Swimming goggles still face numerous challenges in practical use, including deterioration and failure of anti-fog coatings, residual water marks on lens surfaces, and relatively short service life in complex environments. When swimming outdoors during winter, goggles also present an icing problem. To address
[...] Read more.
Swimming goggles still face numerous challenges in practical use, including deterioration and failure of anti-fog coatings, residual water marks on lens surfaces, and relatively short service life in complex environments. When swimming outdoors during winter, goggles also present an icing problem. To address these problems and enhance the performance of swimming goggles, this study employs a combination of plasma cleaning and mechanical spraying methods, utilizing HB-139 SiO
2 to modify the surface of goggle lenses, thereby fabricating lenses with superhydrophobic properties. The changes in lens surfaces before and after friction and immersion treatments were characterized using three-dimensional profilometry and scanning electron microscopy, further investigating the hydrophobic, drag-reducing, wear-resistant, and anti-icing properties of the lenses. Experimental results demonstrate that SiO
2 can enhance the hydrophobic, drag-reducing, durability, and anti-icing performance of the lenses. Under standard conditions, the contact angle of modified samples reached 162.33 ± 3.15°, representing a 48.77 ± 2.15% improvement over original samples. Under friction conditions, modified samples exhibited a 45.86 ± 2.53% increase in contact angle compared to original samples, with Sa values decreasing by 58.64 ± 3.21%. Under immersion conditions, modified samples showed a 54.37 ± 2.44% increase in contact angle relative to original samples. The modified samples demonstrated excellent droplet bouncing performance at temperatures of −10 °C, 10 °C, and 30 °C. De-icing efficiency improved by 14.94 ± 2.37%. Throughout the experimental process, SiO
2 demonstrated exceptional hydrophobic, drag-reducing, durability, and anti-icing capabilities. This establishes a robust foundation for the exemplary performance of swimming goggles in both training and competitive contexts.
Full article