Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (387)

Search Parameters:
Journal = Instruments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2829 KiB  
Article
Apparatus and Experiments Towards Fully Automated Medical Isotope Production Using an Ion Beam Accelerator
by Abdulaziz Yahya M. Hussain, Aliaksandr Baidak, Ananya Choudhury, Andy Smith, Carl Andrews, Eliza Wojcik, Liam Brown, Matthew Nancekievill, Samir De Moraes Shubeita, Tim A. D. Smith, Volkan Yasakci and Frederick Currell
Instruments 2025, 9(3), 18; https://doi.org/10.3390/instruments9030018 - 18 Jul 2025
Viewed by 261
Abstract
Zirconium-89 (89Zr) is a widely used radionuclide in immune-PET imaging due to its physical decay characteristics. Despite its importance, the production of 89Zr radiopharmaceuticals remains largely manual, with limited cost-effective automation solutions available. To address this, we developed an automated [...] Read more.
Zirconium-89 (89Zr) is a widely used radionuclide in immune-PET imaging due to its physical decay characteristics. Despite its importance, the production of 89Zr radiopharmaceuticals remains largely manual, with limited cost-effective automation solutions available. To address this, we developed an automated system for the agile and reliable production of radiopharmaceuticals. The system performs transmutations, dissolution, and separation for a range of radioisotopes. Steps in the production of 89Zr-oxalate are used as an exemplar to illustrate its use. Three-dimensional (3D) printing was exploited to design and manufacture a target holder able to include solid targets, in this case an 89Y foil. Spot welding was used to attach 89Y to a refractory tantalum (Ta) substrate. A commercially available CPU chiller was repurposed to efficiently cool the metal target. Furthermore, a commercial resin (ZR Resin) and compact peristaltic pumps were employed in a compact (10 × 10 × 10 cm3) chemical separation unit that operates automatically via computer-controlled software. Additionally, a standalone 3D-printed unit was designed with three automated functionalities: photolabelling, vortex mixing, and controlled heating. All components of the assembly, except for the target holder, are housed inside a commercially available hot cell, ensuring safe and efficient operation in a controlled environment. This paper details the design, construction, and modelling of the entire assembly, emphasising its innovative integration and operational efficiency for widespread radiopharmaceutical automation. Full article
Show Figures

Figure 1

14 pages, 3005 KiB  
Article
Technique for Extracting Initial Parameters of Longitudinal Phase Space of Freshly Injected Bunches in Storage Rings, and Its Applications
by Hongshuang Wang, Yongbin Leng and Yimei Zhou
Instruments 2025, 9(3), 17; https://doi.org/10.3390/instruments9030017 - 17 Jul 2025
Viewed by 187
Abstract
This paper presents a technique for extracting the initial parameters of the longitudinal phase space of freshly injected bunches in an electron storage ring. This technique combines simulation of single-bunch longitudinal phase space evolution with a bunch-by-bunch data acquisition and processing system, enabling [...] Read more.
This paper presents a technique for extracting the initial parameters of the longitudinal phase space of freshly injected bunches in an electron storage ring. This technique combines simulation of single-bunch longitudinal phase space evolution with a bunch-by-bunch data acquisition and processing system, enabling high-precision determination of initial phase space parameters during electron storage ring injection—including the initial phase, initial bunch length, initial energy offset, initial energy spread, and initial energy chirp. In our experiments, a high-speed oscilloscope captured beam injection signals, which were then processed by the bunch-by-bunch data acquisition system to extract the evolution of the injected bunch’s phase and length. Additionally, a single-bunch simulation software package was developed, based on mbtrack2 and PyQt5, that is capable of simulating the phase space evolution of bunches under different initial parameters after injection. By employing a genetic algorithm to iteratively align simulation results with experimental data, the remaining initial phase space parameters of the injected bunch can be accurately determined. Full article
Show Figures

Figure 1

9 pages, 550 KiB  
Article
An Experimental Setup to Study Electron Transport and Thermalization in Cryogenic Para-Hydrogen Crystal Matrices
by Piergiorgio Antonini, Massimo Benettoni, Armando F. Borghesani, Caterina Braggio, Roberto Calabrese, Giovanni Carugno, Federico Chiossi, Ugo Gasparini, Franco Gonella, Marco Guarise, Alen Khanbekyan, Alessandro Lippi, Augusto Lombardi, Emilio Mariotti, Madiha M. Makhdoom, Giuseppe Messineo, Jacopo Pazzini, Giuseppe Ruoso, Luca Tomassetti and Marco Zanetti
Instruments 2025, 9(3), 16; https://doi.org/10.3390/instruments9030016 - 29 Jun 2025
Viewed by 367
Abstract
We present an experimental apparatus to investigate electron transport and thermalization in cryogenic para-hydrogen crystal matrices. This paper describes the techniques used to grow and characterize the cryogenic para-hydrogen crystals, the optical system employed to photoextract electrons, and the charge collection system used [...] Read more.
We present an experimental apparatus to investigate electron transport and thermalization in cryogenic para-hydrogen crystal matrices. This paper describes the techniques used to grow and characterize the cryogenic para-hydrogen crystals, the optical system employed to photoextract electrons, and the charge collection system used to study the behavior of electrons within the solid matrix. By probing the fundamental charge transport and energy loss processes in a quantum solid, such as para-hydrogen, this study paves the way for future precision experiments that leverage the unique properties of cryogenic crystal matrices. Full article
Show Figures

Figure 1

13 pages, 4454 KiB  
Article
Proton Irradiation and Thermal Restoration of SiPMs for LEO Missions
by Alexis Luszczak, Lucas Finazzi, Leandro Gagliardi, Milagros Moreno, Maria L. Ibarra, Federico Golmar and Gabriel A. Sanca
Instruments 2025, 9(3), 15; https://doi.org/10.3390/instruments9030015 - 26 Jun 2025
Viewed by 328
Abstract
Silicon Photomultipliers (SiPMs) are optical sensors widely used in space applications due to their high photon detection efficiency, low power consumption, and robustness. However, in Low Earth Orbit (LEO), their performance degrades over time due to prolonged exposure to ionizing radiation, primarily from [...] Read more.
Silicon Photomultipliers (SiPMs) are optical sensors widely used in space applications due to their high photon detection efficiency, low power consumption, and robustness. However, in Low Earth Orbit (LEO), their performance degrades over time due to prolonged exposure to ionizing radiation, primarily from trapped protons and electrons. The dominant radiation-induced effect in SiPMs is an increase in dark current, which can compromise detector sensitivity. This study investigates the potential of thermal annealing as a mitigation strategy for radiation damage in SiPMs. We designed and tested PCB-integrated heaters to selectively heat irradiated SiPMs and induce recovery processes. A PID-controlled system was developed to stabilize the temperature at 100 °C, and a remotely controlled experimental setup was implemented to operate under irradiation conditions. Two SiPMs were simultaneously irradiated with 9 MeV protons at the EDRA facility, reaching a 1 MeV neutron equivalent cumulative fluence of (9.5 ± 0.2) × 108 cm−2. One sensor underwent thermal annealing between irradiation cycles, while the other served as a control. Throughout the experiment, dark current was continuously monitored using a source measure unit, and I–V curves were recorded before and after irradiation. A recovery of more than 39% was achieved after only 5 min of thermal cycling at 100 °C, supporting this recovery approach as a low-complexity strategy to mitigate radiation-induced damage in space-based SiPM applications and increase device lifetime in harsh environments. Full article
Show Figures

Graphical abstract

15 pages, 5363 KiB  
Article
Compact and Handheld SiPM-Based Gamma Camera for Radio-Guided Surgery and Medical Imaging
by Fabio Acerbi, Aramis Raiola, Cyril Alispach, Hossein Arabi, Habib Zaidi, Alberto Gola and Domenico Della Volpe
Instruments 2025, 9(2), 14; https://doi.org/10.3390/instruments9020014 - 15 Jun 2025
Viewed by 606
Abstract
In the continuous pursuit of minimally invasive interventions while ensuring a radical excision of lesions, Radio-Guided Surgery (RGS) has been for years the standard for image-guided surgery procedures, such as the Sentinel Lymph Node biopsy (SLN), Radio-guided Seed Localization (RSL), etc. In RGS, [...] Read more.
In the continuous pursuit of minimally invasive interventions while ensuring a radical excision of lesions, Radio-Guided Surgery (RGS) has been for years the standard for image-guided surgery procedures, such as the Sentinel Lymph Node biopsy (SLN), Radio-guided Seed Localization (RSL), etc. In RGS, the lesion has to be identified precisely, in terms of position and extension. In such a context, going beyond the current one-point probes, introducing portable but high-resolution cameras, handholdable by the surgeon, would be highly beneficial. We developed and tested a novel compact, low-power, handheld gamma camera for radio-guided surgery. This is based on a particular position-sensitive Silicon Photomultiplier (SiPM) technology—the FBK linearly graded SiPM (LG-SiPM). Within the camera, the photodetector is made up of a 3 × 3 array of 10 × 10 mm2 SiPM chips having a total area of more than 30 × 30 mm2. This is coupled with a pixelated scintillator and a parallel-hole collimator. With the LG-SiPM technology, it is possible to significantly reduce the number of readout channels to just eight, simplifying the complexity and lowering the power consumption of the readout electronics while still preserving a good position resolution. The novel gamma camera is light (weight), and it is made to be a fully stand-alone system, therefore featuring wireless communication, battery power, and wireless recharge capabilities. We designed, simulated (electrically), and tested (functionally) the first prototypes of the novel gamma camera. We characterized the intrinsic position resolution (tested with pulsed light) as being ~200 µm, and the sensitivity and resolution when detecting gamma rays from Tc-99m source measured between 134 and 481 cps/MBq and as good as 1.4–1.9 mm, respectively. Full article
Show Figures

Figure 1

22 pages, 8160 KiB  
Article
Design and Characterization of the Modified Purdue Subcritical Pile for Nuclear Research Applications
by Matthew Niichel, Vasileios Theos, Riley Madden, Hannah Pike, True Miller, Brian Jowers and Stylianos Chatzidakis
Instruments 2025, 9(2), 13; https://doi.org/10.3390/instruments9020013 - 6 Jun 2025
Viewed by 1416
Abstract
First demonstrated in 1942, subcritical and zero-power critical assemblies, also known as piles, are a fundamental tool for research and education at universities. Traditionally, their role has been primarily instructional and for measuring the fundamental properties of neutron diffusion and transport. However, these [...] Read more.
First demonstrated in 1942, subcritical and zero-power critical assemblies, also known as piles, are a fundamental tool for research and education at universities. Traditionally, their role has been primarily instructional and for measuring the fundamental properties of neutron diffusion and transport. However, these assemblies could hold potential for modern applications and nuclear research. The Purdue University subcritical pile previously lacked a substantial testing volume, limiting its utility to simple neutron activation experiments for the purpose of undergraduate education. Following the design and addition of a mechanical and electrical testbed, this paper aims to provide an overview of the testbed design and characterize the neutron flux of the rearranged Purdue subcritical pile, justifying its use as a modern scientific instrument. The newly installed 1.5 × 105 cubic-centimeter volume testbed enables a systematic investigation of neutron and gamma effects on materials and the generation of a comprehensive data set with the potential for machine learning applications. The neutron flux throughout the pile is measured using gold-197 and indium-115 foil activation alongside cadmium-covered foils for two-group neutron energy classification. The neutron flux measurements are then used to benchmark a detailed geometrically and materialistically accurate Monte Carlo model using OpenMC 0.15.0 and MCNP 6.3. The experimental measurements reveal that the testbed has a neutron environment with a total neutron flux approaching 9.5 × 103 n/cm2 × s and a thermal flux of 6.5 × 103 n/cm2 × s. This work establishes that the modified Purdue subcritical pile can provide fair neutron and gamma fluxes within a large volume to enable the radiation testing of integral electronic components and can be a versatile research instrument with the potential to support material testing and limited isotope activation, while generating valuable training data sets for machine learning algorithms in nuclear applications. Full article
Show Figures

Figure 1

28 pages, 5099 KiB  
Article
Fast Infrared Detector for Time-Domain Astronomy
by Alessandro Drago
Instruments 2025, 9(2), 12; https://doi.org/10.3390/instruments9020012 - 15 May 2025
Viewed by 1334
Abstract
Multi-messenger astronomy and time-domain astronomy are strongly linked even if they do not have the same objectives. Multi-messenger astronomy is an astrophysical observation approach born by the simultaneous, even if casual, detection of a few events discovered up to now. In contrast, time-domain [...] Read more.
Multi-messenger astronomy and time-domain astronomy are strongly linked even if they do not have the same objectives. Multi-messenger astronomy is an astrophysical observation approach born by the simultaneous, even if casual, detection of a few events discovered up to now. In contrast, time-domain astronomy is a recent technological trend that aims to make observations to explore the sky not with imaging, astrometry, photometry or spectroscopy but through the fast dynamic behavior of celestial objects. Time-domain astronomy aims to detect events on a temporal scale between seconds and nanoseconds. In this paper, a time-domain infrared fast detector for ground-based telescopes is proposed. This instrument can be useful for multi-messenger observations, and it is able to detect fast astronomical signals in the order of 1 ns. It is based on HgCdTe photoconductors, but the InAsSb photovoltaic detector has also been tested. The detection system designed to detect fast mid-infrared bursts includes trigger modules, an off-line noise-canceling strategy, and a classifier of the transients. Classification is derived from the analysis of fast instabilities in particle circular accelerators. This paper aims to be a preliminary feasibility study. Full article
(This article belongs to the Special Issue Instruments for Astroparticle Physics)
Show Figures

Figure 1

16 pages, 1852 KiB  
Article
Metrological-Characteristics-Based Calibration of Optical Areal Surface Measuring Instruments and Evaluation of Measurement Uncertainty for Surface Texture Measurements
by Sai Gao, André Felgner and Uwe Brand
Instruments 2025, 9(2), 11; https://doi.org/10.3390/instruments9020011 - 8 May 2025
Viewed by 1176
Abstract
ISO 25178 part 600:2019 and part 700:2022 introduce a calibration framework based on seven metrological characteristics (MCs) for calibrating optical areal surface measuring instruments. Among these, topography fidelity is a newly defined metrological characteristic that remains a critical yet unresolved challenge in instrument [...] Read more.
ISO 25178 part 600:2019 and part 700:2022 introduce a calibration framework based on seven metrological characteristics (MCs) for calibrating optical areal surface measuring instruments. Among these, topography fidelity is a newly defined metrological characteristic that remains a critical yet unresolved challenge in instrument calibration. This paper proposes strategies to address topography fidelity, including a key criterion for selecting suitable instrument setups by comparing slope measurement capability with local surface slopes, as well as methods for investigating the field-of-view homogeneity and directional performance difference along the x- and y-axes. Furthermore, the uncertainty contribution of topography fidelity in surface topography measurements is analysed. The paper also determines the uncertainty associated with the remaining six MCs. Based on the proposed MC-based calibration approach and the corresponding uncertainty contributions, an overall measurement uncertainty model for Sa and Sq parameters is presented. Finally, uncertainty evaluations for Sa and Sq are demonstrated on a challenging surface, where topography fidelity plays a significant role in the measurement uncertainty evaluation. Full article
Show Figures

Figure 1

13 pages, 1733 KiB  
Article
Design of an E × B Chopper System Based on Permanent Magnets for the Injection Line of the SPES Project Cyclotron
by Alberto Ruzzon, Mario Maggiore, Arturo Abbondanza, Piergiorgio Antonini and Lorenzo Pranovi
Instruments 2025, 9(2), 10; https://doi.org/10.3390/instruments9020010 - 16 Apr 2025
Viewed by 668
Abstract
This paper presents the requirements and design solutions of the chopper for the injection line of the cyclotron of the SPES project at Laboratori Nazionali di Legnaro. The device aims to precisely modulate the average current injected into the cyclotron, thereby controlling the [...] Read more.
This paper presents the requirements and design solutions of the chopper for the injection line of the cyclotron of the SPES project at Laboratori Nazionali di Legnaro. The device aims to precisely modulate the average current injected into the cyclotron, thereby controlling the current it delivers. A precise control of the beam current is essential for many experiments foreseen for the cyclotron. Due to safety constraints and limited space, a tailored design has been developed. The chopper features a Wien filter configuration, where the electric field is pulsed and the magnetic field is generated by permanent magnets. Full article
Show Figures

Figure 1

43 pages, 10261 KiB  
Review
X-Ray and UV Detection Using Synthetic Single Crystal Diamond
by Maurizio Angelone, Francesca Bombarda, Silvia Cesaroni, Marco Marinelli, Angelo Maria Raso, Claudio Verona and Gianluca Verona-Rinati
Instruments 2025, 9(2), 9; https://doi.org/10.3390/instruments9020009 - 11 Apr 2025
Viewed by 1766
Abstract
Diamond is a semiconductor with a large band gap (5.48 eV), high carrier mobility (the highest for holes), high electrical resistance and low capacitance. Thanks to its outstanding properties, diamond-based detectors offer several advantages, among others: high signal-to-noise ratio, fast response, intrinsic pulse-shape [...] Read more.
Diamond is a semiconductor with a large band gap (5.48 eV), high carrier mobility (the highest for holes), high electrical resistance and low capacitance. Thanks to its outstanding properties, diamond-based detectors offer several advantages, among others: high signal-to-noise ratio, fast response, intrinsic pulse-shape discrimination capabilities for distinguishing different types of radiation, as well as operation in pulse and current modes. The mentioned properties meet most of the demanding requests that a radiation detection material must fulfil. Diamond detectors are suited for detecting almost all types of ionizing radiation including X-ray and UV photons, resulting also in blindness to visible photons and are used in a wide range of applications including ones requiring the capability to withstand harsh environments. After reviewing the fundamental physical properties of synthetic single crystal diamond (SCD) grown by microwave plasma enhanced chemical vapor deposition (MWPECVD) technique and the basic principles of diamond-photon interactions and detection, the paper focuses on SCD detectors developed for X-ray and UV detection, discussing their configurations, construction techniques, advantages, and drawbacks. Applications ranging from X-ray detection around accelerators to UV detection for fusion plasmas are addressed, and future trends are highlighted too. Full article
Show Figures

Figure 1

18 pages, 990 KiB  
Article
Design and Uncertainty Analysis of an AC Loss Measuring Instrument for Superconducting Magnets
by Pasquale Arpaia, Davide Cuneo, Ernesto De Matteis, Antonio Esposito and Pedro Ramos
Instruments 2025, 9(2), 8; https://doi.org/10.3390/instruments9020008 - 8 Apr 2025
Viewed by 1302
Abstract
A novel instrument was designed and numerically validated for measuring AC losses in ramped superconducting magnets. These power losses are expected to be in the 1 W to 100 W range. The instrument improves metrological performance compared to existing instruments by reaching a [...] Read more.
A novel instrument was designed and numerically validated for measuring AC losses in ramped superconducting magnets. These power losses are expected to be in the 1 W to 100 W range. The instrument improves metrological performance compared to existing instruments by reaching a target power loss uncertainty in the order of 0.1 watt. This allows accurate measurement of the power losses to improve magnet modeling. A Monte Carlo analysis is used to evaluate the measurement uncertainty. Such an analysis addresses the lack of uncertainty investigation in the literature for this kind of measurement, and the proposed approach can be applied to various magnet models. The physical design of the instrument is carried out by relying on an FPGA-based acquisition platform. Results on a representative case study reveal that the target uncertainty can be reached without any compensation or correction mechanism. Instead, when aiming to use compensation or correction of the inductive magnet voltage, the sensitivity analysis points out that offset errors and time delays must be limited. This also suggests that the magnet’s inductance estimation should be improved more than the metrological performance of the instrumentation. Full article
(This article belongs to the Collection Selected Papers from Instruments’ Editorial Board Members)
Show Figures

Figure 1

19 pages, 2291 KiB  
Article
Real-Time Coordinate Estimation for SCARA Robots in PCB Repair Using Vision and Laser Triangulation
by Nuwan Sanjeewa, Vimukthi Madushan Wathudura, Nipun Shantha Kahatapitiya, Bhagya Nathali Silva, Kasun Subasinghage and Ruchire Eranga Wijesinghe
Instruments 2025, 9(2), 7; https://doi.org/10.3390/instruments9020007 - 7 Apr 2025
Viewed by 1426
Abstract
The Printed Circuit Board (PCB) manufacturing industry is a rapidly expanding sector, fueled by advanced technologies and precision-oriented production processes. The placement of Surface-Mount Device (SMD) components in PCB assembly is efficiently automated using robots and design software-generated coordinate files; however, the PCB [...] Read more.
The Printed Circuit Board (PCB) manufacturing industry is a rapidly expanding sector, fueled by advanced technologies and precision-oriented production processes. The placement of Surface-Mount Device (SMD) components in PCB assembly is efficiently automated using robots and design software-generated coordinate files; however, the PCB repair process remains significantly more complex and challenging. Repairing faulty PCBs, particularly replacing defective SMD components, requires high precision and significant manual expertise, making automated solutions both rare and difficult to implement. This study introduces a novel real-time machine vision-based coordinate estimation system designed for estimating the coordinates of SMD components during soldering or desoldering tasks. The system was specifically designed for Selective Compliance Articulated Robot Arm (SCARA) robots to overcome the challenges of repairing miniature PCB components. The proposed system integrates Image-Based Visual Servoing (IBVS) for precise X and Y coordinate estimation and a simplified laser triangulation method for Z-axis depth estimation. The system demonstrated accuracy rates of 98% for X and Y axes and 99% for the Z axis, coupled with high operational speed. The developed solution highlights the potential for automating PCB repair processes by enabling SCARA robots to execute precise picking and placement tasks. When equipped with a hot-air gun as the end-effector, the system could enable automated soldering and desoldering, effectively replacing faulty SMD components without human intervention. This advancement has the potential to bridge a critical gap in the PCB repair industry, improving efficiency and reducing dependence on manual expertise. Full article
Show Figures

Figure 1

18 pages, 7771 KiB  
Article
Novel Smart Glove for Ride Monitoring in Light Mobility
by Michela Borghetti, Nicola Francesco Lopomo and Mauro Serpelloni
Instruments 2025, 9(1), 6; https://doi.org/10.3390/instruments9010006 - 18 Mar 2025
Viewed by 1603
Abstract
Ensuring comfort in light mobility is a crucial aspect for supporting individuals’ well-being and safety while driving scooters, riding bicycles, etc. In fact, factors such as the hand grip on the handlebar, positions of the wrist and arm, overall body posture, and affecting [...] Read more.
Ensuring comfort in light mobility is a crucial aspect for supporting individuals’ well-being and safety while driving scooters, riding bicycles, etc. In fact, factors such as the hand grip on the handlebar, positions of the wrist and arm, overall body posture, and affecting vibrations play key roles. Wearable systems offer the ability to noninvasively monitor physiological parameters, such as body temperature and heart rate, aiding in personalized comfort assessment. In this context, user positions while driving or riding are, on the other hand, more challenging to monitor ecologically. Developing effective smart gloves as a support for comfort and movement monitoring introduces technical complexities, particularly in sensor selection and integration. Light and flexible sensors can help in this regard by ensuring reliable sensing and thus addressing the optimization of the comfort for the driver. In this work, a novel wireless smart glove is proposed, integrating four bend sensors, four force-sensitive sensors, and one inertial measurement unit for measuring the finger movements, hand orientation, and the contact force exerted by the hand while grasping the handlebar during driving or riding. The smart glove has been proven to be repeatable (1.7%) and effective, distinguishing between different grasped objects, such as a flask, a handlebar, a tennis ball, and a small box. Additionally, it proved to be a valuable tool for monitoring specific actions while riding bicycles, such as braking, and for optimizing the posture during the ride. Full article
Show Figures

Figure 1

8 pages, 1570 KiB  
Communication
Special Considerations for Helium-Filled Ion Chambers
by Steve M. Heald
Instruments 2025, 9(1), 5; https://doi.org/10.3390/instruments9010005 - 1 Mar 2025
Viewed by 903
Abstract
As the flux at synchrotron radiation beamlines increases, helium-filled ion chambers are more common to avoid saturation and non-linearities. For helium, this paper will show that the conversion of the current to flux is best performed using the mass-energy cross-section but is complicated [...] Read more.
As the flux at synchrotron radiation beamlines increases, helium-filled ion chambers are more common to avoid saturation and non-linearities. For helium, this paper will show that the conversion of the current to flux is best performed using the mass-energy cross-section but is complicated by a strong interaction of scattered photons with the ion chamber plates. This makes the conversion highly dependent on the ion chamber geometry, and an accurate flux determination will typically require a calibration. To minimize the sensitivity of the calibration to external influences, it is proposed to add internal scatter baffles to the standard chamber configuration. Full article
Show Figures

Figure 1

18 pages, 3699 KiB  
Article
A Systematic Investigation of Beam Losses and Position-Reconstruction Techniques Measured with a Novel oBLM at CLEAR
by Montague King, Sara Benitez, Alexander Christie, Ewald Effinger, Jose Esteban, Wilfrid Farabolini, Antonio Gilardi, Pierre Korysko, Jean Michel Meyer, Belen Salvachua, Carsten P. Welsch and Joseph Wolfenden
Instruments 2025, 9(1), 4; https://doi.org/10.3390/instruments9010004 - 28 Feb 2025
Viewed by 1178
Abstract
Optical Beam-Loss Monitors (oBLMs) allow for cost-efficient and spatially continuous measurements of beam losses at accelerator facilities. A standard oBLM consists of several tens of metres of optical fibre aligned parallel to a beamline, coupled to photosensors at either or both ends. Using [...] Read more.
Optical Beam-Loss Monitors (oBLMs) allow for cost-efficient and spatially continuous measurements of beam losses at accelerator facilities. A standard oBLM consists of several tens of metres of optical fibre aligned parallel to a beamline, coupled to photosensors at either or both ends. Using the timing information from loss signals, the loss positions can be reconstructed. This paper presents a novel oBLM system recently deployed at the CERN Linear Electron Accelerator for Research (CLEAR). Multiple methods of extracting timing and position information from measured waveforms with silicon photomultipliers (SiPM) and photomultiplier tubes (PMT) are investigated. For this installation, the optimal approach is determined to be applying a constant fraction discrimination (CFD) on the upstream readout. The position resolution is found to be similar for the tested SiPM and PMT. This work has resulted in the development of a user interface to aid operations by visualising the beam losses and their positions in real time. Full article
Show Figures

Figure 1

Back to TopTop