wilson, D.W.; Couturier, M.; Berlin, A.; Filho, E.X.F.; Ezeji, T. Fungal enzymes for bio-products from sustainable and waste biomass. Trends Biochem. Sci. 2016, 41, 633–645. [Google Scholar] [CrossRef]
- Xie, P.; Huang, L.; Zhang, C.; Zhang, Y. Phenolic compositions, and antioxidant performance of olive leaf and fruit (Olea europaea L.) extracts and their structure-activity relationships. J. Funct. Foods 2020, 16, 460–471. [Google Scholar] [CrossRef]
- López-Trujillo, J.; Medina-Morales, M.A.; Sánchez-Flores, A.; Arévalo, C.; Ascacio-Valdés, J.A.; Mellado, M.; Aguilar, C.N.; Aguilera-Carbo, A.F. Solid bioprocess of tarbush (Flourensia cernua) leaves for β-glucosidase production by Aspergillus niger: Initial approach to fiber–glycoside interaction for enzyme induction. 3 Biotech 2017, 7, 271. [Google Scholar] [CrossRef]
- Ulrich, A.; Müller, C.; Gasparetto, I.G.; Bonafin, F.; Diering, N.L.; Camargo, A.F.; Reichert Júnior, F.W.; Paudel, S.R.; Treichel, H.; Mossi, A.J. Bioherbicide effects of Trichoderma koningiopsis associated with commercial formulations of glyphosate in weeds and soybean plants. Crop Prot. 2023, 172, 106346. [Google Scholar] [CrossRef]
- Barahudin, N.F.; Osman, N.I. Plant development, stress responses, and secondary metabolism under ethylene regulation. Plant Stress 2023, 7, 100146. [Google Scholar] [CrossRef]
- Silva-Beltrán, N.P.; Ruiz-Cruz, S.; Cira-Chávez, L.A.; Estrada-Alvarado, M.I.; Ornelas-Paz, J.D.; López-Mata, M.A.; Del-Toro-Sánchez, C.L.; Ayala-Zavala, J.F.; Márquez-Ríos, E. Tomatidine contents and antioxidant and antimicrobial activities of extracts of tomato plant. Int. J. Anal. Chem. 2015, 2015, 84071. [Google Scholar] [CrossRef]
- Rossi, Y.E.; Vanden Braber, N.L.; Díaz Vergara, L.I.; Montenegro, M.A. Bioactive ingredients obtained from agro-industrial byproducts: Recent advances and innovation in micro-and nanoencapsulation. J. Agric. Food Chem. 2021, 69, 15066–15075. [Google Scholar] [CrossRef]
- Peña-Rodríguez, A.; Morreeuw, Z.; García-Luján, J.; Rodríguez-Jaramillo, M.C.; Guzmán-Villanueva, L.; Escobedo-Fregoso, C.; Tovar-Ramírez, D.; Reyes, A.G. Evaluation of Agave lechuguilla by-product crude extract as a feed additive for juvenile shrimp Litopenaeus vannamei. Aquac. Res. 2020, 51, 1–10. [Google Scholar] [CrossRef]
- Wong-Paz, J.E.; Contreras-Esquivel, J.C.; Rodríguez-Herrera, R.; Carrillo-Inungaray, M.L.; López, L.I.; Nevárez-Moorillón, V.; Aguilar, C.N. Total phenolic content, in vitro antioxidant activity and chemical composition of plant extracts from semiarid Mexican región. Asian Pac. J. Trop. Med. 2015, 8, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.H.; Wang, Q.; Ruan, X.; Pan, C.; Jiang, D.A. Phenolics and plant allelopathy. Molecules 2010, 15, 8933–8952. [Google Scholar] [CrossRef] [PubMed]
- Khadir, M.; Boubaker, H.; Askarne, L.; Farhaoui, A.; Taoussi, M.; Haddou, L.; Cherrate, M.; Ouchari, W.; Zerrouk, M.; Sobeh, M.; et al. Exploration of the antifungal potential of aqueous extracts from two agave species against major postharvest diseases in apples. Postharvest Biol. Technol. 2024, 214, 112992. [Google Scholar] [CrossRef]
- Kuwahara, Y.; Nakajima, D.; Shinpo, S.; Nakamura, M.; Kawano, N.; Kawahara, N.; Yamazaki, M.; Saito, K.; Suzuki, H.; Hirakawa, H. Identification of potential genes involved in triterpenoid saponins biosynthesis in Gleditsia sinensis by transcriptome and metabolome analyses. J. Nat. Med. 2019, 73, 369–380. [Google Scholar] [CrossRef]
- Mushtaq, W.; Ain, Q.; Siddiqui, M.B.; Alharby, H.; Hakeem, K.R. Allelochemicals change macromolecular content of some selected weeds. S. Afr. J. Bot. 2020, 130, 177–184. [Google Scholar] [CrossRef]
- Schumann, U.; Smith, N.A.; Wang, M.B. A fast and efficient method for preparation of high-quality RNA from fungal mycelia. BMC Res. Notes 2013, 6, 71. [Google Scholar] [CrossRef]
- Cervantes-Güicho, V.J.; Reyes, A.G.; Nuncio, A.; Sepúlveda-Torre, L.; Landa-Cansigno, C.; Rodríguez-De la Garza, J.A.; Medina-Morales, M.A.; Ríos-González, L.J.; Morales-Martínez, T.K. Box-Behnken Design for DPPH free radical scavenging activity optimization from microwave-assisted extraction of polyphenolic compounds from Agave lechuguilla Torr. residues. Processes 2024, 12, 2005. [Google Scholar] [CrossRef]
- López Urquídez, G.A.; Murillo-Mendoza, C.A.; Martinez-López, J.A.; Ayala-Tafoya, F.; Yañez-Juárez, M.G.; Lopez-Orona, C.A. Effect of preemergent herbicides on weed control and onion development under fertigation conditions. Rev. Mex. Cienc. Agric. 2020, 11, 1149–1161. [Google Scholar] [CrossRef]
- Ghitti, E.; Rolli, E.; Crotti, E.; Borin, S. Flavonoids are intra- and inter-kingdom modulator signals. Microorganisms 2022, 10, 2479. [Google Scholar] [CrossRef]
- Ran, J.; Su, Y.; Wang, P.; Yang, W.; Li, R.; Jiao, L.; Zhao, R. Effect of Lactobacillus acidophilus fermentation on bioaccessibility: The relationship between biotransformation and antioxidant activity of apple polyphenols based on metabolomics. LWT 2023, 190, 115360. [Google Scholar] [CrossRef]
- Cano-Flores, A. Biotransformation of triterpenes with different microorganisms. Mex. J. Pharm. Sci. 2013, 44, 7–16. Available online: https://www.scielo.org.mx/pdf/rmcf/v44n2/v44n2a2.pdf (accessed on 10 March 2025).
- Jasso De Rodríguez, D.; García, R.R.; Hernández-Castillo, F.D.; Aguilar, C.N.; Sáenz Galindo, A.; Villarreal Quintanilla, J.A.; Moreno Zuccolotto, L.E. In vitro antifungal activity of extracts of Mexican Chihuahuan Desert plants against postharvest fruit fungi. Ind. Crops Prod. 2011, 34, 960–966. [Google Scholar] [CrossRef]
- Redondo-Blanco, S.; Fernández, J.; López-Ibáñez, S.; Miguélez, E.; Villar, C.; Lombó, F. Plant phytochemicals in food preservation: Antifungal bioactivity: A review. J. Food Prot. 2020, 83, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Jasso de Rodríguez, D.; Salas-Méndez, E.J.; Rodríguez-García, R.; Hernández-Castillo, F.D.; Díaz-Jiménez, M.L.V.; Sáenz-Galindo, A.; González-Morales, S.; Flores-López, M.L.; Villarreal-Quintanilla, J.A.; Peña-Ramos, F.M.; et al. Antifungal activity in vitro of ethanol and aqueous extracts of leaves and branches of Flourensia spp. against postharvest fungi. Ind. Crops Prod. 2017, 107, 499–508. [Google Scholar] [CrossRef]
- Álvarez-Pérez, O.B.; Ventura-Sobrevilla, J.M.; Ascacio-Valdés, J.A.; Rojas, R.; Verma, D.K.; Aguilar, C.N. Valorization of Flourensia cernua DC as source of antioxidants and antifungal bioactives. Ind. Crops Prod. 2020, 152, 112422. [Google Scholar] [CrossRef]
- El Khetabi, A.; El Ghadraoui, L.; Ouaabou, R.; Ennahli, S.; Barka, E.A.; Lahlali, R. Antifungal activities of aqueous extracts of moroccan medicinal plants against Monilinia spp. agent of brown rot disease. J. Nat. Pestic. Res. 2023, 5, 100038. [Google Scholar] [CrossRef]
- Chou, C.H. Introduction to allelopathy. In Allelopathy: A Physiological Process with Ecological Implications; Reigosa, M.J., Pedrol, N., Gonzalez, L., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 1–9. [Google Scholar] [CrossRef]
- Iqbal, J.; Zaib, S.; Farooq, U.; Khan, A.; Bibi, I.; Suleman, S. Antioxidant, antimicrobial, and free radical scavenging potential of aerial parts of Periploca aphylla and Ricinus communis. Pharmacology 2012, 6, 563267. [Google Scholar] [CrossRef]
- Saadaoui, E.; Martín, J.; Ghazel, N.; Ben Romdhane, C.; Massoudi, N.; Cervantes, E. Allelopathic effects of aqueous extracts of Ricinus communis L. on the germination of six cultivated species. Int. J. Plant Soil Sci. 2015, 7, 220–227. [Google Scholar] [CrossRef]
- Anh, L.; Van Quan, N.; Tuan Nghia, L.; Dang Xuan, T. Phenolic allelochemicals: Achievements, limitations, and prospective approaches in weed management. Weed Biol. Manag. 2021, 21, 37–67. [Google Scholar] [CrossRef]
- Gomaa, N.H.; Hassan, M.O.; Fahmy, G.M.; Gonzalez, L.; Hammouda, O.; Atteya, A.M. Allelopathic effects of Sonchus oleraceus L. on the germination and seedling growth of crop and weed species. Acta Bot. Bras. 2014, 28, 408–416. [Google Scholar] [CrossRef]
- Aburge, S.; Quashie-Sam, S.J.Q. Evaluating the allelopathic effect of Jatropha curcas aqueous extract on germination, radical, and plumule length of crops. Int. J. Agric. Biol. 2010, 12, 769–772. Available online: https://www.cabidigitallibrary.org/doi/pdf/10.5555/20103309369 (accessed on 27 February 2025).
- Basile, A.; Sorbo, S.; Giordano, S.; Ricciardi, L.; Ferrara, S.; Montesano, D.; Ferrara, L. Antibacterial and allelopathic activity of extract from Castanea sativa leaves. Phytotherapy 2000, 71, S110–S116. [Google Scholar] [CrossRef] [PubMed]
- About, M.; Bensellam, E.; Elyacoubi, H.; Moutiq, R.; Rochdi, A. Biocidal allelopathic effects in vitro of aqueous and organic fractions extracts of Visnaga daucoides and Ricinus communis on a noxious weed (Phalaris canariensis) and a cultivated plant (Lactuca sativa) during seed germination and initial seedling growth. Int. J. Chem. Biochem. Sci. 2022, 22, 100–109. Available online: https://www.researchgate.net/publication/369708503_Biocidal_allelopathic_effects_of_aqueous_organic_fractions_extracts_of_Visnaga_daucoides_Ricinus_communis_on_a_noxious_weed_Phalaris_canariensis (accessed on 1 March 2025).
- Davis, S.C.; Ortiz-Cano, H.G. Lessons from the history of Agave: Ecological and cultural context for valuation of CAM. Ann. Bot. 2023, 132, 819–833. [Google Scholar] [CrossRef]
- Hossen, K.; Kato-Noguchi, H. Evaluation of the allelopathic activity of Albizia procera (Roxb.) Benth. as a potential source of bioherbicide to control weeds. Int. J. Plant Biol. 2022, 13, 523–534. [Google Scholar] [CrossRef]
- Cavalcante, B.; Scapini, T.; Camargo, A.; Ulrich, A.; Bonatto, C.; Dalastra, C.; Mossi, A.; Fongaro, C.; Di Piero, R.; Treichel, L. Orange peels and shrimp shell used in a fermentation process to produce an aqueous extract with bioherbicide potential to weed control. Biocatal. Agric. Biotechnol. 2021, 32, 101947. [Google Scholar] [CrossRef]
- Bastos, B.; Deobald, G.; Brun, T.; Prá, V.; Khun, R.; Pinto, A.; Mazutti, M. Solid-state fermentation for production of a bioherbicide from Diaporthe sp. and its formulation to enhance the efficacy. 3 Biotech 2017, 7, 135. [Google Scholar] [CrossRef]
- Schein, D.; Santos, M.S.N.; Schmaltz, S.; Nicola, L.E.P.; Bianchin, C.F.; Ninaus, R.G.; Menezes, B.B.d.; Santos, R.C.d.; Zabot, G.L.; Tres, M.V.; et al. Microbial Prospection for Bioherbicide Production and Evaluation of Methodologies for Maximizing Phytotoxic Activity. Processes 2022, 10, 2001. [Google Scholar] [CrossRef]
- Available online: https://listado.mercadolibre.com.mx/faena-paraquat-glufosinato-herbicida#D[A:faena%20paraquat%20glufosinato%20herbicida] (accessed on 17 June 2025).
Index | Designation | Damage |
---|---|---|
0–30 | No Damage | No effect, appearance similar to control |
30–60 | Slight Damage | More pronounced chlorosis, necrotic patches |
60–80 | Moderate Damage | Manifested phytotoxicity, severe damage with loss of some plants |
80–90 | Severe Damage | Significant plant death, few manage to survive |
100 | Total death | Death of all plants |
Index | Ranking |
---|---|
0 a 40 | None or Poor |
41 a 60 | Regular |
61 a 70 | Enough |
71 a 80 | Good |
81 a 90 | Very good |
90 a 100 | Excellent |
Treatment | % Inhibition * | SD | |
---|---|---|---|
Penicillium spp. | BGE-0.5 | 57% b | 0.04 |
BGE-1 | 73% c | 0.02 | |
BGE-10 | 88% d | 0.02 | |
Fusarium spp. | BGE-0.5 | 8% b | 0 |
BGE-1 | 13% b | 0.09 | |
BGE-10 | 100% a | 0.07 |
Treatment | EWC B (%) * | EWC D (%) * | EWC A (%) * | EWC d (%) * | WCI (%) * | ALAM |
---|---|---|---|---|---|---|
Glyphosate | a 75.58% ± 5.0 | a 100.00% ± 0.0 | a 100.00% ± 0.0 | a 100.00% ± 0.0 | 94 | Excellent |
BGE-0.5 | a 81.32% ± 6.6 | c 19.05% ± 7.3 | c 16.29% ± 0.8 | cd 76.25% ± 0.8 | 48 | Regular |
BGE-1 | b 54.83% ± 2.4 | b 23.81% ± 9.7 | c 3.70% ± 0.9 | d 72.44% ± 0.9 | 39 | None or Poor |
BGE-10 | a 75.54% ± 7.9 | a 76.19% ± 3.6 | b 70.46% ± 1.3 | b 87.50% ± 1.3 | 77 | Good |
BGE-100 | b 59.67% ± 1.7 | a 80.95% ± 3.7 | b 74.68% ± 1.8 | bc 85.00% ± 1.8 | 75 | Good |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Robles, J.H.; Reyes, A.G.; Ríos-González, L.J.; Laredo-Alcalá, E.I.; Cruz-Requena, M.; Arredondo-Valdés, R.; Morales-Martínez, T.K.; Medina-Morales, M.A. Bioprocessed Guishe Juice (Agave lechuguilla Residue) as a Dual-Action Bioagent for Weed and Fungal Control in Sustainable Agriculture. Processes 2025, 13, 2064. https://doi.org/10.3390/pr13072064
Sánchez-Robles JH, Reyes AG, Ríos-González LJ, Laredo-Alcalá EI, Cruz-Requena M, Arredondo-Valdés R, Morales-Martínez TK, Medina-Morales MA. Bioprocessed Guishe Juice (Agave lechuguilla Residue) as a Dual-Action Bioagent for Weed and Fungal Control in Sustainable Agriculture. Processes. 2025; 13(7):2064. https://doi.org/10.3390/pr13072064
Chicago/Turabian StyleSánchez-Robles, José Humberto, Ana G. Reyes, Leopoldo J. Ríos-González, Elan I. Laredo-Alcalá, Marisol Cruz-Requena, Roberto Arredondo-Valdés, Thelma K. Morales-Martínez, and Miguel A. Medina-Morales. 2025. "Bioprocessed Guishe Juice (Agave lechuguilla Residue) as a Dual-Action Bioagent for Weed and Fungal Control in Sustainable Agriculture" Processes 13, no. 7: 2064. https://doi.org/10.3390/pr13072064
APA StyleSánchez-Robles, J. H., Reyes, A. G., Ríos-González, L. J., Laredo-Alcalá, E. I., Cruz-Requena, M., Arredondo-Valdés, R., Morales-Martínez, T. K., & Medina-Morales, M. A. (2025). Bioprocessed Guishe Juice (Agave lechuguilla Residue) as a Dual-Action Bioagent for Weed and Fungal Control in Sustainable Agriculture. Processes, 13(7), 2064. https://doi.org/10.3390/pr13072064