Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Journal = Gases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1419 KB  
Article
Experimental Investigation of Injection Pressure and Permeability Effect on CO2 EOR for Light Oil Reservoirs
by Khaled Enab
Gases 2026, 6(1), 5; https://doi.org/10.3390/gases6010005 - 17 Jan 2026
Viewed by 122
Abstract
Gas injection is a well-established method for enhancing oil recovery by improving oil mobility, primarily through viscosity reduction. While its application in heavy oil reservoirs is extensively studied, the specific impact of carbon dioxide (CO2) injection pressure on fluid viscosity reduction [...] Read more.
Gas injection is a well-established method for enhancing oil recovery by improving oil mobility, primarily through viscosity reduction. While its application in heavy oil reservoirs is extensively studied, the specific impact of carbon dioxide (CO2) injection pressure on fluid viscosity reduction and the ultimate recovery factor from light oil reservoirs has not been fully investigated. To address this gap, this experimental study systematically explores the effects of CO2 injection pressure and reservoir permeability on light oil recovery. This study conducted miscible, near-miscible, and immiscible gas injection experiments on two core samples with distinct permeabilities (13.4 md and 28 md), each saturated with light oil. CO2 was injected at five different pressures, including conditions ranging from immiscible to initial reservoir pressure. The primary metrics for evaluation were the recovery factor (measured at gas breakthrough, end of injection, and abandonment pressure) and the viscosity reduction of the produced oil. The results conclusively demonstrate that CO2 injection significantly enhances light oil production. A direct proportional relationship was established between both the injection pressure and the recovery factor and between permeability and overall oil production at the gas breakthrough. However, a key finding was the inverse relationship observed between permeability and viscosity reduction: the lower-permeability sample (13.4 md) consistently exhibited a greater percentage of viscosity reduction across all injection pressures than the higher-permeability sample (28 md). This unexpected trend is aligned with the inverse relationship between the permeability and the recovery factor after the gas breakthrough. This outcome suggests that enhanced CO2 solubility, driven by higher confinement pressures within the nanopores of the lower-permeability rock, promotes a localized, near-miscible state. This effect was even evident during immiscible injection, where the low-permeability sample showed a noticeable viscosity reduction and superior long-term production. These findings highlight the critical role of pore-scale confinement in governing CO2 miscibility and its associated viscosity reduction, which should be incorporated into enhanced oil recovery design for unconventional reservoirs. Full article
Show Figures

Figure 1

19 pages, 1163 KB  
Article
Impact of Alternative Fuels on IMO Indicators
by José Miguel Mahía-Prados, Ignacio Arias-Fernández and Manuel Romero Gómez
Gases 2026, 6(1), 4; https://doi.org/10.3390/gases6010004 - 8 Jan 2026
Viewed by 270
Abstract
This study provides a comprehensive analysis of the impact of different marine fuels such as heavy fuel oil (HFO), methane, methanol, ammonia, or hydrogen, on energy efficiency and pollutant emissions in maritime transport, using a combined application of the Energy Efficiency Design Index [...] Read more.
This study provides a comprehensive analysis of the impact of different marine fuels such as heavy fuel oil (HFO), methane, methanol, ammonia, or hydrogen, on energy efficiency and pollutant emissions in maritime transport, using a combined application of the Energy Efficiency Design Index (EEDI), Energy Efficiency Operational Indicator (EEOI), and Carbon Intensity Indicator (CII). The results show that methane offers the most balanced alternative, reducing CO2 by more than 30% and improving energy efficiency, while methanol provides an intermediate performance, eliminating sulfur and partially reducing emissions. Ammonia and hydrogen eliminate CO2 but generate NOx (nitrogen oxides) emissions that require mitigation, demonstrating that their environmental impact is not negligible. Unlike previous studies that focus on a single fuel or only on CO2, this work considers multiple pollutants, including SOx (sulfur oxides), H2O, and N2, and evaluates the economic cost of emissions under the European Union Emissions Trading System (EU ETS). Using a representative model ship, the study highlights regulatory gaps and limitations within current standards, emphasizing the need for a global system for monitoring and enforcing emissions rules to ensure a truly sustainable and decarbonized maritime sector. This integrated approach, combining energy efficiency, emissions, and economic evaluation, provides novel insights for the scientific community, regulators, and maritime operators, distinguishing itself from previous multicriteria studies by simultaneously addressing operational performance, environmental impact, and regulatory gaps such as unaccounted NOx emissions. Full article
Show Figures

Figure 1

24 pages, 4846 KB  
Review
Analysis of Fuel Gasification Using Solar Technology: A Patent Review
by Mikhail Zhumagulov, Aizhan Omirbayeva and Davide Papurello
Gases 2026, 6(1), 3; https://doi.org/10.3390/gases6010003 - 7 Jan 2026
Viewed by 232
Abstract
Solar energy enhances the energy and environmental performance of coal gasification by lowering carbon emissions and increasing the yield and quality of synthesis gas. This patent review surveys recent global advances in solar thermochemical reactors for coal gasification, focusing on key innovations disclosed [...] Read more.
Solar energy enhances the energy and environmental performance of coal gasification by lowering carbon emissions and increasing the yield and quality of synthesis gas. This patent review surveys recent global advances in solar thermochemical reactors for coal gasification, focusing on key innovations disclosed in patent applications and grants, with particular attention to technologies that improve process efficiency and sustainability. The novelty of the review is that unlike most patent reviews that focus primarily on statistical indicators such as application counts, geography, and classification, this work integrates qualitative analysis of specific technical solutions alongside statistical evaluation. This combined approach enables a deeper assessment of technological maturity and practical applicability. Fifteen patents from different countries were reviewed. The largest number (8, 53%) belongs to the United States. China has the second place with 4 (27%). The remaining countries (the EU, Korea, and Russia) hold 1 patent (7% each). The present work emphasises the technological and engineering solutions associated with the integration of solar energy into gasification processes. The author’s design is free of the disadvantages of its counterparts and is a simplified design with a high degree of adaptability to various types of fuel, including brown coal, biomass, and other carbon-containing materials. Full article
(This article belongs to the Special Issue Bio-Energy: Biogas, Biomethane and Green-Hydrogen)
Show Figures

Graphical abstract

17 pages, 3228 KB  
Article
Computational Investigation of Methoxy Radical-Driven Oxidation of Dimethyl Sulfide: A Pathway Linked to Methane Oxidation
by Bruce M. Prince, Daniel Vrinceanu, Mark C. Harvey, Michael P. Jensen, Maria Zawadowicz and Chongai Kuang
Gases 2026, 6(1), 2; https://doi.org/10.3390/gases6010002 - 2 Jan 2026
Viewed by 379
Abstract
Methoxy radicals (CH3O•), formed as intermediates during methane oxidation, may play an underexplored but locally significant role in the atmospheric oxidation of dimethyl sulfide (DMS), a key sulfur-containing compound emitted primarily by marine phytoplankton. This study presents a comprehensive computational investigation [...] Read more.
Methoxy radicals (CH3O•), formed as intermediates during methane oxidation, may play an underexplored but locally significant role in the atmospheric oxidation of dimethyl sulfide (DMS), a key sulfur-containing compound emitted primarily by marine phytoplankton. This study presents a comprehensive computational investigation of the reaction mechanisms and kinetics of DMS oxidation initiated by CH3O•, using density functional theory B3LYP-D3(BJ)/6-311++G(3df,3pd), CCSD(T)/6-311++G(3df,3pd), and UCBS-QB3 methods. Our calculations show that DMS reacts with CH3O• via hydrogen atom abstraction to form the methyl-thiomethylene radical (CH3SCH2•), with a rate constant of 3.05 × 10−16 cm3/molecule/s and a Gibbs free energy barrier of 14.2 kcal/mol, which is higher than the corresponding barrier for reaction with hydroxyl radicals (9.1 kcal/mol). Although less favorable kinetically, the presence of CH3O• in localized, methane-rich environments may still allow it to contribute meaningfully to DMS oxidation under specific atmospheric conditions. While the short atmospheric lifetime of CH3O• limits its global impact on large-scale atmospheric sulfur cycling, in marine layers where methane and DMS emissions overlap, CH3O• may play a meaningful role in forming sulfur dioxide and downstream sulfate aerosols. These secondary organic aerosols lead to cloud condensation nuclei (CCN) formation, subsequent changes in cloud properties, and can thereby influence local radiative forcing. The study’s findings underscore the importance of incorporating CH3O• driven oxidation pathways into atmospheric models to enhance our understanding of regional sulfur cycling and its impacts on local air quality, cloud properties and radiative forcing. These findings provide mechanistic insights that improve data interpretation for atmospheric models and extend predictions of localized variations in sulfur oxidation, aerosol formation, and radiative forcing in methane-rich environments. Full article
(This article belongs to the Section Natural Gas)
Show Figures

Graphical abstract

14 pages, 1348 KB  
Article
Testing the Experimental Unit at PT Lab for Collecting Data of CO2 Solubility in Solvents
by Stefania Moioli
Gases 2026, 6(1), 1; https://doi.org/10.3390/gases6010001 - 23 Dec 2025
Viewed by 274
Abstract
Carbon Capture, Utilization and Storage (CCUS) is a critical area of research due to its potential to significantly reduce CO2 emissions from industrial processes and fossil fuel-based power generation. Aqueous amine solutions are commonly used as chemical solvents for CO2 capture. [...] Read more.
Carbon Capture, Utilization and Storage (CCUS) is a critical area of research due to its potential to significantly reduce CO2 emissions from industrial processes and fossil fuel-based power generation. Aqueous amine solutions are commonly used as chemical solvents for CO2 capture. However, their application is disfavoured by the high energy requirements and related operational costs, toxicity, and corrosion issues. To address these limitations, research is in general focused on developing novel solvents that can overcome the drawbacks of traditional amines. This development needs the study of phase equilibria in systems for which detailed physicochemical data are often scarce in the literature. In particular, understanding the solubility of gases (CO2) in possible solvent mixtures is essential for evaluating their suitability for chemical or physical absorption processes. In this work, a dedicated setup was installed to generate the experimental data for these novel systems. This unit was designed to measure the solubility and diffusivity of gases in low-volatility liquids that could be alternative CO2 solvents. A detailed experimental procedure was established, and the unit was initially validated by measuring CO2 solubility in a 30 wt% monoethanolamine (MEA) solution, one of the most widely used industrial solvents. The experiments were conducted under conditions representing both the absorption and the regeneration sections of a CO2 removal plant. The resulting equilibrium data were analyzed by employing several thermodynamic models, and the model providing the best representation was selected. Full article
(This article belongs to the Section Gas Emissions)
Show Figures

Figure 1

31 pages, 4653 KB  
Article
Evaluation of Hydrogen-Powered Gas Turbines for Offshore FLNG Applications
by We Lin Chan and Arun Dev
Gases 2025, 5(4), 29; https://doi.org/10.3390/gases5040029 - 16 Dec 2025
Viewed by 455
Abstract
Global carbon emissions are driving the maritime industry toward cleaner fuels, with LNG already established as a transitional option that reduces SOx, NOx, and particulate emissions relative to conventional marine fuels and in line with decarbonisation strategies. This research aimed to explore the [...] Read more.
Global carbon emissions are driving the maritime industry toward cleaner fuels, with LNG already established as a transitional option that reduces SOx, NOx, and particulate emissions relative to conventional marine fuels and in line with decarbonisation strategies. This research aimed to explore the transition of offshore and marine platforms from conventional marine fuels to cleaner alternatives, with liquefied natural gas (LNG) emerging as the principal transitional fuel. Subsequently, floating liquefied natural gas (FLNG) platforms are increasingly being deployed to harness offshore gas resources, yet they face critical challenges related to weight, space, and energy efficiency. The study proposes pathways for transitioning FLNG energy systems from LNG to zero-carbon fuels, such as hydrogen derived directly from LNG resources, to optimise fuel supply under the unique operational constraints of FLNG units. The work unifies the independent domains of pure-fuel and blending-fuel processes for LNG and hydrogen, viewed in the context of thermodynamic processes, to optimise hydrogen–LNG co-firing gas turbine performance and meet the base power line of 50 MW. Furthermore, the research article will contribute to the development of other floating production platforms, such as FPSOs and FSRUs. It will be committed to clean energy policies that mandate support for green alternatives to hydrocarbon fuels. Full article
Show Figures

Figure 1

19 pages, 6106 KB  
Article
Density and Viscosity of CO2 Binary Mixtures with SO2, H2S, and CH4 Impurities: Molecular Dynamics Simulations and Thermodynamic Model Validation
by Mohammad Hassan Mahmoodi, Pezhman Ahmadi and Antonin Chapoy
Gases 2025, 5(4), 28; https://doi.org/10.3390/gases5040028 - 28 Nov 2025
Viewed by 912
Abstract
The aim of this study is to generate density and viscosity data for carbon capture utilization and storage (CCUS) mixtures using equilibrium molecular dynamics (EMD) simulations. Binary CO2 mixtures with SO2 and H2S impurities at mole fractions of 0.05, [...] Read more.
The aim of this study is to generate density and viscosity data for carbon capture utilization and storage (CCUS) mixtures using equilibrium molecular dynamics (EMD) simulations. Binary CO2 mixtures with SO2 and H2S impurities at mole fractions of 0.05, 0.10, and 0.20 were constructed. Simulations were performed across a temperature range of 223–323.15 K and at pressures up to 27.5 MPa using ms2 software. The simulation results were compared with predictions from established models. These included the Multi-Fluid Helmholtz Energy Approximation (MFHEA) for density, and the Lennard-Jones (LJ), Residual Entropy Scaling (ES-NIST), and Extended Corresponding States (SUPERTRAPP) models for viscosity. Available experimental data from the literature were also used for validation. Density predictions showed excellent agreement with MFHEA, especially for CO2 + SO2 mixtures, with %AARD values below 1% for 0.05 and 0.10, and 1.60% for 0.20 mole fraction SO2. For CO2 + H2S mixtures, deviations also increased with impurity concentration, reaching a maximum %AARD of 4.72% at 0.20 mole fraction. Viscosity data were validated against experimental values from the literature for a CO2 + CH4 (xCH4 = 0.25) mixture, showing strong agreement with both models and experiments. This confirms the reliability of the MD approach and the thermodynamic models, even for systems lacking experimental data. However, viscosity estimates showed higher uncertainty at lower temperatures and higher densities, a known limitation of the Green–Kubo method. This highlights the importance of selecting an appropriate correlation time to ensure the pressure correlation functions reach a plateau, avoiding inaccurate or uncertain viscosity values. Full article
Show Figures

Graphical abstract

8 pages, 989 KB  
Project Report
Technical Analysis Between Distillation and Membrane for the Production of Heavy-Duty 5% Propane
by Yousef Alqaheem, Abdulaziz A. Alomair and Mohammad Alobaid
Gases 2025, 5(4), 27; https://doi.org/10.3390/gases5040027 - 24 Nov 2025
Viewed by 370
Abstract
The demand for heavy-duty 5% (HD5) propane is expected to increase in the future due to the use of the gas as a fuel for engines. A refinery produces HD10 propane, and it is looking to upgrade to HD5 propane using either the [...] Read more.
The demand for heavy-duty 5% (HD5) propane is expected to increase in the future due to the use of the gas as a fuel for engines. A refinery produces HD10 propane, and it is looking to upgrade to HD5 propane using either the conventional process (distillation) or an energy-saving unit (membrane). This study compared the two technologies in terms of product quality and quantity using process simulation in UniSIM®. The software also provided the design parameters and power consumption for the two processes. The results show that the membrane was competitive with distillation and was capable of producing 96 mol% propane with a recovery of 99.3%. On the other hand, distillation achieved a maximum propane quality of 95 mol% with a recovery of 99.9%. Surprisingly, the energy consumption in the membrane was 669 kWh, which was higher than that of distillation (540 kWh) due to the requirement for a pre-heating step. Therefore, the technology should be selected based on either the quality or quantity of propane. Full article
Show Figures

Figure 1

23 pages, 2325 KB  
Article
Underground Hydrogen Storage: Steady-State Measurement of Hydrogen–Brine Relative Permeability with Gas Slip Correction
by Emmanuel Appiah Kubi, Hamid Rahnema, Abdul-Muaizz Koray and Babak Shabani
Gases 2025, 5(4), 26; https://doi.org/10.3390/gases5040026 - 20 Nov 2025
Cited by 2 | Viewed by 951
Abstract
Large-scale underground hydrogen storage in saline aquifers requires an understanding of hydrogen–brine two-phase flow properties, particularly relative permeability, which influences reservoir injectivity and hydrogen recovery. However, such hydrogen–brine relative permeability data remain scarce, hindering the predictive modeling of hydrogen injection and withdrawal. In [...] Read more.
Large-scale underground hydrogen storage in saline aquifers requires an understanding of hydrogen–brine two-phase flow properties, particularly relative permeability, which influences reservoir injectivity and hydrogen recovery. However, such hydrogen–brine relative permeability data remain scarce, hindering the predictive modeling of hydrogen injection and withdrawal. In this study, steady-state hydrogen–brine co-injection coreflood experiments were conducted on an Austin Chalk core sample to measure the relative permeabilities. Klinkenberg slip corrections were applied to the gas flow measurements to determine the intrinsic (slip-free) hydrogen permeability. The core’s brine permeability was 13.2 mD, and the Klinkenberg-corrected hydrogen gas permeability was 13.8 mD (approximately a 4.5% difference). Both raw and slip-corrected hydrogen relative permeability curves were obtained, showing that the gas-phase conductivity increased as the water saturation decreased. Gas slippage caused higher apparent gas permeability in the raw data, and slip correction significantly reduced hydrogen relative permeability at lower hydrogen saturations. The core’s irreducible water saturation was 39%, at which point the hydrogen relative permeability reached 0.8 (dropping to 0.69 after slip correction), which is indicative of strongly water-wet behavior. These results demonstrate a measurable impact of gas slippage on hydrogen flow behavior and highlight the importance of accounting for slip effects when evaluating hydrogen mobility in brine-saturated formations. Full article
Show Figures

Figure 1

22 pages, 4192 KB  
Article
AERQ: Leveraging IoT and HPC for Urban Air Quality Monitoring
by Guido Satta, Pierluigi Cau, Davide Muroni, Carlo Milesi and Carlino Casari
Gases 2025, 5(4), 25; https://doi.org/10.3390/gases5040025 - 17 Nov 2025
Viewed by 576
Abstract
Emerging technologies such as the Internet of Things (IoT), big data, mobile devices, high-performance computing, and advanced modeling are reshaping urban management. When integrated with conventional tools, these innovations enable smarter governance—particularly in air quality control—improving public health and quality of life. Yet, [...] Read more.
Emerging technologies such as the Internet of Things (IoT), big data, mobile devices, high-performance computing, and advanced modeling are reshaping urban management. When integrated with conventional tools, these innovations enable smarter governance—particularly in air quality control—improving public health and quality of life. Yet, urban expansion driven by economic growth continues to worsen pollution and its health impacts. This study presents AERQ, a decision support system (DSS) designed to address urban air quality challenges through real-time sensor data and the AERMOD dispersion model. Applied to Cagliari (Italy), AERQ is used to evaluate key traffic-related pollutants (CO, PM, NO2) and simulate mitigation scenarios. Results are delivered via a user-friendly web-based platform for policymakers, technicians, and citizens. AERQ supports data-driven planning and near real-time responses, demonstrating the potential of integrated digital tools for sustainable urban governance. In the case study, it achieved 10 m spatial and 1 h temporal resolution, while reducing simulation time by 99%—delivering detailed five-year scenarios in just 15 h. Full article
Show Figures

Figure 1

23 pages, 10174 KB  
Article
Evaluating Concentrations of PM10, PM2.5, SO2, NO2, CO, O3, and H2S Emitted by Artisanal Brick Kilns in Juliaca, Peru, Using a Low-Cost Sensor Network and AERMOD Model
by José Luis Pineda-Tapia, Edwin Huayhua-Huamaní, Milton Edward Humpiri-Flores, Kevin Fidel Quispe-Monroy, Deyna Lozano-Ccopa, Robinson Chaiña-Sucasaca, Milagros Lupe Salas-Huahuachampi, Dennis Enrique Mamani-Vilca and Cristian Abraham Cutipa-Flores
Gases 2025, 5(4), 24; https://doi.org/10.3390/gases5040024 - 31 Oct 2025
Viewed by 2016
Abstract
The aim of this study was to rigorously quantify and analyse the concentrations of atmospheric pollutants (PM10, PM2.5, SO2, NO2, CO, H2S, and O3) emitted by artisanal brick kilns in Juliaca [...] Read more.
The aim of this study was to rigorously quantify and analyse the concentrations of atmospheric pollutants (PM10, PM2.5, SO2, NO2, CO, H2S, and O3) emitted by artisanal brick kilns in Juliaca City, Peru. The AERMOD dispersion model and a network of low-cost sensors (LCSs) were employed to characterise air quality at specific receptor sites. A georeferenced inventory of kiln operations was created to determine their parameters and operational intensity, providing a foundation for estimating emission factors and rates. Data were obtained from the United States Environmental Protection Agency (EPA) and supplemented with locally gathered meteorological records, which were processed for integration into the AERMOD model. The findings revealed that brick kilns are a principal source of atmospheric pollution in the region, with carbon monoxide (CO) emissions being especially pronounced. The LCSs facilitated the identification of pollutant concentrations at various locations and enabled the quantification of the specific contribution of brick production to ambient aerosol levels. Comparative assessments determined that these sources account for approximately 85% of CO emissions within the study area, underscoring a significant adverse impact on air quality and public health. Background pollutant levels, emission rates, spatial distributions, and concentration patterns were analysed within the assessment zones, resulting in solid model performance. These results provide a sound scientific basis for the formulation and implementation of targeted environmental mitigation policies in urban areas and the outskirts of Juliaca. Full article
Show Figures

Figure 1

28 pages, 3042 KB  
Review
Experimental and Molecular Dynamics Simulation of Interfacial Tension Measurements in CO2–Brine/Oil Systems: A Literature Review
by Nadieh Salehi, Mohammad Kazemi, Mohammad Amin Esmaeilbeig, Abbas Helalizadeh and Mehdi Bahari Moghaddam
Gases 2025, 5(4), 23; https://doi.org/10.3390/gases5040023 - 16 Oct 2025
Cited by 1 | Viewed by 2371
Abstract
Carbon dioxide (CO2), a major greenhouse gas, contributes significantly to global warming and environmental degradation. Carbon Capture, Utilization, and Storage (CCUS) is a promising strategy to mitigate atmospheric CO2 levels. One widely applied utilization approach involves injecting captured CO2 [...] Read more.
Carbon dioxide (CO2), a major greenhouse gas, contributes significantly to global warming and environmental degradation. Carbon Capture, Utilization, and Storage (CCUS) is a promising strategy to mitigate atmospheric CO2 levels. One widely applied utilization approach involves injecting captured CO2 into depleted oil reservoirs to enhance oil recovery—a technique known as CO2-Enhanced Oil Recovery (CO2-EOR). The effectiveness of CO2-EOR largely depends on complex rock–fluid interactions, including mass transfer, wettability alteration, capillary pressure, and interfacial tension (IFT). Various factors, such as the presence of asphaltenes, salinity, pressure, temperature, and rock type, influence these interactions. This review explores the impact of these parameters on the IFT between CO2 and oil/water systems, drawing on findings from both experimental studies and molecular dynamics (MD) simulations. The literature indicates that increased temperature, reduced pressure, lower salinity, and the presence of asphaltenes tend to reduce IFT at the oil–water interface. Similarly, elevated temperature and pressure, along with asphaltene content, also lower the surface tension between CO2 and oil. Most MD simulations employ synthetic oil mixtures of various alkanes and use tools such as LAMMPS and GROMACS. Experimentally, the pendant drop method is most commonly used with crude oil and brine samples. Future research employing actual reservoir fluids and alternative measurement techniques may yield more accurate and representative IFT data, further advancing the application of CO2-EOR. Full article
Show Figures

Figure 1

25 pages, 2212 KB  
Review
Review of Biomass Gasifiers: A Multi-Criteria Approach
by Julián Cardona-Giraldo, Laura C. G. Velandia, Daniel Marin, Alejandro Argel, Samira García-Freites, Marco Sanjuan, David Acosta, Adriana Aristizabal, Santiago Builes and Maria L. Botero
Gases 2025, 5(4), 22; https://doi.org/10.3390/gases5040022 - 13 Oct 2025
Cited by 1 | Viewed by 3128
Abstract
Gasification of residual biomass has emerged as an efficient thermochemical conversion process, applicable to a wide range of uses, such as electricity generation; chemical manufacturing; and the production of liquid biofuels, BioSNG (biomass-based synthetic natural gas), and hydrogen. Thus, gasification of biomass residues [...] Read more.
Gasification of residual biomass has emerged as an efficient thermochemical conversion process, applicable to a wide range of uses, such as electricity generation; chemical manufacturing; and the production of liquid biofuels, BioSNG (biomass-based synthetic natural gas), and hydrogen. Thus, gasification of biomass residues not only constitutes an important contribution toward decarbonizing the economy but also promotes the efficient utilization of renewable resources. Although a variety of gasification technologies are available, there are no clear guidelines for selecting the type of gasifier appropriate depending on the feedstock and the desired downstream products. Herein, we propose a gasifier classification model based on an extensive literature review, combined with a multi-criteria decision-making approach. A comprehensive and up-to-date literature review was conducted to gain a thorough understanding of the current state of knowledge in biomass gasification. The different features of the different types of gasifiers, in the context of biomass gasification, are presented and compared. The gasifiers were reviewed and evaluated considering criteria such as processing capacity, syngas quality, process performance, feedstock flexibility, operational and capital costs, environmental impact, and specific equipment features. A multi-criteria classification methodology was evaluated for assessing biomass gasifiers. A case study of such methodology was a applied to determine the best gasifiers for BioSNG inclusion in the natural gas distribution system in a small-scale scenario. Validation was conducted by comparing the matrix findings with commercially implemented gasification projects worldwide. Full article
(This article belongs to the Section Natural Gas)
Show Figures

Graphical abstract

19 pages, 4700 KB  
Article
Prototyping and Evaluation of 1D Cylindrical and MEMS-Based Helmholtz Acoustic Resonators for Ultra-Sensitive CO2 Gas Sensing
by Ananya Srivastava, Rohan Sonar, Achim Bittner and Alfons Dehé
Gases 2025, 5(3), 21; https://doi.org/10.3390/gases5030021 - 9 Sep 2025
Viewed by 4341
Abstract
This work presents a proof of concept including simulation and experimental validations of acoustic gas sensor prototypes for trace CO2 detection up to 1 ppm. For the detection of lower gas concentrations especially, the dependency of acoustic resonances on the molecular weights [...] Read more.
This work presents a proof of concept including simulation and experimental validations of acoustic gas sensor prototypes for trace CO2 detection up to 1 ppm. For the detection of lower gas concentrations especially, the dependency of acoustic resonances on the molecular weights and, consequently, the speed of sound of the gas mixture, is exploited. We explored two resonator types: a cylindrical acoustic resonator and a Helmholtz resonator intrinsic to the MEMS microphone’s geometry. Both systems utilized mass flow controllers (MFCs) for precise gas mixing and were also modeled in COMSOL Multiphysics 6.2 to simulate resonance shifts based on thermodynamic properties of binary gas mixtures, in this case, N2-CO2. We performed experimental tracking using Zurich Instruments MFIA, with high-resolution frequency shifts observed in µHz and mHz ranges in both setups. A compact and geometry-independent nature of MEMS-based Helmholtz tracking showed clear potential for scalable sensor designs. Multiple experimental trials confirmed the reproducibility and stability of both configurations, thus providing a robust basis for statistical validation and system reliability assessment. The good simulation experiment agreement, especially in frequency shift trends and gas density, supports the method’s viability for scalable environmental and industrial gas sensing applications. This resonance tracking system offers high sensitivity and flexibility, allowing selective detection of low CO2 concentrations down to 1 ppm. By further exploiting both external and intrinsic acoustic resonances, the system enables highly sensitive, multi-modal sensing with minimal hardware modifications. At microscopic scales, gas detection is influenced by ambient factors like temperature and humidity, which are monitored here in a laboratory setting via NDIR sensors. A key challenge is that different gas mixtures with similar sound speeds can cause indistinguishable frequency shifts. To address this, machine learning-based multivariate gas analysis can be employed. This would, in addition to the acoustic properties of the gases as one of the variables, also consider other gas-specific variables such as absorption, molecular properties, and spectroscopic signatures, reducing cross-sensitivity and improving selectivity. This multivariate sensing approach holds potential for future application and validation with more critical gas species. Full article
(This article belongs to the Section Gas Sensors)
Show Figures

Figure 1

21 pages, 8366 KB  
Article
Study on the Temporal and Spatial Migration Patterns of Blast Smoke in the Mining Area and Optimization of Effective Range
by Li Chen, Yuan Tian, Nana Zhang, Ziyi Xu and Zhisheng Li
Gases 2025, 5(3), 20; https://doi.org/10.3390/gases5030020 - 1 Sep 2025
Viewed by 779
Abstract
To prevent toxic and harmful gas suffocation accidents in underground metal mine stopes, the Fluent numerical simulation method was employed to investigate the wind field distribution patterns and the diffusion laws of blasting fumes in stopes with and without middle–end roadways under varying [...] Read more.
To prevent toxic and harmful gas suffocation accidents in underground metal mine stopes, the Fluent numerical simulation method was employed to investigate the wind field distribution patterns and the diffusion laws of blasting fumes in stopes with and without middle–end roadways under varying effective ranges. The simulation accuracy was validated through laboratory experiments. The results demonstrate that over time, the CO concentration in the blasting area decreases, while in other regions of the stope, it initially increases before declining. The presence or absence of a middle roadway does not significantly alter the migration and diffusion behavior of blasting fumes in the stope. When the effective range is ER–1, the simulation error is only 8 s. As the effective range increases, the time required to reduce the CO concentration to 24 ppm on the respiratory plane, across the entire space, and at the monitoring point follows a linearly increasing trend. Meanwhile, the maximum wind speed at the working face exhibits a linearly decreasing trend, whereas the peak CO concentration shows a linearly increasing trend. Under the ER–1 effective range, the CO concentration can be reduced to a safe threshold more rapidly. The experimental and simulation results exhibit an error margin within 16.97%, confirming the accuracy of the numerical simulation. Full article
Show Figures

Figure 1

Back to TopTop