Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (146)

Search Parameters:
Journal = Optics
Section = General

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2517 KB  
Article
HF-Free Synthesis of Narrow-Band Cs2GeF6: Mn4+ Red Phosphors via a Molten Salt Method
by Chenxing Liao, Huihuang Cai, Jiabao Wu, Wei Xie and Liaolin Zhang
Optics 2026, 7(1), 1; https://doi.org/10.3390/opt7010001 - 22 Dec 2025
Viewed by 177
Abstract
Mn4+-activated fluoride phosphors possess outstanding luminescent properties, making them highly suitable for applications in lighting and display technologies. However, the synthesis of such phosphors generally requires the use of large amounts of highly toxic aqueous HF, leading to serious environmental pollution. [...] Read more.
Mn4+-activated fluoride phosphors possess outstanding luminescent properties, making them highly suitable for applications in lighting and display technologies. However, the synthesis of such phosphors generally requires the use of large amounts of highly toxic aqueous HF, leading to serious environmental pollution. To eliminate the use of hazardous HF solution, a low-temperature molten salt method employing NH4HF2 was developed to synthesize the narrow-band red emitter Cs2GeF6: Mn4+ phosphor. Following the reaction, the product was washed with a dilute H2O2 solution to remove residual NH4HF2 and other impurities. The phase purity and morphology were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively, and the luminescence properties were examined via photoluminescence (PL) spectroscopy. The obtained phosphors exhibit bright red emission characteristics of Mn4+ under blue-violet excitation. Among them, Cs2GeF6: 0.08 Mn4+ shows the highest emission intensity, with an internal quantum efficiency (IQE) of 78%. A white light-emitting diode (WLED) fabricated by combining this phosphor with a blue chip and commercial Y3Al5O12: Ce3+ (YAG) phosphor achieved a high luminous efficacy (LE) of ~146 lm/W, a correlated color temperature (CCT) of ~4396 K, and a color rendering index (Ra) of ~83, alongside excellent operational color stability. Full article
Show Figures

Figure 1

12 pages, 2451 KB  
Article
Microwave Dynamic Modulation Metasurface Absorber Based on Origami Structure
by Zhaoxu Pan, Qiaobai He, Ruicong Zhang, Tianyu Wang, Jiaqi Zhu and Zicheng Song
Optics 2025, 6(4), 67; https://doi.org/10.3390/opt6040067 - 15 Dec 2025
Viewed by 236
Abstract
With the rapid advancement of detection technologies, traditional static electromagnetic absorbers increasingly struggle to meet controllable stealth requirements across diverse dynamic environments. To achieve active and controllable modulation of electromagnetic reflection characteristics, this paper proposes a transparent reconfigurable metamaterial absorber based on an [...] Read more.
With the rapid advancement of detection technologies, traditional static electromagnetic absorbers increasingly struggle to meet controllable stealth requirements across diverse dynamic environments. To achieve active and controllable modulation of electromagnetic reflection characteristics, this paper proposes a transparent reconfigurable metamaterial absorber based on an origami structure. By adjusting the folding angles of the indium tin oxide (ITO)-polyethylene terephthalate (PET) film, the structure achieves reversible deformation from the vertical state to the horizontal state. This enables continuous modulation of the reflectance from below −10 dB (absorbing state) to nearly 0 dB (reflecting state) within the 4–18.9 GHz frequency range, with a relative bandwidth exceeding 130% and excellent angular stability. The energy loss and current distribution under different states are analyzed, revealing the mechanisms behind broadband absorption and deep modulation. Experimental measurements of the fabricated metamaterial align well with simulation results. Leveraging its flexible structure, reversible modulation capability, and angular stability, this origami-inspired reconfigurable metamaterial demonstrates promising application potential in the fields of adaptive electromagnetic camouflage and stealth protection. Full article
Show Figures

Figure 1

14 pages, 2388 KB  
Article
High-Resolution Caustic Beam Shaping via Polarization Transformation Through Highly Anisotropic Scattering Media
by Yu-Han Zhou, Guang-Ze Li, Lu-Hong Zhang, Ning-Chen Cao, Li-Ming Zhu, Xiao-Bo Hu, Yan Wu, Khian-Hooi Chew and Rui-Pin Chen
Optics 2025, 6(4), 66; https://doi.org/10.3390/opt6040066 - 11 Dec 2025
Viewed by 304
Abstract
Manipulating complex light fields through highly anisotropic scattering medium (HASM) remains a fundamental challenge due to the intricate underlying physics and broad application potential. We introduce a unified theoretical and experimental framework for generating and controlling arbitrarily polarized curved caustic beams using an [...] Read more.
Manipulating complex light fields through highly anisotropic scattering medium (HASM) remains a fundamental challenge due to the intricate underlying physics and broad application potential. We introduce a unified theoretical and experimental framework for generating and controlling arbitrarily polarized curved caustic beams using an extended polarization transfer matrix (EPTM) for the first time, enabling intuitive polarization transformation through HASM. The EPTM is experimentally measured via a four-step phase-shifting technique, and its submatrices are independently modulated with tailored caustic phase profiles. This strategy facilitates the creation of diverse high-resolution caustic beams, including Gaussian and vortex types with tunable energy distribution, polarization states, and vorticity. The achievement of polarization transformation through HASM by our approach offers versatile manipulation over optical field properties such as multiple high-resolution caustic beams, angular momentum flux, and polarization, paving the way for enhanced functionality in advanced optical systems. Full article
Show Figures

Figure 1

11 pages, 1982 KB  
Article
Improving Channel Uniformity of Multiplexer with High-Degree-of-Freedom Auxiliary Waveguides
by Qingran Liu, Chenyan Zhang, Pengju Hu, Huanjie Chen, Xiyan Xu and Chongfu Zhang
Optics 2025, 6(4), 65; https://doi.org/10.3390/opt6040065 - 11 Dec 2025
Viewed by 173
Abstract
In order to further mitigate the channel non-uniformity at the junction between the input slab and the arrayed waveguide grating in traditional AWG structures, we design a highly flexible, structurally adaptive linear auxiliary waveguide. Through systematic parameter scanning utilizing the Particle Swarm Optimization [...] Read more.
In order to further mitigate the channel non-uniformity at the junction between the input slab and the arrayed waveguide grating in traditional AWG structures, we design a highly flexible, structurally adaptive linear auxiliary waveguide. Through systematic parameter scanning utilizing the Particle Swarm Optimization (PSO) algorithm, an optimal set of geometric parameters for the auxiliary waveguide is identified. This optimization strategy achieves a significant reduction in loss non-uniformity by 0.5 dB relative to the conventional AWG configuration, culminating in a final non-uniformity of merely 0.253 dB. This improvement underscores the critical role of advanced structural tuning and algorithmic optimization in enhancing the performance of photonic integrated circuits, particularly in dense wavelength division multiplexing (DWDM) applications for next-generation communication systems such as radio-over-fiber (RoF) architecture-based 6G. The method can provide a scalable and efficient pathway toward high-uniformity, AWG designs without introducing additional fabrication complexity or incurring substantial costs. Full article
Show Figures

Figure 1

15 pages, 4017 KB  
Article
Development of a High-Accuracy Spectral Irradiance Modeling for Evaluating Properties of Output Light from White Light-Emitting Diodes
by Quang-Khoi Nguyen and Quoc-Cuong Nguyen
Optics 2025, 6(4), 64; https://doi.org/10.3390/opt6040064 - 10 Dec 2025
Viewed by 262
Abstract
An efficient method for evaluating the spectral irradiance properties of the white light of white LEDs is conducted. The method includes two main steps. The first step is to build up spectral irradiance modeling for the blue and yellow emission bands. The photometric [...] Read more.
An efficient method for evaluating the spectral irradiance properties of the white light of white LEDs is conducted. The method includes two main steps. The first step is to build up spectral irradiance modeling for the blue and yellow emission bands. The photometric parameter of the spectral irradiance of white light which is generated by yellow and blue light mixing is determined based on the photometry and colorimetry theories. The correlated color temperature value strongly depends on the power ratios of blue and yellow light. In addition, the result indicates that the emission bandwidth of yellow phosphor is also an important factor for increasing the color performance of output light. The selection of material with a broader bandwidth of yellow light can control a slower variation in color property compared to the case of using a material with a narrower bandwidth. In addition, the blue light hazard ratio of the spectral irradiance of white light can be extracted, which is helpful for designing the white light with moderate blue and yellow power ratios before fabricating the white LEDs product. Full article
Show Figures

Figure 1

15 pages, 1853 KB  
Article
Optimizing SAW Device Performance Using Titanium-Doped Lithium Niobate Substrates
by Mohamed Beriniz, Kamal Maaider, Noureddine El Barbri, Ali Amkor and Abdelghani Khalil
Optics 2025, 6(4), 63; https://doi.org/10.3390/opt6040063 - 4 Dec 2025
Viewed by 286
Abstract
This study introduces a new theoretical framework for the ferroelectric phase transition in lithium niobate (LiNbO3), which explicitly incorporates electrostatic interactions between both first and second nearest-neighbor ions. This extended model is applied to estimate the inverse quality factor (Q [...] Read more.
This study introduces a new theoretical framework for the ferroelectric phase transition in lithium niobate (LiNbO3), which explicitly incorporates electrostatic interactions between both first and second nearest-neighbor ions. This extended model is applied to estimate the inverse quality factor (Q−1), the equivalent mechanical resistance (Rm), and the Curie temperature (Tc) of pure and titanium-doped lithium niobate (LiNbO3:Ti). The proposed analytical expression for Tc is given by: TC*=2p*3cos(θ*3)B*32p3cos(θ3)B3 TC. The analysis reveals that variations in Q−1 and Tc are governed by factors such as ionic mass, charge, and defect structure. The theoretical predictions show good agreement with experimental data reported in the literature—particularly for Q−1 in pure LiNbO3 and for Tc in Ti-doped LiNbO3—thus validating the reliability of the proposed model. Moreover, at constant temperature, both the inverse quality factor and the equivalent mechanical resistance decrease as the Ti concentration increases. This trend highlights that titanium doping enhances the acoustic performance of LiNbO3 substrates, making them more suitable for high-performance surface acoustic wave (SAW) device applications. Full article
Show Figures

Figure 1

10 pages, 520 KB  
Article
Infrared Dielectric Function of Dragonfly Dielectric Ink 1092 Polymer from 300 cm−1 to 6000 cm−1
by Dustin Louisos, Joseph Engeland, Nuren Z. Shuchi, Samuel I. Gatley, John F. Federici, Benjamin Thomas, Ian Gatley, Glenn D. Boreman and Tino Hofmann
Optics 2025, 6(4), 59; https://doi.org/10.3390/opt6040059 - 19 Nov 2025
Viewed by 314
Abstract
This work focuses on the characterization of the complex dielectric function of a polymer material, which is UV-cured dielectric ink 1092, used in the DragonFly IV 3D inkjet printer. Infrared spectroscopic ellipsometry was performed over the spectral range of 300–4000 cm−1 at [...] Read more.
This work focuses on the characterization of the complex dielectric function of a polymer material, which is UV-cured dielectric ink 1092, used in the DragonFly IV 3D inkjet printer. Infrared spectroscopic ellipsometry was performed over the spectral range of 300–4000 cm−1 at multiple angles of incidence to extract both real and imaginary components of the dielectric response. In addition, polarized transmission measurements were taken over the spectral range from 300–6000 cm−1 to aid in characterization. We report an isotropic dielectric function model that is composed of oscillators with both Gaussian and Lorentzian broadening. This model reveals strong absorption bands at 925–1500 cm−1, 1600–1775cm1, and 2840–3000 cm−1 while otherwise appearing largely transparent. This parameterized dielectric function is critical in first-principles modeling of infrared optical components and metamaterials fabricated using this polymer. Full article
Show Figures

Figure 1

11 pages, 1530 KB  
Article
Photophysical, Electrochemical, Density Functional Theory, and Spectroscopic Study of Some Oligothiophenes
by Mamoun M. Bader, Phuong-Truc T. Pham, Juri A. Busaili, Samar M. Alrifai, Sarah H. Younas and El Hadj Elandaloussi
Optics 2025, 6(4), 56; https://doi.org/10.3390/opt6040056 - 10 Nov 2025
Viewed by 392
Abstract
Dicyanovinyl (DCV) oligothiophenes are interesting materials due to their unique optical and electronic properties. They are relatively easy to prepare using Knoevenagel condensation reactions from the corresponding aldehydes. Understanding their optical and electrochemical characteristics is important for both building structure/property relationships and for [...] Read more.
Dicyanovinyl (DCV) oligothiophenes are interesting materials due to their unique optical and electronic properties. They are relatively easy to prepare using Knoevenagel condensation reactions from the corresponding aldehydes. Understanding their optical and electrochemical characteristics is important for both building structure/property relationships and for optimizing their performance in various applications. We report on the electrochemical and photophysical properties of three oligothiophenes end-capped with dicyanovinyl -CH=C(CN)2 or DCV groups. The compounds included in this study are DCV-T-DCV (1), DCV-2T-DCV (2), and DCV-3T-DCV (3), where T represents one thiophene unit. Introduction of the DCV groups into oligothiophenes results in unique evolution of their electrochemical and optical behavior. First, new reversible two-electron reduction processes in the series DCV-nT-DCV start to appear with a gradual increase in the reduction potential with an increasing number of thiophene units. This was consistent with the electronic spectroscopic results. These results demonstrate that the DCV groups can be used in molecular design and fine-tuning of the optical and redox properties of oligothiophene and presumably this strategy can be extended to other conjugated organic molecules. We also report on the photophysical and vibrational spectroscopic properties of these compounds. The C=C stretching bands in Raman and IR spectra reveal more quinoidal nature in shorter molecules and more dominant benzoidal character in longer molecules. The DCV-induced modulation of electrochemical, optical, and vibrational properties highlights their potential in diverse optoelectronic applications. Full article
Show Figures

Figure 1

10 pages, 1600 KB  
Article
Multi-Channel Wide-Spectrum High-Resolution Spectrometer for Thin-Film Thickness Measurement
by Tong Wu, Haopeng Li, Chuan Zhang, Jingwei Yu, Jianjun Liu, Zepei Zheng, Bosong Duan, Anyu Sun and Bingfeng Ju
Optics 2025, 6(4), 55; https://doi.org/10.3390/opt6040055 - 3 Nov 2025
Viewed by 465
Abstract
With the increasing application of oxide films in nuclear fuel assemblies, the accurate measurement of thin-film thickness has become increasingly critical. Traditional spectral interferometry techniques have limitations when dealing with new materials and complex structures; therefore, this study proposes a multi-channel wide-spectrum high-resolution [...] Read more.
With the increasing application of oxide films in nuclear fuel assemblies, the accurate measurement of thin-film thickness has become increasingly critical. Traditional spectral interferometry techniques have limitations when dealing with new materials and complex structures; therefore, this study proposes a multi-channel wide-spectrum high-resolution analysis technique. This technique optimizes the utilization of photosensitive elements through multi-channel spectral sampling, combined with precision spectroscopic components and an independent optical focusing and imaging system. Simultaneously, it adopts optical correction technologies such as coma optimization and astigmatism correction to improve imaging quality and spectral resolution. Additionally, it enhances data accuracy by means of multi-channel calibration based on the least squares method and non-linear correction. The technique enables high-precision measurement ranging from the nanometer to the millimeter scale, resulting in a significantly wider measurement range compared to traditional spectrometers. Simulation verification shows that this technique outperforms existing technologies in information acquisition, analysis accuracy, and detection efficiency, and has broad application prospects in fields such as semiconductor chip manufacturing and optical coating. In the future, focus will be placed on expanding the spectral range, improving resolution, and enhancing real-time measurement capabilities. Full article
Show Figures

Figure 1

16 pages, 3294 KB  
Article
A Spatial Resolution-Based Evaluation Method for Subpixel Registration Algorithms
by Fan Li, Junliang Yang, Hui Zhang and Pingquan Wang
Optics 2025, 6(4), 54; https://doi.org/10.3390/opt6040054 - 2 Nov 2025
Viewed by 427
Abstract
Digital image correlation (DIC) technology is widely employed in speckle-based measurement techniques, including X-ray speckle tracking. By enhancing DIC’s measurement capability to the subpixel scale through subpixel registration technology, the accuracy of such tracking methods is significantly improved. Consequently, selecting an appropriate subpixel [...] Read more.
Digital image correlation (DIC) technology is widely employed in speckle-based measurement techniques, including X-ray speckle tracking. By enhancing DIC’s measurement capability to the subpixel scale through subpixel registration technology, the accuracy of such tracking methods is significantly improved. Consequently, selecting an appropriate subpixel registration algorithm becomes crucial for advancing the precision of both DIC and its application in tracking methods. Nevertheless, current evaluation approaches for these algorithms overlook spatial resolution—an essential metric not only for X-ray speckle tracking but also for other comparable methodologies. Inspired by the modulation transfer function, this study proposes a novel evaluation method that uses the root mean square error of displacement measurement at different spatial frequencies to assess spatial resolution. Two widely used subpixel registration algorithms—the peak-finding algorithm and the iterative spatial domain cross-correlation algorithm—are evaluated and compared. The result strongly contrasts with traditional evaluations based on ideal translational conditions, and underscores the necessity of incorporating spatial resolution and speckle size into algorithm selection criteria for practical applications. Full article
Show Figures

Figure 1

11 pages, 8439 KB  
Article
Quantum Beats of a Macroscopic Polariton Condensate in Real Space
by Roman V. Cherbunin, Aleksey Liubomirov, Stella V. Kavokina, Denis Novokreschenov, Andrey Kudlis and Alexey V. Kavokin
Optics 2025, 6(4), 53; https://doi.org/10.3390/opt6040053 - 23 Oct 2025
Viewed by 955
Abstract
We experimentally observe harmonic oscillations in a bosonic condensate of exciton-polaritons confined within an elliptical trap. These oscillations arise from quantum beats between two size-quantized states of the condensate, split in energy due to the trap’s ellipticity. By precisely targeting specific spots inside [...] Read more.
We experimentally observe harmonic oscillations in a bosonic condensate of exciton-polaritons confined within an elliptical trap. These oscillations arise from quantum beats between two size-quantized states of the condensate, split in energy due to the trap’s ellipticity. By precisely targeting specific spots inside the trap with nonresonant laser pulses, we control frequency, amplitude, and phase of these quantum beats. The condensate wave function dynamics is visualized on a streak camera and mapped to the Bloch sphere, demonstrating Hadamard and Pauli-Z operations. We conclude that a qubit based on a superposition of these two polariton states would exhibit a coherence time exceeding the lifetime of an individual exciton-polariton by at least two orders of magnitude. Full article
Show Figures

Figure 1

15 pages, 4650 KB  
Article
Rapid Discrimination of Platycodonis radix Geographical Origins Using Hyperspectral Imaging and Deep Learning
by Weihang Xing, Xuquan Wang, Zhiyuan Ma, Yujie Xing, Xiong Dun and Xinbin Cheng
Optics 2025, 6(4), 52; https://doi.org/10.3390/opt6040052 - 13 Oct 2025
Viewed by 613
Abstract
Platycodonis radix is a commonly used traditional Chinese medicine (TCM) material. Its bioactive compounds and medicinal value are closely related to its geographical origin. The internal components of Platycodonis radix from different origins are different due to the influence of environmental factors such [...] Read more.
Platycodonis radix is a commonly used traditional Chinese medicine (TCM) material. Its bioactive compounds and medicinal value are closely related to its geographical origin. The internal components of Platycodonis radix from different origins are different due to the influence of environmental factors such as soil and climate. These differences can affect the medicinal value. Therefore, accurate identification of Platycodonis radix origin is crucial for drug safety and scientific research. Traditional methods of identification of TCM materials, such as morphological identification and physicochemical analysis, cannot meet the efficiency requirements. Although emerging technologies such as computer vision and spectroscopy can achieve rapid detection, their accuracy in identifying the origin of Platycodonis radix is limited when relying solely on RGB images or spectral features. To solve this problem, we aim to develop a rapid, non-destructive, and accurate method for origin identification of Platycodonis radix using hyperspectral imaging (HSI) combined with deep learning. We captured hyperspectral images of Platycodonis radix slices in 400–1000 nm range, and proposed a deep learning classification model based on these images. Our model uses one-dimensional (1D) convolution kernels to extract spectral features and two-dimensional (2D) convolution kernels to extract spatial features, fully utilizing the hyperspectral data. The average accuracy has reached 96.2%, significantly better than that of 49.0% based on RGB images and 81.8% based on spectral features in 400–1000 nm range. Furthermore, based on hyperspectral images, our model’s accuracy is 14.6%, 8.4%, and 9.6% higher than the variants of VGG, ResNet, and GoogLeNet, respectively. These results not only demonstrate the advantages of HSI in identifying the origin of Platycodonis radix, but also demonstrate the advantages of combining 1D convolution and 2D convolution in hyperspectral image classification. Full article
Show Figures

Figure 1

24 pages, 17690 KB  
Article
Power-Compensated White Laser Underwater Imaging Applications Based on Transmission Distance
by Weiyu Cai, Guangwang Ding, Xiaomei Liu, Xiang Li, Houjie Chen, Xiaojuan Ma and Hua Liu
Optics 2025, 6(4), 51; https://doi.org/10.3390/opt6040051 - 10 Oct 2025
Viewed by 790
Abstract
The complex aquatic environment attenuates light transmission, thereby limiting the detection range of underwater laser systems. To address the challenges of limited operational distance and significant light energy attenuation, this study investigates optimized underwater lighting and imaging applications using a combined tricolor RGB [...] Read more.
The complex aquatic environment attenuates light transmission, thereby limiting the detection range of underwater laser systems. To address the challenges of limited operational distance and significant light energy attenuation, this study investigates optimized underwater lighting and imaging applications using a combined tricolor RGB (RED-GREEN-BLUE) white laser source. First, accounting for the attenuation characteristics of water, we propose a power-compensated white laser system based on transmission distance and underwater imaging theory. Second, underwater experiments are conducted utilizing both standard D65 white lasers and the proposed power-compensated white lasers, respectively. Finally, the theory is validated by assessing image quality metrics of the captured underwater imagery. The results demonstrate that a low-power (0.518 W) power-compensated white laser achieves a transmission distance of 5 m, meeting the requirements for a long-range, low-power imaging light source. Its capability for independent adjustment of the three-color power output fulfills the lighting demands for specific long-distance transmission scenarios. These findings confirm the advantages of power-compensated white lasers in long-range underwater detection and refine the characterization of white light for underwater illumination. Full article
Show Figures

Figure 1

15 pages, 1007 KB  
Article
Optimization of Convex Transmissive Volume Bragg Grating for Hyperspectral Imaging Applications
by Yueying Li, Jiazhu Duan, Xiangjie Zhao, Yingnan Peng, Yongquan Luo, Dayong Zhang and Yibo Chen
Optics 2025, 6(4), 49; https://doi.org/10.3390/opt6040049 - 7 Oct 2025
Viewed by 651
Abstract
The Volume Bragg Grating (VBG) imaging technique provides a novel approach to gaze-type hyperspectral imaging. However, collimation constraints of the incident beam during narrow-band filtering and high-spatial-resolution imaging introduce system complexity, hindering miniaturization and modularization of the optical system. To address these limitations, [...] Read more.
The Volume Bragg Grating (VBG) imaging technique provides a novel approach to gaze-type hyperspectral imaging. However, collimation constraints of the incident beam during narrow-band filtering and high-spatial-resolution imaging introduce system complexity, hindering miniaturization and modularization of the optical system. To address these limitations, this paper proposes a convex transmissive VBG structure with tunable design parameters to enhance the field of view (FOV), relax collimation requirements, improve imaging quality, narrow filter spectral bandwidth, and simplify the optical system design. For the precise analysis and optimization of convex VBG performance, we established a physical model for filtered imaging using a convex transmissive VBG with polychromatic extended sources. An evaluation metric termed the “Maximal Splitting Angle (MSA)” was introduced to quantify the dispersion extent of image spots. This approach was employed to investigate the intrinsic correlations between structural parameters (such as the radius of curvature, vector tilt angle, grating period, and thickness) and key system performance indicators (spatial resolution and spectral resolution). The necessity of optimizing these parameters was rigorously demonstrated. Theoretical analysis confirms that convex transmissive VBG achieves superior spatial and spectral resolution over planar VBG under reduced collimation constraints. The experimental results show a 58.5% enhancement in spatial resolution and a 63.6% improvement in spectral bandwidth for the convex transmissive VBG system. Crucially, while planar transmissive VBG suffers from stray fringe interference during wavelength tuning, its convex counterpart remains unaffected. This study proposes a novel device structure, offering new perspectives for optimizing VBG-filtered spectral imaging systems. Full article
(This article belongs to the Topic Color Image Processing: Models and Methods (CIP: MM))
Show Figures

Figure 1

16 pages, 2821 KB  
Article
Research on Synchronous Inversion Algorithm Based on Tri-Wavelength DIAL
by Zhixiao Xu, Hangbo Hua, Jing Yu, Zhitian Niu and Ming Kong
Optics 2025, 6(4), 48; https://doi.org/10.3390/opt6040048 - 6 Oct 2025
Viewed by 543
Abstract
Traditionally, retrieving both temperature and CO2 concentration in atmospheric remote sensing has relied on two independent lidar systems, leading to increased system complexity and limited coordination. To address this challenge, we propose a coordinated retrieval approach using a three-wavelength differential absorption lidar [...] Read more.
Traditionally, retrieving both temperature and CO2 concentration in atmospheric remote sensing has relied on two independent lidar systems, leading to increased system complexity and limited coordination. To address this challenge, we propose a coordinated retrieval approach using a three-wavelength differential absorption lidar (DIAL) system. A temperature-sensitive wavelength is selected to distinguish strong absorption from weak absorption, forming the tri-wavelength configuration. By exploiting the different sensitivities of absorption cross-sections to thermal and molecular variations, simultaneous retrieval of both parameters is achieved. A standard atmospheric profile under clean-air conditions is constructed. The CO2 absorption spectrum near 1573 nm is generated using Voigt line shapes and data from the HITRAN database. Extinction and backscatter coefficients are retrieved through the Klett method. A layer-by-layer solution of the coupled differential equations is then performed to extract temperature and concentration simultaneously. Results are benchmarked against the atmospheric model, demonstrating the feasibility of the approach. This method provides a promising pathway for high-precision, multi-parameter DIAL sensing. Full article
Show Figures

Figure 1

Back to TopTop