Multi-Channel Wide-Spectrum High-Resolution Spectrometer for Thin-Film Thickness Measurement
Abstract
1. Introduction
2. Methodology
2.1. Multi-Channel Spectral Sampling Strategy and Spectrometer Structure Design
2.2. Optical System Correction Technology
2.2.1. Coma Aberration Optimization
2.2.2. Astigmatism Correction
2.3. Multi-Channel Calibration and Compensation Technology
2.3.1. Multi-Channel Calibration by Least Squares Method
2.3.2. Non-Linear Correction
3. Simulation
3.1. Simulation Setup for Multi-Channel Spectral Sampling
3.1.1. Model Construction
3.1.2. Parameter Specification
3.2. Simulation of Optical System Correction
3.2.1. Coma Aberration Optimization Simulation
3.2.2. Astigmatism Correction Simulation
4. Result Analysis
4.1. Multi-Channel Spectral Sampling Results
4.2. Optical System Correction Results
4.3. Multi-Channel Calibration and Compensation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geng, D.; Wang, K.; Li, L.; Myny, K.; Nathan, A.; Jang, J.; Kuo, Y.; Liu, M. Thin-film transistors for large-area electronics. Nat. Electron. 2023, 6, 963–972. [Google Scholar] [CrossRef]
 - Fortunato, E.; Barquinha, P.; Martins, R. Oxide semiconductor thin-film transistors: A review of recent advances. Adv. Mater. 2012, 24, 2945–2986. [Google Scholar] [CrossRef] [PubMed]
 - Huang, W.; Tu, Z.; Di, Z.; Wang, C.; Su, Y.; Bi, H. Large-area thickness measurement of transparent films based on a multichannel spectral interference sensor. Appl. Sci. 2024, 14, 2816. [Google Scholar] [CrossRef]
 - Sun, J.; Li, X.; Zhang, H.; Song, J.; Li, Z. A method for measuring and calibrating the thickness of thin films based on infrared interference technology. Results Phys. 2023, 51, 106727. [Google Scholar] [CrossRef]
 - Lu, G.; Shen, Z.; Wang, H.; Bu, L.; Lu, J. Optical interference on the measurement of film-depth-dependent light absorption spectroscopy and a correction approach. Rev. Sci. Instrum. 2023, 94, 023907. [Google Scholar] [CrossRef] [PubMed]
 - Le, V.; Wu, G.; Zeng, L. Coma optimization in single spherical collimating lens-based dual-beam exposure system. Opt. Eng. 2020, 59, 094103. [Google Scholar]
 - Asai, N.; Hasegawa, N.; Gotoh, Y.; Satoh, H.; Hayano, K.; Imai, A.; Okazaki, S. Proposal for the coma aberration dependent overlay error compensation technology. Jpn. J. Appl. Phys. 1998, 37, 6718. [Google Scholar] [CrossRef]
 - Erasmus, S.J.; Smith, K.C.A. An automatic focusing and astigmatism correction system for the SEM and CTEM. J. Microsc. 1982, 127, 185–199. [Google Scholar] [CrossRef]
 - Batten, C.F. Autofocusing and Astigmatism Correction in the Scanning Electron Microscope. Master’s Thesis, University of Cambridge, Cambridge, UK, 2000. [Google Scholar]
 - Andrianov, S.; Chechenin, A. High order aberration correction. In Proceedings of the European Particle Accelerator Conference, Edinburgh, UK, 26–30 June 2006; pp. 2125–2127. [Google Scholar]
 - Yao, C.; Shen, Y. Optical Aberration Calibration and Correction of Photographic System Based on Wavefront Coding. Sensors 2021, 21, 4011. [Google Scholar] [CrossRef] [PubMed]
 - Lin, S.; Li, H.; He, T. Calibration Method of Multi-Channel based on Steepest Descent. In Proceedings of the 2020 4th International Conference on Digital Signal Processing, Chengdu, China, 19–21 June 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 322–325. [Google Scholar]
 - Zhao, H.; Zhou, J.; Yang, K. Laser Doppler signal processing based on least mean square adaptive filter. Opt.-Int. J. Light Electron Opt. 2013, 124, 2781–2783. [Google Scholar] [CrossRef]
 - Nehir, M.; Frank, C.; Aßmann, S.; Achterberg, E.P. Improving optical measurements: Non-linearity compensation of compact charge-coupled device (CCD) spectrometers. Sensors 2019, 19, 2833. [Google Scholar] [CrossRef] [PubMed]
 - Borovytsky, V.N. Residual error after non-uniformity correction. Semicond. Phys. Quantum Electron. Optoelectron. 2000, 3, 102–105. [Google Scholar] [CrossRef]
 - Engström, D.; Persson, M.; Bengtsson, J.; Goksör, M. Calibration of spatial light modulators suffering from spatially varying phase response. Opt. Express 2013, 21, 16086–16103. [Google Scholar] [CrossRef] [PubMed]
 - Grossberg, M.D.; Nayar, S.K. Modeling the space of camera response functions. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 1272–1282. [Google Scholar] [CrossRef] [PubMed]
 





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; Li, H.; Zhang, C.; Yu, J.; Liu, J.; Zheng, Z.; Duan, B.; Sun, A.; Ju, B. Multi-Channel Wide-Spectrum High-Resolution Spectrometer for Thin-Film Thickness Measurement. Optics 2025, 6, 55. https://doi.org/10.3390/opt6040055
Wu T, Li H, Zhang C, Yu J, Liu J, Zheng Z, Duan B, Sun A, Ju B. Multi-Channel Wide-Spectrum High-Resolution Spectrometer for Thin-Film Thickness Measurement. Optics. 2025; 6(4):55. https://doi.org/10.3390/opt6040055
Chicago/Turabian StyleWu, Tong, Haopeng Li, Chuan Zhang, Jingwei Yu, Jianjun Liu, Zepei Zheng, Bosong Duan, Anyu Sun, and Bingfeng Ju. 2025. "Multi-Channel Wide-Spectrum High-Resolution Spectrometer for Thin-Film Thickness Measurement" Optics 6, no. 4: 55. https://doi.org/10.3390/opt6040055
APA StyleWu, T., Li, H., Zhang, C., Yu, J., Liu, J., Zheng, Z., Duan, B., Sun, A., & Ju, B. (2025). Multi-Channel Wide-Spectrum High-Resolution Spectrometer for Thin-Film Thickness Measurement. Optics, 6(4), 55. https://doi.org/10.3390/opt6040055
        
