Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (219)

Search Parameters:
Journal = Fuels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5524 KiB  
Article
Evaluation of N,N,N′,N′-Tetramethylethylenediamine (TMEDA) as an Alternative Fuel for a Hypergolic Bipropellant Rocket Engine
by Joshua M. Hollingshead, Makayla L. L. Ianuzzi, Jeffrey D. Moore and Grant A. Risha
Fuels 2025, 6(3), 58; https://doi.org/10.3390/fuels6030058 - 30 Jul 2025
Viewed by 249
Abstract
Experimental research was conducted to characterize the ignition delay time and combustion performance of non-toxic reactants as a possible replacement for highly toxic fuels, such as hydrazine. The liquid fuel and oxidizer were N,N,N′,N′-tetramethylethylenediamine (TMEDA) and white fuming nitric acid (WFNA), respectively. The [...] Read more.
Experimental research was conducted to characterize the ignition delay time and combustion performance of non-toxic reactants as a possible replacement for highly toxic fuels, such as hydrazine. The liquid fuel and oxidizer were N,N,N′,N′-tetramethylethylenediamine (TMEDA) and white fuming nitric acid (WFNA), respectively. The hypergolic ignition delay of the reactants was determined using 100% TMEDA with either >90% or >99.5% WFNA that was distilled, titrated, and droplet-tested in a laboratory setting while controlling the parameters that affect the quality of the yielded product. It was observed that >90% WFNA had three times longer average ignition delay than >99.5% WFNA with both mixtures producing ignition delay times less than 20 ms. Based upon the demonstrated hypergolic droplet test results, a fluid delivery feed system and hypergolic heavyweight bipropellant rocket engine were designed and fabricated to characterize the combustion efficiency of these non-toxic reactants. The rocket injector and characteristic length differed while operating under similar flow conditions to evaluate combustion efficiency. Results demonstrated similar engine performance between both cases of WFNA with improvements of over 30% in combustion efficiency with increased characteristic length. Tests using 100% TMEDA/>90% WFNA achieved a combustion efficiency of 88%. Full article
(This article belongs to the Special Issue Sustainable Jet Fuels from Bio-Based Resources)
Show Figures

Figure 1

13 pages, 1480 KiB  
Article
Physicochemical Properties of Coconut and Waste Cooking Oils for Biofuel Production and Lubrication
by Ahissan Innocent Adou, Laura Brelle, Pedro Marote, Muriel Sylvestre, Gerardo Cebriàn-Torrejòn and Nadiège Nomede-Martyr
Fuels 2025, 6(3), 57; https://doi.org/10.3390/fuels6030057 - 30 Jul 2025
Viewed by 288
Abstract
Vegetable oils are an important alternative to the massive use of fuels and lubricants from non-renewable energy sources. In this study, the physicochemical properties of coconut oil and waste cooking oil are investigated for biofuels and biolubricant applications. A transesterification of both oils [...] Read more.
Vegetable oils are an important alternative to the massive use of fuels and lubricants from non-renewable energy sources. In this study, the physicochemical properties of coconut oil and waste cooking oil are investigated for biofuels and biolubricant applications. A transesterification of both oils was reached, and the transesterified oils were characterized by infrared analysis and gas chromatography. The lubricant performances of these oils have been evaluated using a ball-on-plane tribometer under an ambient atmosphere. Different formulations were developed using graphite particles as solid additive. Each initial and modified oil has been investigated as a base oil and as a liquid additive lubricant. The best friction reduction findings have been obtained for both initial oils as liquid additives, highlighting the key role of triglycerides in influencing tribological performances. Full article
(This article belongs to the Special Issue Biofuels and Bioenergy: New Advances and Challenges)
Show Figures

Figure 1

17 pages, 5158 KiB  
Article
Enhancing Oil Recovery Through Vibration-Stimulated Waterflooding: Experimental Insights and Mechanisms
by Shixuan Lu, Zhengyuan Zhang, Liming Dai and Na Jia
Fuels 2025, 6(3), 56; https://doi.org/10.3390/fuels6030056 - 29 Jul 2025
Viewed by 204
Abstract
Vibration-stimulated waterflooding (VS-WF) is a promising enhanced oil recovery (EOR) method, especially for reservoirs with high-viscosity or emulsified oil. This study explores the effect of low-frequency vibration (2 Hz and 5 Hz) on oil mobilization under constant pressure and flow rate, using both [...] Read more.
Vibration-stimulated waterflooding (VS-WF) is a promising enhanced oil recovery (EOR) method, especially for reservoirs with high-viscosity or emulsified oil. This study explores the effect of low-frequency vibration (2 Hz and 5 Hz) on oil mobilization under constant pressure and flow rate, using both crude and emulsified oil samples. Vibration significantly improves recovery by inducing stick-slip flow, lowering the threshold pressure, and enhancing oil phase permeability while suppressing the water phase flow. Crude oil recovery increased by up to 24% under optimal vibration conditions, while emulsified oil showed smaller gains due to higher viscosity. Intermittent vibration achieved similar recovery rates to continuous vibration, but with reduced energy use. Statistical analysis revealed a strong correlation between pressure fluctuations and oil production in vibration-assisted tests, but no such relationship in non-vibration cases. These results provide insight into the mechanisms behind vibration-enhanced recovery, supported by analysis of pressure and flow rate responses during waterflooding. Full article
Show Figures

Figure 1

37 pages, 1832 KiB  
Review
A Review of Biobutanol: Eco-Friendly Fuel of the Future—History, Current Advances, and Trends
by Victor Alejandro Serrano-Echeverry, Carlos Alberto Guerrero-Fajardo and Karol Tatiana Castro-Tibabisco
Fuels 2025, 6(3), 55; https://doi.org/10.3390/fuels6030055 - 29 Jul 2025
Viewed by 388
Abstract
Biobutanol is becoming more relevant as a promising alternative biofuel, primarily due to its advantageous characteristics. These include a higher energy content and density compared to traditional biofuels, as well as its ability to mix effectively with gasoline, further enhancing its viability as [...] Read more.
Biobutanol is becoming more relevant as a promising alternative biofuel, primarily due to its advantageous characteristics. These include a higher energy content and density compared to traditional biofuels, as well as its ability to mix effectively with gasoline, further enhancing its viability as a potential replacement. A viable strategy for attaining carbon neutrality, reducing reliance on fossil fuels, and utilizing sustainable and renewable resources is the use of biomass to produce biobutanol. Lignocellulosic materials have gained widespread recognition as highly suitable feedstocks for the synthesis of butanol, together with various value-added byproducts. The successful generation of biobutanol hinges on three crucial factors: effective feedstock pretreatment, the choice of fermentation techniques, and the subsequent enhancement of the produced butanol. While biobutanol holds promise as an alternative biofuel, it is important to acknowledge certain drawbacks associated with its production and utilization. One significant limitation is the relatively high cost of production compared to other biofuels; additionally, the current reliance on lignocellulosic feedstocks necessitates significant advancements in pretreatment and bioconversion technologies to enhance overall process efficiency. Furthermore, the limited availability of biobutanol-compatible infrastructure, such as distribution and storage systems, poses a barrier to its widespread adoption. Addressing these drawbacks is crucial for maximizing the potential benefits of biobutanol as a sustainable fuel source. This document presents an extensive review encompassing the historical development of biobutanol production and explores emerging trends in the field. Full article
Show Figures

Figure 1

22 pages, 4775 KiB  
Article
Numerical Simulation of Paraffin Energetic Performance Enhanced by KNO3, NH4NO3, Al, Ti, and Stearic Acid for Hybrid Rocket Applications
by Grigore Cican and Alexandru Mitrache
Fuels 2025, 6(3), 54; https://doi.org/10.3390/fuels6030054 - 19 Jul 2025
Viewed by 338
Abstract
This study investigates the energy performance of paraffin-based hybrid fuels enhanced with potassium nitrate (KNO3), ammonium nitrate (NH4NO3), aluminum (Al), titanium (Ti), and stearic acid additives. The fuels were evaluated using thermochemical calculations via ProPEP3 Version 1.0.3.0 [...] Read more.
This study investigates the energy performance of paraffin-based hybrid fuels enhanced with potassium nitrate (KNO3), ammonium nitrate (NH4NO3), aluminum (Al), titanium (Ti), and stearic acid additives. The fuels were evaluated using thermochemical calculations via ProPEP3 Version 1.0.3.0 software, revealing significant improvements in specific impulse (Isp) and combustion temperature. While formulations with nitrates and aluminum exhibited noticeable increases in combustion efficiency and thermal output, titanium-containing mixtures provided moderate improvements. Stearic acid improved fuel processability and provided a stable burning profile without significant energy penalties. These findings demonstrate that suitable combinations of additives can substantially improve the energy output of paraffin-based hybrid fuels, making them more viable for aerospace propulsion applications. Full article
(This article belongs to the Special Issue Sustainable Jet Fuels from Bio-Based Resources)
Show Figures

Figure 1

16 pages, 1400 KiB  
Article
Production of Biodiesel Employing Chlorella vulgaris Biomass Cultivated in Poultry Effluents
by Nayeli Gutiérrez-Casiano, Joaquín Estrada-García, Karla Díaz-Castellanos, José Vicente-Martínez, César Antonio Ortiz-Sánchez and Eduardo Hernández-Aguilar
Fuels 2025, 6(3), 53; https://doi.org/10.3390/fuels6030053 - 8 Jul 2025
Viewed by 1008
Abstract
Alternative energies have become relevant in global strategies to address climate change, and third-generation biodiesel derived from the generation of lipids from microalgae represents a viable option. This process can also be coupled with wastewater treatment to remove organic matter. To determine the [...] Read more.
Alternative energies have become relevant in global strategies to address climate change, and third-generation biodiesel derived from the generation of lipids from microalgae represents a viable option. This process can also be coupled with wastewater treatment to remove organic matter. To determine the effects of two catalyst levels (1 and 1.5% KOH) and two molar ratios of alcohol (methanol) with oil (1:6 and 1:9) on the conversion of lipids into FAMEs and the quality of the biodiesel produced, this work suggests a method for the ultrasonication-based extraction of lipids from C. vulgaris. It also employs an experimental 22 design and three replicates. It was found that with a molar ratio of 1:9 and a 1% catalyst, the highest yield of 98.48 ± 1.13% was achieved. The FAME profile was similar to the profiles obtained in cultures with bold basal medium or INETI. The quality of the biodiesel met ASTM standards, achieving refractive indices of 1.435–1.478. The flash point (FP) was 165 ± 18 °C, and the acid number was 0.31 ± 0.17 mg KOH/g. The viscosity ranged from 4.33 to 4.87 mm2/s. However, the rheological behavior was correlated with the Ostwald–de Waele model with pseudoplastic behavior. Full article
(This article belongs to the Special Issue Biofuels and Bioenergy: New Advances and Challenges)
Show Figures

Figure 1

13 pages, 3181 KiB  
Article
Mitigating Microbial Artifacts in Laboratory Research on Underground Hydrogen Storage
by Adnan Aftab, Silvia J. Salgar-Chaparro, Quan Xie, Ali Saeedi and Mohammad Sarmadivaleh
Fuels 2025, 6(3), 52; https://doi.org/10.3390/fuels6030052 - 1 Jul 2025
Viewed by 360
Abstract
The global energy sector is aiming to substantially reduce CO2 emissions to meet the UN climate goals. Among the proposed strategies, underground storage solutions such as radioactive disposal, CO2, NH3, and underground H2 storage (UHS) have emerged [...] Read more.
The global energy sector is aiming to substantially reduce CO2 emissions to meet the UN climate goals. Among the proposed strategies, underground storage solutions such as radioactive disposal, CO2, NH3, and underground H2 storage (UHS) have emerged as promising options for mitigating anthropogenic emissions. These approaches require rigorous research and development (R&D), often involving laboratory-scale experiments to establish their feasibility before being scaled up to pilot plant operations. Microorganisms, which are ubiquitous in laboratory environments, can significantly influence geochemical reactions under variable experimental conditions of porous media and a salt cavern. We have selected a consortium composed of Bacillus sp., Enterobacter sp., and Cronobacter sp. bacteria, which are typically present in the laboratory environment. These microorganisms can contaminate the rock sample and develop experimental artifacts in UHS experiments. Hence, it is pivotal to sterilize the rock prior to conduct experimental research related to effects of microorganisms in the porous media and the salt cavern for the investigation of UHS. This study investigated the efficacy of various disinfection and sterilization methods, including ultraviolet irradiation, autoclaving, oven heating, ethanol treatments, and gamma irradiation, in removing the microorganisms from silica sand. Additionally, the consideration of their effects on mineral properties are reviewed. A total of 567 vials, each filled with 9 mL of acid-producing bacteria (APB) media were used to test killing efficacy of the cleaning methods. We conducted serial dilutions up to 10−8 and repeated them three times to determine whether any deviation occurred. Our findings revealed that gamma irradiation and autoclaving were the most effective techniques for eradicating microbial contaminants, achieving sterilization without significantly altering the mineral characteristics. These findings underscore the necessity of robust cleaning protocols in hydrogeochemical research to ensure reliable, reproducible data, particularly in future studies where microbial contamination could induce artifacts in laboratory research. Full article
Show Figures

Figure 1

22 pages, 4216 KiB  
Article
The Comprehensive Quantification and Characterization of Oak Biochar Produced via a Gasification Process Using a Downdraft Reactor
by Paul C. Ani, Hayder Alhameedi, Hasan J. Al-Abedi, Haider Al-Rubaye, Zeyad Zeitoun, Ugochukwu Ewuzie and Joseph D. Smith
Fuels 2025, 6(3), 51; https://doi.org/10.3390/fuels6030051 - 1 Jul 2025
Viewed by 417
Abstract
This study presents a comprehensive characterization of oak biochar produced via downdraft gasification at 850 °C. The research employs a wide range of advanced analytical techniques to examine the biochar’s physical, chemical, and structural properties. Scanning electron microscopy (SEM) revealed a mesoporous structure, [...] Read more.
This study presents a comprehensive characterization of oak biochar produced via downdraft gasification at 850 °C. The research employs a wide range of advanced analytical techniques to examine the biochar’s physical, chemical, and structural properties. Scanning electron microscopy (SEM) revealed a mesoporous structure, while Brunauer–Emmett–Teller (BET) analysis showed a surface area of 88.97 m2/g. Thermogravimetric analysis (TGA) demonstrated high thermal stability and carbon content (78.7%). X-ray photoelectron spectroscopy (XPS) and ultimate analysis confirmed the high degree of carbonization, with low O/C (0.178) and H/C (0.368) ratios indicating high aromaticity. Fourier transform infrared spectroscopy (FTIR) identified functional groups suggesting potential for CO2 adsorption. The biochar exhibited a negative zeta potential (−31.5 mV), indicating colloidal stability and potential for soil amendment applications. X-ray diffraction (XRD) and Raman spectroscopy provided insights into the biochar’s crystalline structure and graphitization degree. These findings highlight the oak biochar’s suitability for diverse applications, including soil improvement, carbon sequestration, and environmental remediation. By filling knowledge gaps in oak-specific biochar research, this study underscores the benefits of optimized downdraft gasification and sets a foundation for future advancements in sustainable biochar applications. Full article
Show Figures

Figure 1

10 pages, 218 KiB  
Article
Environmentally Sustainable and Energy-Efficient Nanobubble Engineering: Applications in the Oil and Fuels Sector
by Niall J. English
Fuels 2025, 6(3), 50; https://doi.org/10.3390/fuels6030050 - 1 Jul 2025
Viewed by 351
Abstract
In bulk liquid or on solid surfaces, nanobubbles (NBs) are gaseous domains at the nanoscale. They stand out due to their extended (meta)stability and great potential for use in practical settings. However, due to the high energy cost of bubble generation, maintenance issues, [...] Read more.
In bulk liquid or on solid surfaces, nanobubbles (NBs) are gaseous domains at the nanoscale. They stand out due to their extended (meta)stability and great potential for use in practical settings. However, due to the high energy cost of bubble generation, maintenance issues, membrane bio-fouling, and the small actual population of NBs, significant advancements in nanobubble engineering through traditional mechanical generation approaches have been impeded thus far. With the introduction of the electric field approach to NB creation, which is based on electrostrictive NB generation from an incoming population of “electro-fragmented” meso-to micro bubbles (i.e., with bubble size broken down by the applied electric field), when properly engineered with a convective-flow turbulence profile, there have been noticeable improvements in solid-state operation and energy efficiency, even allowing for solar-powered deployment. Here, these innovative methods were applied to a selection of upstream and downstream activities in the oil–water–fuels nexus: advancing core flood tests, oil–water separation, boosting the performance of produced-water treatment, and improving the thermodynamic cycle efficiency and carbon footprint of internal combustion engines. It was found that the application of electric field NBs results in a superior performance in these disparate operations from a variety of perspectives; for instance, ~20 and 7% drops in surface tension for CO2- and air-NBs, respectively, a ~45% increase in core-flood yield for CO2-NBs and 55% for oil–water separation efficiency for air-NBs, a rough doubling of magnesium- and calcium-carbonate formation in produced-water treatment via CO2-NB addition, and air-NBs boosting diesel combustion efficiency by ~16%. This augurs well for NBs being a potent agent for sustainability in the oil and fuels sector (whether up-, mid-, or downstream), not least in terms of energy efficiency and environmental sustainability. Full article
25 pages, 3599 KiB  
Article
Sustainable Production of Eco-Friendly, Low-Carbon, High-Octane Gasoline Biofuels Through a Synergistic Approach for Cleaner Transportation
by Tamer M. M. Abdellatief, Ahmad Mustafa, Mohamed Koraiem M. Handawy, Muhammad Bakr Abdelghany and Xiongbo Duan
Fuels 2025, 6(3), 49; https://doi.org/10.3390/fuels6030049 - 23 Jun 2025
Viewed by 539
Abstract
This research work seeks to introduce eco-friendly, low-carbon, and high-octane biofuel gasoline production using a synergistic approach. Four types of high-octane gasoline, including SynergyFuel-92, SynergyFuel-95, SynergyFuel-98, and SynergyFuel-100, were generated, emphasizing the deliberate combination of petroleum-derived gasoline fractions using reformate, isomerate, and delayed [...] Read more.
This research work seeks to introduce eco-friendly, low-carbon, and high-octane biofuel gasoline production using a synergistic approach. Four types of high-octane gasoline, including SynergyFuel-92, SynergyFuel-95, SynergyFuel-98, and SynergyFuel-100, were generated, emphasizing the deliberate combination of petroleum-derived gasoline fractions using reformate, isomerate, and delayed coking (DC) naphtha with octane-boosting compounds—bio-methanol and bio-ethanol. A set of tests have been performed to examine the effects of antiknock properties, density, oxidation stability, distillation range characteristics, hydrocarbon composition, vapor pressure, and the volatility index on gasoline blends. The experimental results indicated that the gasoline blends made from biofuel (SynergyFuel-92, -95, -98, and 100) showed adherence to important fuel quality criteria in the USA, Europe, and China. These blends had good characteristics, such as low quantities of benzene and sulfur, regulated levels of olefins and aromatics, and good distillation qualities. By fulfilling these strict regulations, Synergy Fuel is positioned as a competitive and eco-friendly substitute for traditional gasoline. The results reported that SynergyFuel-100 demonstrated the strongest hot-fuel-handling qualities and resistance to vapor lock among all the mentioned Synergy Fuels. Finally, the emergence of eco-friendly, low-carbon, and high-octane biofuel gasoline production with synergistic benefits is a big step in the direction of sustainable transportation. Full article
(This article belongs to the Special Issue Sustainability Assessment of Renewable Fuels Production)
Show Figures

Graphical abstract

16 pages, 6652 KiB  
Article
Combustion Characteristics of Moxa Floss Under Nitrogen Atmosphere
by Yukun Feng, Yifan Wu, Pengzhou Du, Yang Ma and Zhaoyi Zhuang
Fuels 2025, 6(2), 48; https://doi.org/10.3390/fuels6020048 - 13 Jun 2025
Viewed by 453
Abstract
To investigate the combustion characteristics of moxa under a nitrogen atmosphere, this study employed an integrated approach combining experimental and theoretical analysis. Twelve moxa floss samples with different leaf-to-floss ratios, geographical origins, and storage durations were selected for thermogravimetric analysis (TGA) and Fourier [...] Read more.
To investigate the combustion characteristics of moxa under a nitrogen atmosphere, this study employed an integrated approach combining experimental and theoretical analysis. Twelve moxa floss samples with different leaf-to-floss ratios, geographical origins, and storage durations were selected for thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) of their carbonized products in nitrogen environment. Through TG-DTG analysis, the thermal degradation patterns of the twelve moxa floss samples under nitrogen atmosphere were systematically examined to elucidate their pyrolysis behaviors, with particular emphasis on the influence of pyrolysis temperature and leaf-to-floss ratio on combustion characteristics. The pyrolysis process occurred in three distinct stages, with the most significant mass loss (120–430 °C) observed in the second stage. Higher leaf–fiber ratios and longer storage years were found to promote more complete pyrolysis. Kinetic analysis was performed to fit thermogravimetric data, establishing a reaction kinetic model for moxa pyrolysis. Results indicated that samples with higher leaf–fiber ratios required greater activation energy, while storage duration showed negligible impact. Notably, Nanyang moxa demanded higher pyrolysis energy than Qichun moxa. FTIR analysis identified the primary components of carbonized products as water, ester compounds, flavonoids, and cellulose. These findings suggest that moxa carbonization products retain chemical reactivity, demonstrating potential applications in adsorption and catalysis processes. Full article
(This article belongs to the Special Issue Biofuels and Bioenergy: New Advances and Challenges)
Show Figures

Figure 1

13 pages, 1681 KiB  
Communication
The Catalytic Hydrogenation of Phenanthrene: The Impact of Chrysotile and Coal Shale Catalysts
by Murzabek Baikenov, Dariya Izbastenova, Yue Zhang, Xintai Su, Nazerke Balpanova, Almas Tusipkhan, Zeinep Akanova, Amirbek Moldabayev, Balzhan Tulebaeva and Gulzhan Taurbaeva
Fuels 2025, 6(2), 47; https://doi.org/10.3390/fuels6020047 - 12 Jun 2025
Viewed by 772
Abstract
This paper presents the results of a study of the catalytic hydrogenation of phenanthrene using catalysts based on chrysotile modified with nickel and titanium (chrysotile/NiTi), as well as coal shale. Complex characterization of catalysts in terms of acid, texture and morphological properties was [...] Read more.
This paper presents the results of a study of the catalytic hydrogenation of phenanthrene using catalysts based on chrysotile modified with nickel and titanium (chrysotile/NiTi), as well as coal shale. Complex characterization of catalysts in terms of acid, texture and morphological properties was carried out. Pre-reduction in the catalysts has been found to increase the yield of partially and fully hydrogenated products, including tetrahydronaphthalene, trans-decalin and dihydrophenanthrene. Particular attention is paid to the role of coal shale as a donor source of hydrogen in thermolysis conditions. The results of hydrogenation revealed complex mechanisms of phenanthrene transformations, including partial saturation of aromatic rings, desulfurization and the formation of alkyl-substituted compounds. The obtained data emphasize the prospects of using the studied catalysts in the processes of processing heavy and solid hydrocarbon raw materials, which opens up opportunities for creating new technologies for the production of liquid fuel. Full article
Show Figures

Figure 1

15 pages, 3692 KiB  
Article
Empirical Comparison of Flow Field Designs for Direct Ethanol-Based, High-Temperature PEM Fuel Cells
by Prantik Roy Chowdhury and Adam C. Gladen
Fuels 2025, 6(2), 46; https://doi.org/10.3390/fuels6020046 - 5 Jun 2025
Cited by 1 | Viewed by 480
Abstract
This study experimentally investigates various flow field designs for a direct ethanol-based proton exchange membrane (PEM) fuel cell operated at a temperature above the vaporization temperature of water. It expands the designs of flow fields investigated for high-temperature (HT) direct ethanol fuel cells [...] Read more.
This study experimentally investigates various flow field designs for a direct ethanol-based proton exchange membrane (PEM) fuel cell operated at a temperature above the vaporization temperature of water. It expands the designs of flow fields investigated for high-temperature (HT) direct ethanol fuel cells by comparing four designs. It investigates the performance of these designs at various ethanol concentrations and flow rates. A series of polarization, constant current, and impedance spectroscopy experiments were carried out at different combinations of operating conditions. The result shows that all flow fields provide poorer performance at a high ethanol concentration (6 M), regardless of ethanol inlet flow rates. At a low concentration (3 M), the 2-channel spiral flow field exhibits higher cell power output (12–18% higher) with less mass transport loss and charge transfer resistance compared to other flow fields, although it has some voltage instability. As such, it is identified as a promising design, particularly for higher-power applications. The 4-channel serpentine, dual-triangle sandwich, and hybrid flow fields offer similar cell power output (max power: ~23 mW/cm2) and cell potentials. However, the cell potential instability and mass transport losses are higher in the hybrid flow field compared to the other two designs. Thus, it is not as promising a design for ethanol-based HT-PEM fuel cells. Since the dual-triangle has similar performance to the 4-channel serpentine, it could be an alternative to the serpentine for ethanol-based HT-PEM fuel cells. Full article
Show Figures

Figure 1

31 pages, 1775 KiB  
Review
Consequence Analysis of LPG-Related Hazards: Ensuring Safe Transitions to Cleaner Energy
by Carolina Ardila-Suarez, Jean-Paul Lacoursière, Gervais Soucy and Bruna Rego de Vasconcelos
Fuels 2025, 6(2), 45; https://doi.org/10.3390/fuels6020045 - 5 Jun 2025
Viewed by 1814
Abstract
Countries worldwide are focused on the objective of zero emissions by 2050. However, the accelerated implementation of clean technologies has had some drawbacks, remarkably those related to safety issues. Liquefied petroleum gas (LPG) emerges as a transition fuel in this context, considering the [...] Read more.
Countries worldwide are focused on the objective of zero emissions by 2050. However, the accelerated implementation of clean technologies has had some drawbacks, remarkably those related to safety issues. Liquefied petroleum gas (LPG) emerges as a transition fuel in this context, considering the following two aspects. First, LPG is a fuel that has environmental advantages compared to other fossil fuels, so the extension of coverage as a replacement fuel is a key factor. Second, LPG has a well-developed storage and transportation infrastructure that can be used, sometimes without modifications, for clean fuels, helping their implementation. Therefore, the safety analysis and the study of the consequences related to the hazards of LPG is a current subject that contributes, through all the tools reviewed in this article, to not only reduce the risks of this fuel but also to connect with the safety issues of clean fuels. This review article provides a comprehensive overview through consequence modeling tools, highlighting computational fluid dynamics (CFD) and machine learning to pave the way for the full implementation of clean fuels that will power the future of humanity. Full article
Show Figures

Figure 1

16 pages, 2333 KiB  
Article
Potential of DMC and PODE as Fuel Additives for Industrial Diesel Engines
by Nicholas O’Connell, Dominik Stümpfl, Rudolf Höß and Raphael Lechner
Fuels 2025, 6(2), 44; https://doi.org/10.3390/fuels6020044 - 4 Jun 2025
Viewed by 588
Abstract
Dimethyl carbonate (DMC) and polyoxymethylene dimethyl ethers (PODE also known as OME) are possible diesel additives that can be produced sustainably using green methanol. DMC can be produced from CO2 and methanol, while PODE can be produced from methanol and formaldehyde. In [...] Read more.
Dimethyl carbonate (DMC) and polyoxymethylene dimethyl ethers (PODE also known as OME) are possible diesel additives that can be produced sustainably using green methanol. DMC can be produced from CO2 and methanol, while PODE can be produced from methanol and formaldehyde. In this study both DMC and PODE were investigated as drop-in diesel fuel additives regarding material compatibility, injection behavior, as well as particle and exhaust emissions. Both DMC and PODE are known to be incompatible with certain materials used as seals in the fuel injection system. Therefore, the material compatibility of both neat DMC and PODE as well as blends with B0 was investigated, with both PFTE and FFKM showing good compatibility. The hydraulic injection behavior of DMC–diesel and PODE–diesel blends was investigated experimentally, showing the need for compensating injection quantities for DMC and PODE blends to match neat diesel power output due to their lower calorific values. Energetic compensation can be achieved by higher injection pressures or longer injection durations. Engine tests have been conducted with both DMC–diesel and PODE–diesel blends, demonstrating the potential to mitigate the particle–NOX trade-off. Full article
Show Figures

Figure 1

Back to TopTop