Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (323)

Search Parameters:
Journal = Cosmetics
Section = Cosmetic Formulations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2981 KiB  
Article
Evaluating the Effect of Fresh and Aged Antioxidant Formulations in Skin Protection Against UV Damage
by John Ivarsson, Patricia Brieva, Hina Choudhary and Giuseppe Valacchi
Cosmetics 2025, 12(4), 166; https://doi.org/10.3390/cosmetics12040166 (registering DOI) - 7 Aug 2025
Abstract
Introduction: Extrinsic skin damage is often a result of oxidative stress caused by exposure to environmental factors such as ultraviolet (UV) radiation, ozone (O3), and various pollutants. As a result, topical antioxidants have been evaluated for their effectiveness in mitigating [...] Read more.
Introduction: Extrinsic skin damage is often a result of oxidative stress caused by exposure to environmental factors such as ultraviolet (UV) radiation, ozone (O3), and various pollutants. As a result, topical antioxidants have been evaluated for their effectiveness in mitigating or reversing skin damage caused by environmental factors. Topical antioxidants containing a combination of l-ascorbic acid, tocopherol, and ferulic acid have significantly improved markers of skin health after exposure to environment-induced skin damage. However, research suggests that l-ascorbic acid and tocopherol tend to be relatively unstable, possibly affecting their efficacy against outdoor stressor damage. It has been shown that ferulic acid significantly improves the stability of both l-ascorbic acid and tocopherol, but its long-term stabilization effects on these antioxidants are relatively unknown. Material and Methods: This study evaluated the time-dependent effectiveness of a topical antioxidant mix containing 15% l-ascorbic acid, 1% tocopherol, and 0.5% ferulic acid (AOX) on UV-induced skin damage. Skin biopsies (12 mm, n = 60) were placed in a 6-well plate with medium and incubated at 37 °C and 5% CO2 overnight. The day after, skin samples were pretreated with 10 µL of differently aged AOX (0-, 6-, 12-, and 36-month-old) and then exposed to different doses of UV light (100, 200, 400 mJ/cm2) daily over four days. AOX formulations were stored in a cool, dry, and dark place at approximately 20–22 °C during the whole study. This study evaluated 4-hydroxynonenal (4-HNE) and 8-hydroxy-2′-deoxyguanosine (8-OHdG) as oxidative damage and skin DNA damage markers, Collagen1 and Filaggrin as skin structure, and IL-8 and Nrf2 as inflammatory and defensive response. Results: UV exposure significantly increased oxidative and inflammatory markers in human skin explants affecting also filaggrin and collagen levels. However, pre-treatment with the antioxidant formulation, particularly in its younger formulations (0-, 6-, and 12-month-old), significantly reduced the damaging effect of UV. Additionally, all antioxidant formulations effectively mitigated UV-induced damage across all doses. Conclusions: Our results indicate that pre-treatment with this formulation consistently reduces UV-induced oxidative damage and DNA damage in human skin explants, regardless of the formulation age and the discoloration state. Although effective, the protective capacity of aged formulations may be reduced only when extreme UV exposure is tested, a condition that is unlikely to occur under typical environmental conditions. These results support ferulic acid as a stabilization agent for topical antioxidant mixtures. Full article
(This article belongs to the Section Cosmetic Formulations)
17 pages, 1310 KiB  
Review
Lip Photoprotection Patents (2014–2024): Key Trends and Emerging Technologies
by Vanessa Urrea-Victoria, Ana Sofia Guerrero Casas, Leonardo Castellanos, Mairim Russo Serafini and Diana Marcela Aragón Novoa
Cosmetics 2025, 12(4), 161; https://doi.org/10.3390/cosmetics12040161 - 29 Jul 2025
Viewed by 586
Abstract
The lips, due to their unique anatomical characteristics of a thin stratum corneum, the absence of sebaceous glands, and limited melanin content are particularly vulnerable to ultraviolet (UV) radiation, necessitating specialized photoprotective care. While facial sunscreens are widely available, the development of lip-specific [...] Read more.
The lips, due to their unique anatomical characteristics of a thin stratum corneum, the absence of sebaceous glands, and limited melanin content are particularly vulnerable to ultraviolet (UV) radiation, necessitating specialized photoprotective care. While facial sunscreens are widely available, the development of lip-specific sun protection products remains underexplored. This study aims to analyze technological trends and innovations in lip photoprotection by reviewing patents published between 2014 and 2024. A comprehensive patent search using the IPC code A61Q19 and the keywords “lip” and “sunscreen” identified 17 relevant patents across China, the United States, and Japan. The patents were examined for active ingredients, formulation strategies, and use of botanical or sustainable excipients. The findings revealed that patented formulations predominantly rely on well-established UV filters such as zinc oxide, titanium dioxide, octyl methoxycinnamate, and avobenzone, often combined with antioxidants like ferulic acid and rutin for enhanced efficacy. Lipid-based excipients were widely used to improve texture, hydration, and product stability. Although many formulations exhibit a conservative ingredient profile, the strategic combination of UV filters with natural antioxidants and moisturizing lipids demonstrates a multifunctional approach aimed at enhancing both protection and user experience. Full article
(This article belongs to the Special Issue Sunscreen Advances and Photoprotection Strategies in Cosmetics)
Show Figures

Figure 1

17 pages, 3907 KiB  
Article
Safety Validation of Plant-Derived Materials for Skin Application
by Euihyun Kim, Hyo Hyun Seo, Dong Sun Shin, Jihyeok Song, Seon Kyu Yun, Jeong Hun Lee and Sang Hyun Moh
Cosmetics 2025, 12(4), 153; https://doi.org/10.3390/cosmetics12040153 - 21 Jul 2025
Viewed by 601
Abstract
The cosmetic industry faces a critical need to balance commercial innovation with scientific validation, especially regarding the safety and efficacy of raw materials. Plant-derived materials (PDMs) offer a promising alternative to animal-derived ingredients in cosmetics, particularly due to their safety and compliance with [...] Read more.
The cosmetic industry faces a critical need to balance commercial innovation with scientific validation, especially regarding the safety and efficacy of raw materials. Plant-derived materials (PDMs) offer a promising alternative to animal-derived ingredients in cosmetics, particularly due to their safety and compliance with vegan and ethical standards. Unlike compounds such as polydeoxyribonucleotide (PDRN), which is derived from the testis or seminal fluid of Salmonidae species and raises concerns regarding its origin, sustainability, and consumer acceptability, PDMs provide a cleaner, ethically preferable profile. In this study, we evaluated 50 PDM candidates using in vitro cell viability, wound healing, and immunocytochemistry assays, along with primary skin irritation tests in human participants. None of the samples showed harmful effects. Notably, sample Nos. 38 and 42 demonstrated significant wound-healing capacity and upregulated filaggrin expression without causing notable irritation in clinical testing. These findings support the biological activity and safety of specific PDMs as functional cosmetic ingredients. This study presents scientifically validated evidence for plant-based alternatives to animal-derived materials and offers a new milestone in the shift toward sustainable and ethical cosmetic development. By bridging the gap between consumer demand and scientific rigor, this study provides a robust platform for future innovations in vegan cosmetics. Full article
Show Figures

Graphical abstract

21 pages, 7139 KiB  
Article
Comparative Study of a Topical and Oral Combination Therapy Containing Oleanolic Acid, Apigenin, and Biotinyl Tripeptide-1 in Patients with Androgenetic Alopecia: A Prospective, Open-Label Trial
by Vlad-Mihai Voiculescu and Mihai Lupu
Cosmetics 2025, 12(4), 152; https://doi.org/10.3390/cosmetics12040152 - 16 Jul 2025
Viewed by 1012
Abstract
Background: Androgenetic alopecia (AGA) is a prevalent condition characterized by progressive follicular miniaturization. Minoxidil topical treatment and finasteride oral treatment are the golden standard, but they are limited by local and systemic adverse effects. Combination therapies targeting both follicular stimulation and nutritional support [...] Read more.
Background: Androgenetic alopecia (AGA) is a prevalent condition characterized by progressive follicular miniaturization. Minoxidil topical treatment and finasteride oral treatment are the golden standard, but they are limited by local and systemic adverse effects. Combination therapies targeting both follicular stimulation and nutritional support may enhance clinical outcomes. Objective: To evaluate the efficacy of a combined topical and oral therapy compared to topical monotherapy in patients with AGA using trichoscopic and clinical parameters. Methods: In this open-label, prospective trial, 48 patients were assigned to receive either a topical spray alone (Group A) or in combination with oral capsules (Group B) for 3 months. Trichoscopic parameters were assessed at baseline and post-treatment. Paired and independent t-tests, along with Cohen’s d effect sizes, were used to evaluate intra- and inter-group changes. Results: Both groups demonstrated improvements in hair density, thickness, and anagen/telogen ratio. Group B exhibited significantly greater increases in total hair count and anagen conversion (p < 0.05). The effect sizes ranged from small to large, with the most pronounced changes observed in anagen/telogen ratio (Cohen’s d = 0.841) in males. Conclusions: The combination of topical and oral treatment led to greater trichologic improvements than topical therapy alone. While extrapolated projections at 6 and 12 months suggest continued benefit, future studies with longer duration and placebo controls are required to validate these findings. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

21 pages, 2229 KiB  
Article
Unlocking the Skin Health-Promoting Ingredients of Honeysuckle (Lonicera japonica Thunberg) Flower-Loaded Polyglycerol Fatty Acid Ester-Based Low-Energy Nanoemulsions
by Nara Yaowiwat, Pingtawan Bunmark, Siripat Chaichit, Worrapan Poomanee and Karnkamol Trisopon
Cosmetics 2025, 12(4), 151; https://doi.org/10.3390/cosmetics12040151 - 15 Jul 2025
Viewed by 807
Abstract
This study aims to provide a comprehensive evaluation of the bioactive compounds present in honeysuckle flower (Lonicera japonica Thunb.) extract (HSF) and their remarkable antioxidant activity. A docking simulation was performed to clarify the binding affinities of the identified phytochemicals to enzymes [...] Read more.
This study aims to provide a comprehensive evaluation of the bioactive compounds present in honeysuckle flower (Lonicera japonica Thunb.) extract (HSF) and their remarkable antioxidant activity. A docking simulation was performed to clarify the binding affinities of the identified phytochemicals to enzymes associated with anti-aging and anti-inflammatory activities. In addition, the low-energy nanoemulsions based on optimally formulated polyglycerol fatty acid esters (PGFEs), developed through D-optimality, were designed for the incorporation of HSF extract. The result revealed that HSF is a rich source of diverse phenolic and flavonoid compounds that contribute to its remarkable antioxidant capacity. Molecular docking analysis indicates that its compounds exhibit anti-aging and anti-inflammatory activities, particularly through collagenase, hyaluronidase, and TNF-α inhibition. Furthermore, D-optimality revealed that HSF-loaded nanoemulsions can be fabricated by a surfactant to oil ratio (SOR) of 2:1 with a ratio of low hydrophilic-lipophilic balance (HLB) surfactant to high HLB surfactant (LHR) of 1:2. Polyglyceryl-6 laurate as a high HLB surfactant produced the optimal nanoemulsion with small particle size and possessed an encapsulation efficiency (EE) of 74.32 ± 0.19%. This is the first report to combine D-optimal design-based nanoemulsion development with a multi-level analysis of HSF, including phytochemical profiling, antioxidant evaluation, and in silico molecular docking. These findings highlight that HSF-loaded polyglycerol fatty acid ester-based nanoemulsions could be a skin health-promoting ingredient and effective alternative for a variety of skincare applications. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

18 pages, 907 KiB  
Article
Evaluating Coffee and Rosemary Extracts as Sustainable Alternatives to Synthetic Preservatives
by Luiza Aparecida Luna Silvério, Érica Mendes dos Santos, Josélia Cristina de Oliveira Moreira, Ana Lucia Tasca Gois Ruiz, Karina Cogo-Müller, Janaína Artem Ataide, Ana Cláudia Paiva-Santos and Priscila Gava Mazzola
Cosmetics 2025, 12(4), 147; https://doi.org/10.3390/cosmetics12040147 - 11 Jul 2025
Cited by 1 | Viewed by 670
Abstract
Preservatives are essential for ensuring the stability, safety, and efficacy of pharmaceuticals, cosmetics, and food products. However, synthetic preservatives often raise toxicity concerns. This study evaluated Rosmarinus officinalis (rosemary) leaf extracts and coffee by-products from Coffea arabica and Coffea canephora as potential natural [...] Read more.
Preservatives are essential for ensuring the stability, safety, and efficacy of pharmaceuticals, cosmetics, and food products. However, synthetic preservatives often raise toxicity concerns. This study evaluated Rosmarinus officinalis (rosemary) leaf extracts and coffee by-products from Coffea arabica and Coffea canephora as potential natural preservatives for emulsions. Antimicrobial activity was assessed against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans, along with cytotoxicity tests on human keratinocytes and antioxidant activity. The most effective extracts were incorporated into an oil-in-water emulsion for evaluation. C. arabica extracts showed the best results among coffee samples, with 43.53 mg GAE/g (gallic acid equivalents) and 2.32 mg QE/g of total phenolics (quercetin equivalents) and flavonoids, and minimum inhibitory concentrations (MICs) of 12.5 mg/mL against Escherichia coli, and 25 mg/mL against Staphylococcus aureus and Pseudomonas aeruginosa. Rosemary extract showed 158.01 ± 23.67 mg GAE/g and 1.95 ± 0.05 mg QE/g, with MICs of 2.5 mg/mL against E. coli, 1.25 mg/mL against P. aeruginosa, 0.3 mg/mL against S. aureus, and 0.08 mg/mL against Candida albicans. However, rosemary extracts displayed complete inhibition of keratinocyte growth at 20 µg/mL. A combination of both extracts had synergistic effects against S. aureus and P. aeruginosa. The emulsion met microbial safety standards in the challenge test for bacteria but not yeast. The results suggest that rosemary extracts enhance the potential of coffee by-product as a preservative system, and as a multifunctional excipient system in cosmetics, offering preservation and antioxidant protection. However, further strategies, such as adding other ingredients or adjusting the formulation pH, are required to ensure yeast inhibition. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

12 pages, 315 KiB  
Article
Prediction of Shampoo Formulation Phase Stability Using Large Language Models
by Erwan Bigan and Stéphane Dufour
Cosmetics 2025, 12(4), 145; https://doi.org/10.3390/cosmetics12040145 - 10 Jul 2025
Viewed by 520
Abstract
Predictive formulation can help reduce the number of experiments required to reach a target cosmetic product. The performance of Large Language Models from the open source Llama family is compared with that of conventional machine learning to predict the phase stability of shampoo [...] Read more.
Predictive formulation can help reduce the number of experiments required to reach a target cosmetic product. The performance of Large Language Models from the open source Llama family is compared with that of conventional machine learning to predict the phase stability of shampoo formulations using a recently published dataset. The predictive strength is assessed for various train dataset sizes (obtained by stratified sampling of the full dataset) and for various Large Language Model sizes (3, 8, and 70B parameters). The predictive strength is found to increase on increasing the model size, and the Large-Language-Model-based approach outperforms conventional machine learning when the train dataset is small, delivering Area Under the Receiver Operating Curve above 0.7 with as few as 20 train samples. This work illustrates the potential of Large Language Models to further reduce the number of experiments required to reach a target cosmetic formulation. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

24 pages, 886 KiB  
Review
Cosmeceutical and Dermatological Potential of Olive Mill Wastewater: A Sustainable and Eco-Friendly Source of Natural Ingredients
by Adriana Albini, Paola Corradino, Danilo Morelli, Francesca Albini and Douglas Noonan
Cosmetics 2025, 12(4), 142; https://doi.org/10.3390/cosmetics12040142 - 3 Jul 2025
Viewed by 1788
Abstract
Olive oil and its derivatives, particularly polyphenol-rich extracts, are valued for their antioxidant, anti-inflammatory, and regenerative properties. Olive mill wastewater (OMWW), a byproduct of olive oil production, traditionally seen as an environmental pollutant, has emerged as a promising source of high-value dermatological ingredients. [...] Read more.
Olive oil and its derivatives, particularly polyphenol-rich extracts, are valued for their antioxidant, anti-inflammatory, and regenerative properties. Olive mill wastewater (OMWW), a byproduct of olive oil production, traditionally seen as an environmental pollutant, has emerged as a promising source of high-value dermatological ingredients. Key polyphenols such as hydroxytyrosol, oleuropein, and tyrosol exhibit potent antioxidant, anti-inflammatory, antimicrobial, and photoprotective effects. These compounds mitigate oxidative stress, prevent collagen degradation, modulate NF-κB and MAPK signaling, and promote cellular repair and regeneration. Skin health is increasingly recognized as crucial to overall well-being, driving interest in cosmeceuticals that combine cosmetic benefits with dermatological activity. This review examines the cosmeceutical and dermatological potential of OMWW, highlighting its incorporation into innovative topical formulations like oil-in-water nanoemulsions, liposomes, and microneedles that enhance skin penetration and bioavailability. Additionally, OMWW fractions have shown selective antiproliferative effects on melanoma cells, suggesting potential for skin cancer prevention. Valorization of OMWW through biorefinery processes aligns with circular-economy principles, converting agro-industrial waste into sustainable cosmeceutical ingredients. This approach not only meets consumer demand for natural, effective products, but also reduces the ecological footprint of olive oil production, offering a scalable, eco-friendly strategy for next-generation dermatological applications. Full article
Show Figures

Figure 1

26 pages, 857 KiB  
Review
Officinal Plants as New Frontiers of Cosmetic Ingredients
by Annabella Vitalone, Lucia D’Andrea, Antonella Di Sotto, Alessandra Caruso and Rita Parente
Cosmetics 2025, 12(4), 140; https://doi.org/10.3390/cosmetics12040140 - 3 Jul 2025
Viewed by 888
Abstract
In recent years, cosmetic science has adopted a more integrative approach to skincare, in which sensory experience and psychophysical well-being are increasingly valued. In this context, plant-derived ingredients, particularly those from officinal species, are gaining attention for their multifunctional bioactivities. This review explores [...] Read more.
In recent years, cosmetic science has adopted a more integrative approach to skincare, in which sensory experience and psychophysical well-being are increasingly valued. In this context, plant-derived ingredients, particularly those from officinal species, are gaining attention for their multifunctional bioactivities. This review explores a curated selection of medicinal plants widely used or emerging in dermocosmetics, highlighting their phytochemical composition, mechanisms of action, and experimental support. A narrative literature review was conducted using databases such as PubMed and Scopus, targeting studies on topical cosmetic applications. Results show that many officinal plants, including Camellia sinensis, Panax ginseng, and Mentha piperita, offer antioxidant, anti-inflammatory, antimicrobial, photoprotective, and anti-aging benefits. Less conventional species, such as Drosera ramentacea and Kigelia africana, demonstrated depigmenting and wound-healing potential. In particular, bioactive constituents like flavonoids, iridoids, saponins, and polyphenols act on key skin targets such as COX-2, MMPs, tyrosinase, and the Nrf2 pathway. These findings underscore the potential of botanical extracts to serve as effective, natural, and multifunctional agents in modern skincare. While only Mentha piperita is currently recognized as a traditional herbal medicinal product for dermatological use, this research supports the broader dermocosmetic integration of these species. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

14 pages, 818 KiB  
Article
Safety Profile and Efficacy of Biosea® Revive Serum for Hair Growth Through In Vitro Assessment and Clinical Evaluation
by Chi-Ju Wu, Chun-Yin Yang, Pamela Berilyn So, Hui-Yu Hu, Shang-Hsuan Yang, Hsiang-Ming Hsueh, Tzu-Hui Wu and Feng-Lin Yen
Cosmetics 2025, 12(4), 139; https://doi.org/10.3390/cosmetics12040139 - 1 Jul 2025
Viewed by 1248
Abstract
Excessive hair loss can negatively impact psychological well-being and personal appearance. Providing effective hair growth products containing natural ingredients to people with hair loss can solve this problem. This study investigates Biosea® Revive serum (BRS), a novel hair care product containing biotinoyl [...] Read more.
Excessive hair loss can negatively impact psychological well-being and personal appearance. Providing effective hair growth products containing natural ingredients to people with hair loss can solve this problem. This study investigates Biosea® Revive serum (BRS), a novel hair care product containing biotinoyl tripeptide-1 and Phyllanthus emblica fruit extract as the main ingredients, as a natural intervention for hair growth. Results from the in vitro study demonstrates that BRS not only increased human hair dermal papilla cell (HHDPC) cell proliferation, but also reduced reactive oxygen species generation and 5α-reductase expression when compared to the control group, with BRS showing similar effect to the positive control, minoxidil. In addition, a 90-day clinical trial with 40 participants (KMUHIRB-F(I)-20230125; approval date: 18 August 2023) was conducted to assess the effectiveness and safety of BRS. The results revealed that BRS can improve hair density and quality in both men and women participants, with a significant reduction in transepidermal water loss (TEWL) in women (p < 0.05). Moreover, there were no adverse effects on blood parameters or scalp irritation reported after BRS treatment. In conclusion, we suggest that BRS offers a safe and effective solution for improving hair follicle health and is suitable for long-term use. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

25 pages, 3946 KiB  
Review
Application Possibilities of Sustainable Nanostructured Silica-Based Materials in Cosmetics
by Veronica Latini, Agnieszka Feliczak-Guzik and Agata Wawrzyńczak
Cosmetics 2025, 12(4), 134; https://doi.org/10.3390/cosmetics12040134 - 25 Jun 2025
Viewed by 838
Abstract
Nanostructured silica-based materials, including mesoporous silica nanoparticles (SiNPs), show a wide range of applications in various areas, such as food, pharmaceutical, and cosmetic industries. This is mainly due to their unique properties, namely biocompatibility, stability, adjustable pore size, a highly developed specific surface [...] Read more.
Nanostructured silica-based materials, including mesoporous silica nanoparticles (SiNPs), show a wide range of applications in various areas, such as food, pharmaceutical, and cosmetic industries. This is mainly due to their unique properties, namely biocompatibility, stability, adjustable pore size, a highly developed specific surface area, and simplicity in surface modification. Currently, special emphasis is placed on obtaining nanostructured silica-based materials using so-called green methods, which not only reduce toxic by-products, but also enable the use of raw materials from plants, agricultural and industrial waste, as well as bacteria or fungi. This trend is particularly evident in the cosmetic industry, which is striving to reduce the adverse environmental and social impacts of cosmetic production. Therefore, this article presents a review of the literature from the last ten years, which describes issues related to the possibilities of replacing synthetic silica-based ingredients in cosmetic products with their more environmentally friendly counterparts. Special emphasis has been placed on the application possibilities of sustainable nanostructured silica-based materials and their potential toxicity in topical formulations. The possibilities of obtaining nanostructured silica-based materials through green synthesis and using natural silica precursors have been briefly presented, as well as the options for modifying the surface of these materials. Full article
Show Figures

Figure 1

18 pages, 3577 KiB  
Article
Deodorizing Activity of Hop Bitter Acids and Their Oxidation Products Against Allyl Methyl Sulfide, a Major Contributor to Unpleasant Garlic-Associated Breath and Body Odor
by Atsushi Henmi, Tsutomu Sugino, Akira Sasaki, Kenichi Nakamura and Masakuni Okuhara
Cosmetics 2025, 12(3), 126; https://doi.org/10.3390/cosmetics12030126 - 17 Jun 2025
Viewed by 738
Abstract
Garlic is a spice widely used worldwide, but ingestion of garlic can cause unpleasant breath odor that can be offensive in interpersonal interactions. Among several sulfur-containing components of garlic, allyl methyl sulfide is considered the primary causative agent of unpleasant garlic breath and [...] Read more.
Garlic is a spice widely used worldwide, but ingestion of garlic can cause unpleasant breath odor that can be offensive in interpersonal interactions. Among several sulfur-containing components of garlic, allyl methyl sulfide is considered the primary causative agent of unpleasant garlic breath and body odor. We discovered that hop cone powder exhibits potent deodorizing activity against allyl methyl sulfide. Oxidation products of the hop bitter acids humulinone and hulupone were detected in a partially purified sample of hop cone powder. Oxidation products of the α-acids cohumulinone and n-humulinone showed approximately 10- and 15-fold stronger deodorizing activity than the parent α-acids, respectively. The deodorizing activity of oxidation products of β-acids was comparable to that of n-humulinone. It is presumed that the oxidation products of hop powder play an important role in the strong deodorizing activity of hop cone powder against allyl methyl sulfide. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

24 pages, 3224 KiB  
Article
Multi-Target Anti-Aging Mechanisms of Multani Mitti (Fuller’s Earth): Integrating Enzyme Inhibition and Molecular Docking for Cosmeceuticals
by Muhammad Javid Iqbal, Pía Loren, Viviana Burgos and Luis A. Salazar
Cosmetics 2025, 12(3), 124; https://doi.org/10.3390/cosmetics12030124 - 13 Jun 2025
Viewed by 2387
Abstract
The growing demand for natural anti-aging ingredients necessitates scientific validation of traditional cosmetic materials. Multani Mitti (MM), a clay widely used in South Asian traditional skincare, lacks comprehensive chemical and biological characterization. This study employed a multi-analytical approach to investigate MM’s anti-aging potential [...] Read more.
The growing demand for natural anti-aging ingredients necessitates scientific validation of traditional cosmetic materials. Multani Mitti (MM), a clay widely used in South Asian traditional skincare, lacks comprehensive chemical and biological characterization. This study employed a multi-analytical approach to investigate MM’s anti-aging potential through chemical analysis, enzyme inhibition studies, and in silico evaluations. Five commercial MM samples were pooled and analyzed using instrumental neutron activation analysis (INAA) and Gas Chromatography–Mass Spectrometry (GC-MS). INAA revealed silicon as the predominant inorganic constituent (169.3742 mg/g), while GC-MS identified 13 bioactive compounds, with Beta-sitosterol (15.45% area), Docosanamide (12.36% area), and Cyclohexasiloxane (9.80% area) being the most abundant. MM demonstrated significant enzyme inhibition against key aging-related enzymes, with notably strong effects on hyaluronidase (IC50: 18 μg/mL) and tyrosinase (IC50: 27 μg/mL), outperforming standard inhibitors. The antioxidant activity showed moderate effectiveness (IC50: 31.938 μg/mL) compared to ascorbic acid (IC50: 8.5 μg/mL). Molecular docking studies of identified compounds against hyaluronidase (PDB: 1FCV) and tyrosinase (PDB: 3NQ1) revealed Beta-sitosterol and Benzyl-piperazine-carboxamide as the most promising candidates, showing strong binding affinities (−8.5 and −8.6 kcal/mol, respectively) and favorable ADMET profiles. This comprehensive characterization provides the first scientific evidence supporting MM’s traditional use in skincare and identifies specific compounds that may contribute to its anti-aging properties, warranting further investigation for modern cosmetic applications. Full article
Show Figures

Figure 1

21 pages, 3616 KiB  
Article
Exploration of Salak Peel Extract Activities for Cosmeceutical Applications and Its Encapsulation in Ethosomes Using Green Method
by Supreeda Tambunlertchai, Raweewan Thiramanas, Yodsathorn Wongngam, Pimnipa Yodkrahom, Sornsawan Batthong, Kunat Suktham, Suvimol Surassmo, Udom Asawapirom and Duangporn Polpanich
Cosmetics 2025, 12(3), 122; https://doi.org/10.3390/cosmetics12030122 - 12 Jun 2025
Viewed by 582
Abstract
Salak peel extract has various biological properties befitting cosmeceutical applications; however, their practical uses are still limited due to their low water solubility and stability. Encapsulation technology was employed to alleviate these issues. In this work, we presented a simple method to prepare [...] Read more.
Salak peel extract has various biological properties befitting cosmeceutical applications; however, their practical uses are still limited due to their low water solubility and stability. Encapsulation technology was employed to alleviate these issues. In this work, we presented a simple method to prepare ethosome-encapsulated salak peel extract using green solvents (ethanol and water). For this purpose, we used 95% ethanol to extract salak peel and explored its activities. Results showed that, in addition to anti-oxidant, the extract also showed anti-tyrosinase, anti-inflammatory, and anti-bacterial (against S. aureus) activities. These activities indicate its potential uses in cosmeceutical applications. We further encapsulated the extract in ethosomes using a stirrer and green solvents for the preparation methods. The yielded ethosomes exhibited a size range of 120 to 205 nm, polydispersity index (PDI) of 0.15 to 0.25, and zeta potential of −35 to −60 mV depending on the amount of L-α-phosphatidylcholine used. The highest encapsulation efficiency was approximately 30%. The antiradical capacity and anti-inflammatory activities of salak peel extract were also found to be maintained after the encapsulation process. An in vitro biocompatibility study of the extract after encapsulation was also performed. The results not only indicated good biocompatibility, but also the potential skin-rejuvenating ability of salak peel ethosomes. A stability study was also performed, and the results suggested that these ethosomes were stable at different conditions. With further investigation, salak peel ethosomes, as presented here, can be suitable for cosmeceutical applications. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Graphical abstract

2 pages, 510 KiB  
Correction
Correction: Miranda et al. Antioxidant and Anti-Inflammatory Potential of Brassica oleracea Accelerates Third-Degree Burn Healing in Rats. Cosmetics 2024, 11, 27
by Lyvia Lopes Miranda, Mariáurea Matias Sarandy, Luciana Schulthais Altoé, Daniel Silva Sena Bastos, Fabiana Cristina Silveira Alves Melo, Rômulo Dias Novaes, Debora Araújo Esposito and Reggiani Vilela Gonçalves
Cosmetics 2025, 12(3), 110; https://doi.org/10.3390/cosmetics12030110 - 26 May 2025
Viewed by 480
Abstract
In the original publication [...] Full article
Show Figures

Figure 1

Back to TopTop