Tropospheric and Surface Measurements of Combustion Tracers During the 2021 Mediterranean Wildfire Crisis: Insights from the WMO/GAW Site of Lamezia Terme in Calabria, Southern Italy
Abstract
:1. Introduction
2. Characteristics of Lamezia Terme WMO/GAW Regional Observation Site
3. Methodologies for the Analysis of Surface and Satellite Data
4. Data Coverage and Evaluations of Wildfire Sources During the 2021 Crisis
5. Results
5.1. Tropospheric and Surface Observations of CO, HCHO, and eBC
5.2. Statistical Analysis
5.3. Case Studies: Sardinian, Algerian, and Greek Wildfires
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bowman, D.M.J.S.; Williamson, G.J.; Abatzoglou, J.T.; Kolden, C.A.; Cochrane, M.A.; Smith, A.M.S. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 2017, 1, 58. [Google Scholar] [CrossRef] [PubMed]
- Duane, A.; Castellnou, M.; Brotons, L. Towards a comprehensive look at global drivers of novel extreme wildfires. Clim. Chang. 2021, 165, 43. [Google Scholar] [CrossRef]
- Senande-Rivera, M.; Insua-Costa, D.; Miguez-Macho, G. Towards an atmosphere more favourable to firestorm development in Europe. Environ. Res. Lett. 2022, 17, 094015. [Google Scholar] [CrossRef]
- Gonzi, S.; Feng, L.; Palmer, P.I. Seasonal cycle of emissions of CO inferred from MOPITT profiles of CO: Sensitivity to pyroconvection and profile retrieval assumptions. Geophys. Res. Lett. 2011, 38, L08813. [Google Scholar] [CrossRef]
- Castellnou, M.; Bachfischer, M.; Miralles, M.; Ruiz, B.; Stoof, C.R.; Vilà-Guerau de Arellano, J. Pyroconvection Classification Based on Atmospheric Vertical Profiling Correlation With Extreme Fire Spread Observations. J. Geophys. Res.-Atmos. 2022, 127, e2022JD036920. [Google Scholar] [CrossRef]
- Finney, M.; McAllister, S.; Grumstrup, T.; Forhofer, J. Wildland Fire Behavior—Dynamics, Principles, and Processes, 1st ed.; CSIRO Publishing: Melbourne, Australia, 2021; pp. 461–462. [Google Scholar]
- Fromm, M.; Servranckx, R.; Stocks, B.J.; Peterson, D.A. Understanding the critical elements of the pyrocumulonimbus storm sparked by high-intensity wildland fire. Commun. Earth Environ. 2022, 3, 243. [Google Scholar] [CrossRef]
- Lareau, N.P.; Clements, C.B. Environmental controls on pyrocumulus and pyrocumulonimbus initiation and development. Atmos. Chem. Phys. 2016, 16, 4005–4022. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Fromm, M.; Trentmann, J.; Luderer, G.; Andreae, M.O.; Servranckx, R. The Chisholm firestorm: Observed microstructure, precipitation and lightning activity of a pyro-cumulonimbus. Atmos. Chem. Phys. 2007, 7, 645–659. [Google Scholar] [CrossRef]
- Dowdy, A.J.; Fromm, M.D.; McCarthy, N. Pyrocumulonimbus lightning and fire ignition on Black Saturday in southeast Australia. J. Geophys. Res.-Atmos. 2017, 122, 7342–7354. [Google Scholar] [CrossRef]
- Safronov, A.N. Effects of Climatic Warming and Wildfires on Recent Vegetation Changes in the Lake Baikal Basin. Climate 2020, 8, 57. [Google Scholar] [CrossRef]
- Fromm, M.; Bevilacqua, R.; Servranckx, R.; Josen, J.; Thayer, J.P.; Herman, J.; Larko, D. Pyro-cumulonimbus injection of smoke to the stratosphere: Observations and impact of a super blowup in northwestern Canada on 3–4 August 1998. J. Geophys. Res.-Atmos. 2005, 110, D08205. [Google Scholar] [CrossRef]
- Fromm, M.D.; McRae, R.H.D.; Sharples, J.J.; Kablick, G.P., III. Pyrocumulonimbus pair in Wollemi and Blue Mountains National Parks, 22 November 2006. Aust. Meteorol. Ocean. 2012, 62, 117–126. [Google Scholar] [CrossRef]
- Thurston, W.; Keppert, J.D.; Tory, K.J.; Fawcett, R.J.B. The contribution of turbulent plume dynamics to long-range spotting. Int. J. Wildland Fire 2017, 26, 317–330. [Google Scholar] [CrossRef]
- Potter, B.E. Atmospheric interactions with wildland fire behavior—I. Basic surface interactions, vertical profiles and synoptic structures. Int. J. Wildland Fire 2012, 21, 779–801. [Google Scholar] [CrossRef]
- Potter, B.E. Atmospheric interactions with wildland fire behavior—II. Plume and vortex dynamics. Int. J. Wildland Fire 2012, 21, 802–817. [Google Scholar] [CrossRef]
- Peace, M.; McCaw, L.; Santos, B.; Kepert, J.; Burrows, N.; Fawcett, R.J.B. Meteorological drivers of extreme fire behaviour during the Waroona bushfire, Western Australia, January 2016. J. South. Hemisph. Earth Syst. Sci. 2017, 67, 79–106. [Google Scholar] [CrossRef]
- Kablick, G.P., III; Allen, D.R.; Fromm, M.D.; Nedoluha, G.E. Australian PyroCb Smoke Generates Synoptic-Scale Stratospheric Anticyclones. Geophys. Res. Lett. 2020, 47, e2020GL088101. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Maianti, P.; Libertá, G.; Artés-Vivancos, T.; Oom, D.; Branco, A.; de Rigo, D.; Ferrari, D.; et al. Forest Fires in Europe, Middle East and North Africa 2021; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar] [CrossRef]
- Arslan, H.; Baltaci, H.; Demir, G.; Ozcan, H.K. Spatiotemporal changes and background atmospheric factors associated with forest fires in Turkiye. Environ. Monit. Assess. 2024, 196, 891. [Google Scholar] [CrossRef] [PubMed]
- Cosgun, U.; Coşkun, M.; Toprak, F.; Yıldız, D.; Coşkun, S.; Taşoğlu, E.; Öztürk, A. Visibility Evaluation and Suitability Analysis of Fire Lookout Towers in Mediterranean Region, Southwest Anatolia/Türkiye. Fire 2023, 6, 305. [Google Scholar] [CrossRef]
- Yilmaz, O.S.; Akyuz, D.E.; Aksel, M.; Dikici, M.; Akgul, M.A.; Yagci, O.; Balik Sanli, F.; Aksoy, H. Evaluation of pre- and post-fire flood risk by analyitical hierarchy process method: A case study for the 2021 wildfires in Bodrum, Türkiye. Landscape Ecol. Eng. 2023, 19, 271–288. [Google Scholar] [CrossRef]
- Gülçin, D.; Özcan, A.U.; Akdağ, B.; Çiçek, K. Assessment of Endemic Lycian Salamanders Habitats Impacted by 2021 Mega Forest Fires in Türkiye. Ecol. Balk. 2022, 14, 57–78. [Google Scholar]
- Aydin-Kandemir, F.; Demir, N. 2021 Türkiye mega forest Fires: Biodiversity measurements of the IUCN Red List wildlife mammals in Sentinel-2 based burned areas. Adv. Space Res. 2023, 71, 3060–3075. [Google Scholar] [CrossRef]
- Yildiz, C.; Çömert, R.; Tanyaş, H.; Yılmaz, A.; Akbaş, A.; Akay, S.S.; Yetemen, Ö.; Görüm, T. The effect of post-wildfire management practices on vegetation recovery: Insights from the Sapadere fire, Antalya, Türkiye. Front. Earth Sci. 2023, 11, 1174155. [Google Scholar] [CrossRef]
- Tariq, S.; ul-Haq, Z.; Mariam, A.; Mehmood, U.; Ahmed, W. Assessment of air quality during worst wildfires in Mugla and Antalya regions of Türkiye. Nat. Hazards 2023, 115, 1235–1254. [Google Scholar] [CrossRef]
- Eke, M.; Cingiroglu, F.; Kaynak, B. Investigation of 2021 wildfire impacts on air quality in southwestern Türkiye. Atmos. Environ. 2024, 325, 120445. [Google Scholar] [CrossRef]
- Yilmaz, O.S.; Acar, U.; Sanli, F.B.; Gulgen, F.; Ates, A.M. Mapping burn severity and monitoring CO content in Türkiye’s 2021 Wildfires, using Sentinel-2 and Sentinel-5P satellite data on the GEE platform. Earth Sci. Inform. 2023, 16, 221–240. [Google Scholar] [CrossRef] [PubMed]
- Çinar, T.; Taşpinar, F.; Aydin, A. Analysis and estimation of gaseous air pollutant emissions emitted into the atmosphere during Manavgat and Milas wildfire episodes using remote sensing data and ground measurements. Air Qual. Atmos. Health 2024, 17, 559–579. [Google Scholar] [CrossRef]
- Founda, D.; Katavoutas, G.; Pierros, F.; Mihalopoulos, N. The Extreme Heat Wave of Summer 2021 in Athens (Greece): Cumulative Heat and Exposure to Heat Stress. Sustainability 2022, 14, 7766. [Google Scholar] [CrossRef]
- Boschetti, L.; Roy, D.; Barbosa, P.; Boca, R.; Justice, C. A MODIS assessment of the summer 2007 extent burned in Greece. Int. J. Remote Sens. 2008, 29, 2433–2436. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Kharol, S.K.; Sifakis, N.; Nastos, P.T.; Sharma, A.R.; Badarinath, K.V.S.; Kambezidis, H.D. Satellite monitoring of the biomass-burning aerosols during the wildfires of August 2007 in Greece: Climate implications. Atmos. Environ. 2011, 45, 716–726. [Google Scholar] [CrossRef]
- Sifakis, N.I.; Iossifidis, C.; Kontoes, C.; Keramitsoglou, I. Wildfire Detection and Tracking over Greece Using MSG-SEVIRI Satellite Data. Remote Sens. 2011, 3, 524–538. [Google Scholar] [CrossRef]
- Polychronaki, A.; Gitas, I.Z. Burned Area Mapping in Greece Using SPOT-4 HRVIR Images and Object-Based Image Analysis. Remote Sens. 2012, 4, 424–438. [Google Scholar] [CrossRef]
- Koutsias, N.; Arianoutsou, M.; Kallimanis, A.S.; Mallinis, G.; Halley, J.M.; Dimopoulos, P. Where did the fires burn in Peloponnisos, Greece the summer of 2007? Evidence for a synergy of fuel and weather. Agric. For. Meteorol. 2012, 156, 41–53. [Google Scholar] [CrossRef]
- Kontoes, C.; Keramitsoglou, I.; Papoutsis, I.; Sifakis, N.I.; Xofis, P. National Scale Operational Mapping of Burnt Areas as a Tool for the Better Understanding of Contemporary Wildfire Patterns and Regimes. Sensors 2013, 13, 11146–11166. [Google Scholar] [CrossRef] [PubMed]
- Kalivas, D.P.; Petropoulos, G.P.; Athanasiou, I.M.; Kollias, V.J. An intercomparison of burnt area estimates derived from key operational productions: The Greek wildland fires of 2005–2007. Nonlinear Process. Geophys. 2013, 20, 397–409. [Google Scholar] [CrossRef]
- Giannaros, T.M.; Papavasileiou, G.; Lagouvardos, K.; Kotroni, V.; Dafis, S.; Karagiannidis, A.; Dragozi, E. Meteorological Analysis of the 2021 Extreme Wildfires in Greece: Lessons Learned and Implications for Early Warning of the Potential for Pyroconvection. Atmosphere 2022, 13, 475. [Google Scholar] [CrossRef]
- Papavasileiou, G.; Giannaros, T.M. Synoptic-scale drivers of fire weather in Greece. Sci. Total Environ. 2024, 925, 171715. [Google Scholar] [CrossRef]
- Bilgiç, E.; Tuna Tuygun, G.; Gündüz, O. Development of an emission estimation method with satellite observations for significant forest fires and comparison with global fire emission inventories: Application to catastrophic fires of summer 2021 over the Eastern Mediterranean. Atmos. Environ. 2023, 308, 119871. [Google Scholar] [CrossRef]
- Pulvirenti, L.; Squicciarino, G.; Fiori, E.; Negro, D.; Gollini, A.; Puca, S. Near real-time generation of a country-level burned area database for Italy from Sentinel-2 data and active fire detections. Remote Sens. Appl. Soc. Environ. 2023, 29, 100925. [Google Scholar] [CrossRef]
- Cristofanelli, P.; Trisolino, P.; Calzolari, F.; Busetto, M.; Calidonna, C.R.; Amendola, S.; Arduini, J.; Fratticioli, C.; Hundal, R.A.; Maione, M.; et al. Influence of wildfire emissions to carbon dioxide (CO2) observed at the Mt. Cimone station (Italy, 2165 m asl): A multi-year investigation. Atmos. Environ. 2024, 330, 120577. [Google Scholar] [CrossRef]
- Malacaria, L.; Parise, D.; Lo Feudo, T.; Avolio, E.; Ammoscato, I.; Gullì, D.; Sinopoli, S.; Cristofanelli, P.; De Pino, M.; D’Amico, F.; et al. Multiparameter Detection of Summer Open Fire Emissions: The Case Study of GAW Regional Observatory of Lamezia Terme (Southern Italy). Fire 2024, 7, 198. [Google Scholar] [CrossRef]
- Ascoli, D.; Moris, J.V.; Marchetti, M.; Sallustio, L. Land use change towards forests and wooded land correlates with large and frequent wildfires in Italy. Ann. Silvic. Res. 2021, 46, 177–188. [Google Scholar] [CrossRef]
- Castagna, J.; Senatore, A.; Bencardino, M.; D’Amore, F.; Sprovieri, F.; Pirrone, N.; Mendicino, G. Multiscale assessment of the impact on air quality of an intense wildfire season in southern Italy. Sci. Total Environ. 2021, 761, 143271. [Google Scholar] [CrossRef] [PubMed]
- Argentiero, I.; Ricci, G.F.; Elia, M.; D’Este, M.; Giannico, V.; Ronco, F.V.; Gentile, F.; Sanesi, G. Combining Methods to Estimate Post-Fire Soil Erosion Using Remote Sensing Data. Forests 2021, 12, 1105. [Google Scholar] [CrossRef]
- Khalil, M.A.K.; Rasmussen, R.A. Carbon Monoxide in the Earth’s Atmosphere: Increasing Trend. Science 1984, 223, 54–56. [Google Scholar] [CrossRef] [PubMed]
- Edwards, D.P.; Emmons, L.K.; Hauglustaine, D.A.; Chu, D.A.; Gille, J.C.; Kaufman, Y.J.; Pétron, G.; Yurganov, L.N.; Giglio, L.; Deeter, M.N.; et al. Observations of carbon monoxide and aerosols from the Terra satellite: Northern Hemisphere variability. J. Geophys. Res.-Atmos. 2004, 109, 17. [Google Scholar] [CrossRef]
- Capilla, C. Analysis of the trend and seasonal cycle of carbon monoxide concentrations in an urban area. Environ. Sci. Poll. Res. Int. 2007, 14, 19–22. [Google Scholar] [CrossRef] [PubMed]
- Dill, J. Estimating emissions reductions from accelerated vehicle retirement programs. Transp. Res. D Transp. Environ. 2004, 9, 87–106. [Google Scholar] [CrossRef]
- Zheng, B.; Chevallier, F.; Ciais, P.; Yin, Y.; Deeter, M.N.; Worden, H.M.; Wang, Y.; Zhang, Q.; He, K. Rapid decline in carbon monoxide emissions and export from East Asia between years 2005 and 2016. Environ. Res. Lett. 2018, 13, 044007. [Google Scholar] [CrossRef]
- Walsh, M.P. Global trends in motor vehicle pollution control: 1996 state of the art and remaining problems. Int. J. Veh. Des. 1997, 18, 233–242. [Google Scholar] [CrossRef]
- Dennison, P.E.; Brewer, S.C.; Arnold, J.D.; Moritz, M.A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 2014, 41, 2928–2933. [Google Scholar] [CrossRef]
- Buchholz, R.R.; Worden, H.M.; Park, M.; Francis, G.; Deeter, M.N.; Edwards, D.P.; Emmons, L.K.; Gaubert, B.; Gille, J.; Martínez-Alonso, S.; et al. Air pollution trends measured from Terra: CO and AOD over industrial, fire-prone, and background regions. Remote Sens. Environ. 2021, 256, 112275. [Google Scholar] [CrossRef]
- Checkoway, H.; Dell, L.D.; Boffetta, P.; Gallagher, A.E.; Crawford, L.; Lees, P.J.S.; Mundt, K.A. Formaldehyde exposure and mortality risks from acute myeloid leukemia and other lymphohematopoietic malignancies in the US National Cancer Institute Cohort study of workers in formaldehyde industries. J. Occup. Environ. Med. 2015, 57, 785–794. [Google Scholar] [CrossRef]
- Binazzi, A.; Mensi, C.; Miligi, L.; Di Marzio, D.; Zajacova, J.; Galli, P.; Camagni, A.; Calisti, R.; Balestri, A.; Murano, S.; et al. Exposures to IARC Carcinogenic Agents in Work Settings Not Traditionally Associated with Sinonasal Cancer Risk: The Experience of the Italian National Sinonasal Cancer Registry. Int. J. Environ. Res. Public Health 2021, 18, 12593. [Google Scholar] [CrossRef] [PubMed]
- Na, K.; Cocker, D.R. Fine organic particle, formaldehyde, acetaldehyde concentrations under and after the influence of fire activity in the atmosphere of Riverside, California. Environ. Res. 2008, 108, 7–14. [Google Scholar] [CrossRef]
- Efimova, N.V.; Rukavishnikov, V.S. Assessment of Smoke Pollution Caused by Wildfires in the Baikal Region (Russia). Atmosphere 2021, 12, 1542. [Google Scholar] [CrossRef]
- Vichi, F.; Bassani, C.; Ianniello, A.; Esposito, G.; Montagnoli, M.; Imperiali, A. Formaldehyde Continuous Monitoring at a Rural Station North of Rome: Appraisal of Local Sources Contribution and Meteorological Drivers. Atmosphere 2023, 14, 1833. [Google Scholar] [CrossRef]
- Nogueira, T.; Dominutti, P.A.; De Carvalho, L.R.F.; Fornaro, A.; Andrade, M.D.F. Formaldehyde and acetaldehyde measurements in urban atmosphere impacted by the use of ethanol biofuel: Metropolitan Area of Sao Paulo (MASP), 2012–2013. Fuel 2014, 134, 505–513. [Google Scholar] [CrossRef]
- Jung, S.; Kim, S.; Chung, T.; Hong, H.; Lee, S.; Lim, J. Emission Characteristics of Hazardous Air Pollutants from Medium-Duty Diesel Trucks Based on Driving Cycles. Sustainability 2021, 13, 7834. [Google Scholar] [CrossRef]
- Du, W.; Xie, H.; Li, J.; Guan, X.; Li, M.; Wang, H.; Wang, X.; Zhang, X.; Zhang, Q. The Emission Characteristics of VOCs and Environmental Health Risk Assessment in the Plywood Manufacturing Industry: A Case Study in Shandong Province. Sustainability 2024, 16, 7350. [Google Scholar] [CrossRef]
- Yu, C.W.F.; Crump, D.R. Testing for formaldehyde emission from wood-based products—A review. Indoor Built Environ. 1999, 8, 280–286. [Google Scholar] [CrossRef]
- Salthammer, T.; Mentese, S.; Marutzky, R. Formaldehyde in the indoor environment. Chem. Rev. 2010, 110, 2536–2572. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, F.; Liu, C.; Yang, J.; Zhang, J.; Peng, C. Monitoring, Human Health Risk Assessment and Optimized Management for Typical Pollutants in Indoor Air from Random Families of University Staff, Wuhan City, China. Sustainability 2017, 9, 1115. [Google Scholar] [CrossRef]
- Widder, S.H.; Haselbach, L. Relationship among Concentrations of Indoor Air Contaminants, Their Sources, and Different Mitigation Strategies on Indoor Air Quality. Sustainability 2017, 9, 1149. [Google Scholar] [CrossRef]
- Protano, C.; Antonucci, A.; De Giorgi, A.; Zanni, S.; Mazzeo, E.; Cammalleri, V.; Fabiani, L.; Mastrantonio, R.; Muselli, M.; Mastrangeli, G.; et al. Exposure and Early Effect Biomarkers for Risk Assessment of Occupational Exposure to Formaldehyde: A Systematic Review. Sustainability 2024, 16, 3631. [Google Scholar] [CrossRef]
- Lavoué, D.; Liousse, C.; Cachier, H.; Stocks, B.J.; Goldammer, J.G. Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes. J. Geophys. Res.-Atmos. 2000, 105, 26871–26890. [Google Scholar] [CrossRef]
- Tiittanen, P.; Timonen, K.L.; Ruuskanen, J.; Mirme, A.; Pekkanen, J. Fine particulate air pollution, resuspended road dust and respiratory health among symptomatic children. Eur. Respir. J. 1999, 13, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Lighty, J.S.; Veranth, J.M.; Sarofim, A.F. Combustion aerosols: Factors governing their size and composition and implications to human health. J. Air Waste Manag. Assoc. 2000, 50, 1565–1618. [Google Scholar] [CrossRef] [PubMed]
- Park, S.S.; Kim, Y.J.; Cho, S.H.; Kim, M.O. Chemical composition of fine particles in three urban areas, Korea. J. Aerosol Sci. 2000, 31, 118–119. [Google Scholar] [CrossRef]
- Horvath, H. Atmospheric light absorption: A review. Atmos. Environ. Part A 1993, 27, 293–317. [Google Scholar] [CrossRef]
- Penner, J.E.; Chuang, C.C.; Grant, K. Climate forcing by carbonaceous and sulfate aerosols. Clim. Dyn. 1998, 14, 839–851. [Google Scholar] [CrossRef]
- Chameides, W.L.; Bergin, M. Soot takes center stage. Science 2002, 297, 2214–2215. [Google Scholar] [CrossRef] [PubMed]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 2001, 409, 695–697. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 2008, 1, 221–227. [Google Scholar] [CrossRef]
- Federico, S.; Pasqualoni, L.; De Leo, L.; Bellecci, C. A study of the breeze circulation during summer and fall 2008 in Calabria, Italy. Atmos. Res. 2010, 97, 1–13. [Google Scholar] [CrossRef]
- Federico, S.; Pasqualoni, L.; Sempreviva, A.M.; De Leo, L.; Avolio, E.; Calidonna, C.R.; Bellecci, C. The seasonal characteristics of the breeze circulation at a coastal Mediterranean site in South Italy. Adv. Sci. Res. 2010, 4, 47–56. [Google Scholar] [CrossRef]
- European Commission. European Marine Observation and Data Network (EMODnet). Available online: https://emodnet.ec.europa.eu/en/bathymetry (accessed on 2 November 2024).
- Calidonna, C.R.; Avolio, E.; Gullì, D.; Ammoscato, I.; De Pino, M.; Donateo, A.; Lo Feudo, T. Five Years of Dust Episodes at the Southern Italy GAW Regional Coastal Mediterranean Observatory: Multisensors and Modeling Analysis. Atmosphere 2020, 11, 456. [Google Scholar] [CrossRef]
- Gullì, D.; Avolio, E.; Calidonna, C.R.; Lo Feudo, T.; Torcasio, R.C.; Sempreviva, A.M. Two years of wind-lidar measurements at an Italian Mediterranean Coastal Site. In European Geosciences Union General Assembly 2017, EGU—Division Energy, Resources & Environment, ERE. Energy Procedia 2017, 125, 214–220. [Google Scholar] [CrossRef]
- Avolio, E.; Federico, S.; Miglietta, M.M.; Lo Feudo, T.; Calidonna, C.R.; Sempreviva, A.M. Sensitivity analysis of WRF model PBL schemes in simulating boundary-layer variables in southern Italy: An experimental campaign. Atmos. Res. 2017, 192, 58–71. [Google Scholar] [CrossRef]
- Romano, S.; Lo Feudo, T.; Calidonna, C.R.; Burlizzi, P.; Perrone, M.R. Solar eclipse of 20 March 2015 and impacts on irradiance, meteorological parameters, and aerosol properties over southern Italy. Atmos. Res. 2017, 198, 11–21. [Google Scholar] [CrossRef]
- Lo Feudo, T.; Calidonna, C.R.; Avolio, E.; Sempreviva, A.M. Study of the Vertical Structure of the Coastal Boundary Layer Integrating Surface Measurements and Ground-Based Remote Sensing. Sensors 2020, 20, 6516. [Google Scholar] [CrossRef]
- Lo Feudo, T.; Avolio, E.; Gullì, D.; Federico, S.; Calidonna, C.R.; Sempreviva, A. Comparison of Hourly Solar Radiation from a Ground-Based Station, Remote Sensing and Weather Forecast Models at a Coastal Site of South Italy (Lamezia Terme). Energy Procedia 2015, 76, 148–155. [Google Scholar] [CrossRef]
- Cristofanelli, P.; Busetto, M.; Calzolari, F.; Ammoscato, I.; Gullì, D.; Dinoi, A.; Calidonna, C.R.; Contini, D.; Sferlazzo, D.; Di Iorio, T.; et al. Investigation of reactive gases and methane variability in the coastal boundary layer of the central Mediterranean basin. Elem. Sci. Anthr. 2017, 5, 12. [Google Scholar] [CrossRef]
- D’Amico, F.; Ammoscato, I.; Gullì, D.; Avolio, E.; Lo Feudo, T.; De Pino, M.; Cristofanelli, P.; Malacaria, L.; Parise, D.; Sinopoli, S.; et al. Trends in CO, CO2, CH4, BC, and NOx during the first 2020 COVID-19 lockdown: Source insights from the WMO/GAW station of Lamezia Terme (Calabria, Southern Italy). Sustainability 2024, 16, 8229. [Google Scholar] [CrossRef]
- D’Amico, F.; Ammoscato, I.; Gullì, D.; Avolio, E.; Lo Feudo, T.; De Pino, M.; Cristofanelli, P.; Malacaria, L.; Parise, D.; Sinopoli, S.; et al. Integrated analysis of methane cycles and trends at the WMO/GAW station of Lamezia Terme (Calabria, Southern Italy). Atmosphere 2024, 15, 946. [Google Scholar] [CrossRef]
- D’Amico, F.; Gullì, D.; Lo Feudo, T.; Ammoscato, I.; Avolio, E.; De Pino, M.; Cristofanelli, P.; Busetto, M.; Malacaria, L.; Parise, D.; et al. Cyclic and multi-year characterization of surface ozone at the WMO/GAW coastal station of Lamezia Terme (Calabria, Southern Italy): Implications for local environment, cultural heritage, and human health. Environments 2024, 11, 227. [Google Scholar] [CrossRef]
- Donateo, A.; Lo Feudo, T.; Marinoni, A.; Dinoi, A.; Avolio, E.; Merico, E.; Calidonna, C.R.; Contini, D.; Bonasoni, P. Characterization of In Situ Aerosol Optical Properties at Three Observatories in the Central Mediterranean. Atmosphere 2018, 9, 369. [Google Scholar] [CrossRef]
- Donateo, A.; Lo Feudo, T.; Marinoni, A.; Calidonna, C.R.; Contini, D.; Bonasoni, P. Long-term observations of aerosol optical properties at three GAW regional sites in the Central Mediterranean. Atmos. Res. 2020, 241, 104976. [Google Scholar] [CrossRef]
- D’Amico, F.; Ammoscato, I.; Gullì, D.; Avolio, E.; Lo Feudo, T.; De Pino, M.; Cristofanelli, P.; Malacaria, L.; Parise, D.; Sinopoli, S.; et al. Anthropic-Induced Variability of Greenhouse Gasses and Aerosols at the WMO/GAW Coastal Site of Lamezia Terme (Calabria, Southern Italy): Towards a New Method to Assess the Weekly Distribution of Gathered Data. Sustainability 2024, 16, 8175. [Google Scholar] [CrossRef]
- D’Amico, F.; Calidonna, C.R.; Ammoscato, I.; Gullì, D.; Malacaria, L.; Sinopoli, S.; De Benedetto, G.; Lo Feudo, T. Peplospheric influences on local greenhouse gas and aerosol variability at the Lamezia Terme WMO/GAW regional station in Calabria, Southern Italy: A multiparameter investigation. Sustainability 2024, 16, 10175. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, C.; Winstead, C.B. Exploration of microwave plasma source cavity ring-down spectroscopy for elemental measurements. Anal. Chem. 2003, 75, 2105–2111. [Google Scholar] [CrossRef]
- Chu, P.M.; Hodges, J.T.; Rhoderick, G.C.; Lisak, D.; Travis, J.C. Methane-in-air standards measured using a 1.65 μm frequency-stabilized cavity ring-down spectrometer. In Chemical and Biological Sensors for Industrial and Environmental Monitoring II; SPIE: Bellingham, WA, USA, 2006; Volume 6378, pp. 73–80. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; de Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Copernicus. Sentinel Data—Sentinel-5P. Available online: https://dataspace.copernicus.eu/explore-data/data-collections/sentinel-data/sentinel-5p (accessed on 25 October 2024).
- De Smedt, I.; Eichmann, K.U.; Lambert, J.C.; Loyola, D.; Veefkind, J.P. S5P Mission Performance Centre Formaldehyde [L2 HCHO] Readme; Technical Report; BIRA-IASB: Uccle, Belgium, 2019. [Google Scholar]
- Vigouroux, C.; Langerock, B.; Augusto Bauer Aquino, C.; Blumenstock, T.; Cheng, Z.; De Mazière, M.; De Smedt, I.; Grutter, M.; Hannigan, J.W.; Jones, N.; et al. TROPOMI-Sentinel-5 Precursor formaldehyde validation using an extensive network of ground-based Fourier-transform infrared stations. Atmos. Meas. Tech. 2020, 13, 3751–3767. [Google Scholar] [CrossRef]
- Barrese, E.; Valentini, M.; Scarpelli, M.; Samele, P.; Malacaria, L.; D’Amico, F.; Lo Feudo, T. Assessment of formaldehyde’s impact on indoor environments and human health via the integration of satellite tropospheric total columns and outdoor ground sensors. Sustainability 2024, 16, 9669. [Google Scholar] [CrossRef]
- Petzold, A.; Kramer, H.; Schönlinner, M. Continuous Measurement of Atmospheric Black Carbon Using a Multi-angle Absorption Photometer. Environ. Sci. Pollut. Res. 2002, 4, 78–82. [Google Scholar]
- Petzold, A.; Schönlinner, M. Multi-angle absorption photometry—A new method for the measurement of aerosol light absorption and atmospheric black carbon. J. Aerosol Sci. 2004, 35, 421–441. [Google Scholar] [CrossRef]
- Petzold, A.; Schloesser, H.; Sheridan, P.J.; Arnott, P.; Ogren, J.A.; Virkkula, A. Evaluation of multiangle absorption photometry for measuring aerosol light absorption. Aerosol Sci. Technol. 2005, 39, 40–51. [Google Scholar] [CrossRef]
- Petzold, A.; Ogren, J.A.; Fiebig, M.; Laj, P.; Li, S.-M.; Baltensperger, U.; Holzer-Popp, T.; Kinne, S.; Pappalardo, G.; Sugimoto, N.; et al. Recommendations for reporting “black carbon” measurements. Atmos. Chem. Phys. 2013, 13, 8365–8379. [Google Scholar] [CrossRef]
- Spearman, C. The Proof and Measurement of Association between Two Things. Am. J. Psychol. 1904, 15, 72–101. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Myers, J.L.; Well, A.D.; Lorch, R.F., Jr. Research Design and Statistical Analysis, 3rd ed.; Routledge: New York, NY, USA, 2010; p. 832. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration. Data Products—MODIS Thermal Anomalies/Fire. Available online: https://modis.gsfc.nasa.gov/data/dataprod/mod14.php (accessed on 1 November 2024).
- National Aeronautics and Space Administration. Earth Data—MODIS/Aqua Terra Thermal Anomalies/Fire locations 1km FIRMS NRT. Available online: https://www.earthdata.nasa.gov/data/catalog/lancemodis-mcd14dl-6.1nrt (accessed on 1 November 2024).
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteor. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Rolph, G.; Stein, A.; Stunder, B. Real-time Environmental Applications and Display System: READY. Environ. Modell. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Fleming, Z.L.; Monks, P.S.; Manning, A.J. Review: Untangling the influence of air-mass history in interpreting observed atmospheric composition. Atmos. Res. 2012, 104–105, 1–39. [Google Scholar] [CrossRef]
- Gili, J.; Viana, M.; Hopke, P.K. Application of quasi-empirical orthogonal functions to estimate wildfire impacts in northwestern Spain. Sci. Total Environ. 2024, 932, 172747. [Google Scholar] [CrossRef]
- El Asmar, R.; Li, Z.; Tanner, D.J.; Hu, Y.; O’Neill, S.; Huey, L.G.; Odman, M.T.; Weber, R.J. A multi-site passive approach to studying the emissions and evolution of smoke from prescribed fires. Atmos. Chem. Phys. 2024, 24, 12749–12773. [Google Scholar] [CrossRef]
- Copernicus Atmosphere Data Store. Copernicus Atmosphere Monitoring Service (CAMS). Available online: https://ads.atmosphere.copernicus.eu/datasets/cams-global-atmospheric-composition-forecasts (accessed on 10 January 2025).
- Chianese, E.; Galletti, A.; Giunta, G.; Landi, T.C.; Marcellino, L.; Montella, R.; Riccio, A. Spatiotemporally resolved ambient particulate matter concentration by fusing observational data and ensemble chemical transport model simulations. Ecol. Model. 2018, 385, 173–181. [Google Scholar] [CrossRef]
- Huijnen, V.; Pozzer, A.; Arteta, J.; Brasseur, G.; Bouarar, I.; Chabrillat, S.; Christophe, Y.; Doumbia, T.; Flemming, J.; Guth, J.; et al. Quantifying uncertainties due to chemistry modelling—Evaluation of tropospheric composition simulations in the CAMS model (cycle 43R1). Geosci. Model Dev. 2019, 12, 1725–1752. [Google Scholar] [CrossRef]
- Williams, J.E.; Huijnen, V.; Bouarar, I.; Meziane, M.; Schreurs, T.; Pelletier, S.; Marécal, V.; Josse, B.; Flemming, J. Regional evaluation of the performance of the global CAMS chemical modeling system over the United States (IFS cycle 47r1). Geosci. Model Dev. 2022, 15, 4657–4687. [Google Scholar] [CrossRef]
- Flemming, J.; Benedetti, A.; Inness, A.; Engelen, R.J.; Jones, L.; Huijnen, V.; Remy, S.; Parrington, M.; Suttie, M.; Bozzo, A.; et al. The CAMS interim Reanalysis of Carbon Monoxide, Ozone and Aerosol for 2003–2015. Atmos. Chem. Phys. 2017, 17, 1945–1983. [Google Scholar] [CrossRef]
- Inness, A.; Ades, M.; Agustí-Panareda, A.; Barr, J.; Benedictow, A.; Blechschmidt, A.M.; Jose Dominguez, J.; Engelen, R.; Eskes, H.; Flemming, J.; et al. The CAMS Reanalysis of Atmospheric Composition. Atmos. Chem. Phys. 2019, 19, 3515–3556. [Google Scholar] [CrossRef]
- Nevrlý, V.; Dostál, M.; Bitala, P.; Klečka, V.; Sléžka, J.; Polách, P.; Nevrlá, K.; Barabášová, M.; Langová, R.; Bernatíková, Š.; et al. Varying Performance of Low-Cost Sensors During Seasonal Smog Events in Moravian-Silesian Region. Atmosphere 2024, 15, 1326. [Google Scholar] [CrossRef]
- Wagner, A.; Bennouna, Y.; Blechscmidt, A.-M.; Brasseur, G.; Chabrillat, S.; Christophe, Y.; Errera, Q.; Eskes, H.; Flemming, J.; Hansen, K.M.; et al. Comprehensive evaluation of the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis against independent observations: Reactive gases. Elem. Sci. Anthr. 2021, 9, 00171. [Google Scholar] [CrossRef]
- Papanikolaou, C.-A.; Kokkalis, P.; Soupiona, O.; Solomos, S.; Papayannis, A.; Mylonaki, M.; Anagnou, D.; Foskinis, R.; Gidarakou, M. Australian Bushfires (2019–2020): Aerosol Optical Properties and Radiative Forcing. Atmosphere 2022, 13, 867. [Google Scholar] [CrossRef]
- Saikia, A.; Pathak, B.; Singh, P.; Bhuyan, P.K.; Adhikary, B. Multi-Model Evaluation of Meteorological Drivers, Air Pollutants and Quantification of Emission Sources over the Upper Brahmaputra Basin. Atmosphere 2019, 10, 703. [Google Scholar] [CrossRef]
- Inness, A.; Aben, I.; Ades, M.; Borsdorff, T.; Flemming, J.; Jones, L.; Landgraf, J.; Langerock, B.; Nedelec, P.; Parrington, M.; et al. Assimilation of S5P/TROPOMI carbon monoxide data with the global CAMS near-real-time system. Atmos. Chem. Phys. 2022, 22, 14355–14376. [Google Scholar] [CrossRef]
- Wittrock, F.; Richter, A.; Oetjen, H.; Burrows, J.P.; Kanakidou, M.; Myriokefalitakis, S.; Volkamer, R.; Beirle, S.; Platt, U.; Wagner, T. Simultaneous global observations of glyoxal and formaldehyde from space. Geophys. Res. Lett. 2006, 33, L16804. [Google Scholar] [CrossRef]
- Meddour-Sahar, O. Wildfires in Algeria: Problems and challenges. iForest Biogeosci. For. 2015, 8, 818–826. [Google Scholar] [CrossRef]
- Curt, T.; Aini, A.; Dupire, S. Fire Activity in Mediterranean Forests (The Algerian Case). Fire 2020, 3, 58. [Google Scholar] [CrossRef]
Type | G2401 | MAAP | WXT520 | Sat. CO | Sat. FA | Qa CO | Qa FA |
---|---|---|---|---|---|---|---|
Hours | 99.66% | 98.18% | 100% | - | - | - | - |
Days | 100% | 100% | 100% | 87.09% | 82.25% | 72% | 61% |
Param. | July | August | Total | ||||||
---|---|---|---|---|---|---|---|---|---|
Q1 | Mean ± SD | Q3 | Q1 | Mean ± SD | Q3 | Q1 | Mean ± SD | Q3 | |
CO (ppb) | 76.07 | 102.532 ± 40.12 | 117.19 | 119.01 | 150.002 ± 50.27 | 166.4 | 91.64 | 126.267 ± 51.21 | 147.50 |
eBC (μg/m3) | 0.13 | 0.408 ± 0.36 | 0.56 | 0.29 | 0.607 ± 0.41 | 0.79 | 0.19 | 0.508 ± 0.38 | 0.7 |
WS (m/s) | CO (ppb) | eBC (μg/m3) | |
---|---|---|---|
N | 1488 | 1483 | 1461 |
Missing | 0 | 5 | 27 |
Mean | 3.02 | 127 | 0.517 |
Median | 2.69 | 119 | 0.386 |
SD | 1.70 | 51.2 | 0.455 |
Variance | 2.89 | 2623 | 0.207 |
Min | 0.500 | 61.2 | <0.003 |
Max | 9.71 | 515 | 4.13 |
1st Q. | 1.51 | 91.6 | 0.194 |
3rd Q. | 4.31 | 148 | 0.705 |
WS | CO | eBC | ||
---|---|---|---|---|
WS | PCC | – | – | – |
p-value | – | – | – | |
SR | – | – | – | |
N | – | – | – | |
CO | PCC | −0.432 *** | – | – |
p-value | <0.001 | – | – | |
SR | −0.462 *** | – | – | |
N | 1481 | – | – | |
eBC | PCC | −0.402 *** | 0.840 *** | – |
p-value | <0.001 | <0.001 | – | |
SR | −0.468 *** | 0.847 *** | – | |
N | 1459 | 1455 | – |
WS (m/s) | Surface CO (ppb) | eBC (μg/m3) | TVC CO (mol/cm2) | TVC HCHO (mol/cm2) | |
---|---|---|---|---|---|
N | 62 | 62 | 62 | 54 | 50 |
Missing | 0 | 0 | 0 | 8 | 12 |
Mean | 4.85 | 110 | 0.382 | 1.61 × 1016 | 1.30 × 1016 |
Median | 4.72 | 110 | 0.275 | 4.06 × 1015 | 1.04 × 1016 |
SD | 1.30 | 36.3 | 0.341 | 1.51 × 1016 | 1.19 × 1016 |
Variance | 1.70 | 1315 | 0.116 | 2.29 × 1032 | 1.41 × 1032 |
Min | 2.48 | 65.3 | 0.0543 | 3.23 × 1014 | −2.35 × 1015 |
Max | 8.62 | 260 | 2.06 | 5.59 × 1016 | 5.59 × 1016 |
1st Q. | 3.89 | 84.9 | 0.150 | 3.44 × 1015 | 2.92 × 1015 |
3rd Q. | 5.69 | 126 | 0.535 | 2.96 × 1016 | 2.03 × 1016 |
WS | Surface CO | eBC | TVC CO | ||
---|---|---|---|---|---|
WS | PCC | – | – | – | – |
p-value | – | – | – | – | |
SR | – | – | – | – | |
N | – | – | – | – | |
Surface CO | PCC | −0.497 *** | – | – | – |
p-value | <0.001 | – | – | – | |
SR | −0.495 *** | – | – | – | |
N | 62 | – | – | – | |
eBC | PCC | −0.521 *** | 0.887 *** | – | – |
p-value | <0.001 | <0.001 | – | – | |
SR | −0.544 *** | 0.828 *** | – | – | |
N | 62 | 62 | – | – | |
TVC CO | PCC | 0.158 | −0.081 | −0.071 | – |
p-value | 0.25 | 0.561 | 0.608 | – | |
SR | 0.159 | 0.027 | 0.099 | – | |
N | 54 | 54 | 54 | – | |
TVC HCHO | PCC | 0.080 | −0.095 | −0.110 | −0.218 |
p-value | 0.582 | 0.513 | 0.445 | 0.165 | |
SR | 0.061 | −0.108 | −0.113 | −0.249 | |
N | 50 | 50 | 50 | 42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Amico, F.; De Benedetto, G.; Malacaria, L.; Sinopoli, S.; Calidonna, C.R.; Gullì, D.; Ammoscato, I.; Lo Feudo, T. Tropospheric and Surface Measurements of Combustion Tracers During the 2021 Mediterranean Wildfire Crisis: Insights from the WMO/GAW Site of Lamezia Terme in Calabria, Southern Italy. Gases 2025, 5, 5. https://doi.org/10.3390/gases5010005
D’Amico F, De Benedetto G, Malacaria L, Sinopoli S, Calidonna CR, Gullì D, Ammoscato I, Lo Feudo T. Tropospheric and Surface Measurements of Combustion Tracers During the 2021 Mediterranean Wildfire Crisis: Insights from the WMO/GAW Site of Lamezia Terme in Calabria, Southern Italy. Gases. 2025; 5(1):5. https://doi.org/10.3390/gases5010005
Chicago/Turabian StyleD’Amico, Francesco, Giorgia De Benedetto, Luana Malacaria, Salvatore Sinopoli, Claudia Roberta Calidonna, Daniel Gullì, Ivano Ammoscato, and Teresa Lo Feudo. 2025. "Tropospheric and Surface Measurements of Combustion Tracers During the 2021 Mediterranean Wildfire Crisis: Insights from the WMO/GAW Site of Lamezia Terme in Calabria, Southern Italy" Gases 5, no. 1: 5. https://doi.org/10.3390/gases5010005
APA StyleD’Amico, F., De Benedetto, G., Malacaria, L., Sinopoli, S., Calidonna, C. R., Gullì, D., Ammoscato, I., & Lo Feudo, T. (2025). Tropospheric and Surface Measurements of Combustion Tracers During the 2021 Mediterranean Wildfire Crisis: Insights from the WMO/GAW Site of Lamezia Terme in Calabria, Southern Italy. Gases, 5(1), 5. https://doi.org/10.3390/gases5010005