Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Journal = Biomechanics
Section = Neuromechanics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3543 KB  
Article
Correlation between Passive and Active Shear Moduli after a Fatigue Task
by Ricardo Pimenta, Hugo Antunes, Nuno Pimenta, José Pedro Correia and António Veloso
Biomechanics 2026, 6(1), 12; https://doi.org/10.3390/biomechanics6010012 (registering DOI) - 17 Jan 2026
Abstract
Objectives: The purpose of this study was to determine whether hamstrings’ passive and active shear moduli measured before and after a fatigue task are correlated. Studying the correlation between passive and active shear moduli is important because, if correlated, passive SWE could provide [...] Read more.
Objectives: The purpose of this study was to determine whether hamstrings’ passive and active shear moduli measured before and after a fatigue task are correlated. Studying the correlation between passive and active shear moduli is important because, if correlated, passive SWE could provide a quicker assessment without requiring fatigue-inducing voluntary contractions. Methods: Forty-seven football players with no history of hamstring strain injury participated. Muscle shear modulus was assessed only in the dominant lower-limb (dominance defined as the preferred kicking limb) using ultrasound-based shear wave elastography at rest and during isometric contractions at 20% of maximal voluntary isometric effort before and immediately after a 10 × 30 m repeated sprint protocol. Results: Regarding sprint performance, a significant decrease of 8.3% was seen between the first and the last sprints (first: 7.14 ± 0.27 m/s; last: 6.60 ± 0.31 m/s; p < 0.001; dz = 1.88 [1.40–2.35]). In relation to the peak torque normalized to bodyweight, a significant decrease of 9.2% was seen between pre and post (pre: 1.98 ± 0.30 Nm/kg; post: 1.83 ± 0.31 Nm/kg; p < 0.001; dz = 0.89 [0.78–0.95]). Regarding the correlation analysis, none of the passive and active shear moduli measures was significantly correlated in any condition (Bonferroni correction for multiple comparisons, significance threshold set at p < 0.004). Conclusions: The results suggest that the hamstrings’ passive and active shear moduli are not correlated after a fatigue task. Full article
(This article belongs to the Section Neuromechanics)
12 pages, 966 KB  
Article
Measurement of Compression Forces During Spinal Fusion Surgery Utilizing the Proprioceptive Effect of Hand Muscle Memory
by Robin Heilmann, Stefan Schleifenbaum, Peter Melcher, Christoph-Eckhard Heyde and Nicolas Heinz von der Höh
Biomechanics 2025, 5(4), 91; https://doi.org/10.3390/biomechanics5040091 - 5 Nov 2025
Viewed by 601
Abstract
Background: In spinal fusion surgery, intersomatic compression force is currently applied subjectively by the operating surgeon, despite its critical role on implant stability and risk of subsidence. No standardized measurement or guideline exists to control or quantify the amount of force applied. [...] Read more.
Background: In spinal fusion surgery, intersomatic compression force is currently applied subjectively by the operating surgeon, despite its critical role on implant stability and risk of subsidence. No standardized measurement or guideline exists to control or quantify the amount of force applied. Methods: In a two-phase exploratory study, we evaluated whether proprioceptive muscle memory allows reliable reproduction of applied manual compression forces. In Phase 1, 30 participants applied force to a compression clamp equipped with a strain gauge, simulating spinal interbody compression on a 3D-printed vertebral model. They were then asked to reproduce this force using a hand dynamometer at defined time intervals. In Phase 2, intraoperative compression forces applied during spinal fusion procedures were retrospectively assessed by having the operating surgeon reproduce the force on a dynamometer. Results: Participants were able to reproduce their initial manual compression force within a 15% deviation, even 15 min after the initial application. In 116 clinical cases, an average compression force of 146.3 ± 18.5 N was recorded. No significant differences were observed across different spinal segments. Conclusions: These findings provide initial data toward defining a reproducible reference range for indirect intraoperative compression assessment. Standardization of applied force may help improve biomechanical outcomes and reduce complications such as implant migration, pseudarthrosis, or cage subsidence. Full article
(This article belongs to the Section Neuromechanics)
Show Figures

Figure 1

13 pages, 1412 KB  
Article
Jaw Clenching Alters Neuromuscular Coordination in Dynamic Postural Tasks: A Pilot Study on Single-Leg Sit-to-Stand Movements
by Yuto Tanaka, Yoshiaki Ono and Yosuke Tomita
Biomechanics 2025, 5(4), 89; https://doi.org/10.3390/biomechanics5040089 - 4 Nov 2025
Viewed by 883
Abstract
Background/Objective: Postural stability and motor coordination require precise regulation of agonist and antagonist muscle activities. Jaw clenching modulates neuromuscular control during static and reactive postural tasks. However, its effects on dynamic voluntary movement remain unclear. This pilot study aimed to investigate the effects [...] Read more.
Background/Objective: Postural stability and motor coordination require precise regulation of agonist and antagonist muscle activities. Jaw clenching modulates neuromuscular control during static and reactive postural tasks. However, its effects on dynamic voluntary movement remain unclear. This pilot study aimed to investigate the effects of jaw clenching on muscle activity and kinematics during repetitive single-leg sit-to-stand task performance. Methods: Eleven healthy adults (age: 21.2 ± 0.4 years; 6 males and 5 females; height: 167.9 ± 9.6 cm; body weight: 59.7 ± 8.1 kg) performed repetitive single-leg sit-to-stand tasks for 30 s under jaw-clenching and control conditions. Electromyography (EMG) signals from eight muscles and kinematic data from 16 inertial measurement unit sensors were analyzed, focusing on the seat-off phase. Results: Jaw clenching resulted in a significantly lower success rate than the control condition (success rate: 0.96 ± 0.13 vs. 0.78 ± 0.29, p = 0.047). Under the jaw clenching condition, failed trials exhibited higher medial gastrocnemius and masseter EMG activity (p < 0.001), lower erector spinae longus EMG activity (p < 0.001), and altered kinematics, including increased trunk yaw and roll angles (p < 0.001). Jaw clenching increased the coactivation of the gastrocnemius and tibialis anterior muscles (p < 0.001), disrupting the reciprocal muscle patterns critical for task performance. Conclusions: These findings suggest that jaw clenching may reduce task performance by altering neuromuscular coordination during dynamic postural tasks. Full article
(This article belongs to the Section Neuromechanics)
Show Figures

Figure 1

21 pages, 1663 KB  
Article
Neuromechanical Effects of Eccentric–Reactive Training on Explosiveness, Asymmetry, and Stretch-Shortening in Elite Table Tennis Players
by Kinga Wiktoria Łosińska, Artur Gołaś, Florentyna Tyrała, Monika Szot and Adam Maszczyk
Biomechanics 2025, 5(4), 84; https://doi.org/10.3390/biomechanics5040084 - 16 Oct 2025
Viewed by 854
Abstract
Background/Objectives: This study examined the effects of a six-week eccentric–reactive training program on neuromechanical markers of lateral explosiveness, asymmetry, and stretch-shortening cycle (SSC) efficiency in elite male youth table tennis players. Fourteen national-level athletes (mean age = 16.6 years) were assigned to [...] Read more.
Background/Objectives: This study examined the effects of a six-week eccentric–reactive training program on neuromechanical markers of lateral explosiveness, asymmetry, and stretch-shortening cycle (SSC) efficiency in elite male youth table tennis players. Fourteen national-level athletes (mean age = 16.6 years) were assigned to either an experimental group (EG, n = 7) or a control group (CG, n = 7). EG performed flywheel squats and lateral depth jumps three times per week, while CG maintained regular training. Pre- and post-intervention testing included countermovement jumps, reactive strength index (RSI_DJ), force asymmetry, time-to-stabilization, SSC efficiency, and energy transfer ratio (ETR), measured via force plates, EMG, and inertial sensors. Methods: Multi-dimensional statistical analysis revealed coordinated improvements in explosive power and movement efficiency following eccentric training that were not visible when examining individual measures separately. Athletes in the training group showed enhanced neuromechanical control and developed more efficient movement patterns compared to controls. The analysis successfully identified distinct performance profiles and demonstrated that the training program improved explosive characteristics in elite table tennis players. Results: Univariate ANOVAs showed no significant Group × Time effects for RSI_DJ, ETR, or SSC_Eff, although RSI_DJ displayed a moderate effect size in EG (d = 0.47, 95% CI [0.12, 0.82], p = 0.043). In contrast, MANOVA confirmed a significant multivariate Group × Time interaction (p = 0.013), demonstrating integrated neuromechanical adaptations. Regression analysis indicated lower baseline CMJ and RSI_DJ predicted greater RSI improvements. Conclusions: In conclusion, eccentric–reactive training promoted multidimensional neuromechanical adaptations in elite racket sport athletes, supporting the use of integrated monitoring and targeted eccentric loading to enhance lateral explosiveness and efficiency. Full article
(This article belongs to the Section Neuromechanics)
Show Figures

Figure 1

15 pages, 1849 KB  
Article
Evolution of Gait Biomechanics During a Nine-Month Exercise Program for Parkinson’s Disease: An Interventional Cohort Study
by Dielise Debona Iucksch, Elisangela Ferretti Manffra and Vera Lucia Israel
Biomechanics 2025, 5(3), 53; https://doi.org/10.3390/biomechanics5030053 - 1 Aug 2025
Viewed by 2398
Abstract
It is well established that combining exercise with medication may benefit functionality in individuals with PD (Parkinson’s disease). However, the long-term evolution of gait biomechanics under this combination remains poorly understood. Objectives: This study aims to analyze the evolution of spatiotemporal gait parameters, [...] Read more.
It is well established that combining exercise with medication may benefit functionality in individuals with PD (Parkinson’s disease). However, the long-term evolution of gait biomechanics under this combination remains poorly understood. Objectives: This study aims to analyze the evolution of spatiotemporal gait parameters, kinetics, and kinematics throughout a long-term exercise program conducted in water and on dry land. Methods: We have compared the trajectories of biomechanical variables across the treatment phases using statistical parametric mapping (SPM). A cohort of fourteen individuals with PD (mean age: 65.6 ± 12.1 years) participated in 24 sessions of aquatic exercises over three months, followed by a three-month retention phase, and then 24 additional sessions of land-based exercises. Three-dimensional gait data and spatiotemporal parameters were collected before and after each phase. Two-way ANOVA with repeated measures was used to compare spatiotemporal parameters. Results: The walking speed increased while the duration of the double support phase decreased. Additionally, the knee extensor moment consistently increased in the entire interval from midstance to midswing (20% to 70% of the stride period), approaching normal gait patterns. Regarding kinematics, significant increases were observed in both hip and knee flexion angles. Furthermore, the abnormal ankle dorsiflexion observed at the foot strike disappeared. Conclusions: These findings collectively suggest positive adaptations in gait biomechanics during the observation period. Full article
(This article belongs to the Special Issue Gait and Balance Control in Typical and Special Individuals)
Show Figures

Figure 1

14 pages, 889 KB  
Article
Neuromuscular Assessment of Maximal Shoulder Flexion/Extension Torque Development in Male Gymnasts
by Dimitrios C. Milosis, Costas Dallas, Dimitrios A. Patikas, George Dallas and Theophanis Siatras
Biomechanics 2025, 5(3), 49; https://doi.org/10.3390/biomechanics5030049 - 1 Jul 2025
Viewed by 2313
Abstract
Background/Objectives: The objective of this study was to compare muscular strength and neuromuscular activation characteristics between male gymnasts and physical education (PE) students during isometric shoulder extension and flexion tasks. Methods: Thirteen competitive male gymnasts (age: 19.59 ± 1.90 years; body [...] Read more.
Background/Objectives: The objective of this study was to compare muscular strength and neuromuscular activation characteristics between male gymnasts and physical education (PE) students during isometric shoulder extension and flexion tasks. Methods: Thirteen competitive male gymnasts (age: 19.59 ± 1.90 years; body mass: 66.54 ± 6.10 kg; height: 169.38 ± 6.28 cm; mean ± SD) and thirteen male physical education (PE) students (age: 20.96 ± 2.30 years; body mass: 74.00 ± 8.69 kg; height: 174.96 ± 4.93 cm) voluntarily participated in the study. Peak torque (PT), rate of torque development (RTD), RTD normalized to body mass (RTD/BM), and muscle activation assessed via surface electromyography (EMG), normalized to maximal EMG activity (EMG/EMGmax), were evaluated during bilateral isometric shoulder extension and flexion at a joint angle of 45°. Measurements were analyzed across the following time intervals: −50 to 0 ms (pre-tension), 0–30 ms, 0–50 ms, 0–100 ms, and 0–200 ms relative to contraction onset. Custom MATLAB R2024b scripts were used for data processing and visualization. One-way and two-way multivariate analyses of variance (MANOVAs) were conducted to test for group differences. Results: Gymnasts exhibit higher values of PT, PT/BM, RTD, and RTD/BM particularly within the early contraction phases (i.e., 0–50 ms and 0–100 ms) compared to PE students (p < 0.05 to <0.001; η2 = 0.04–0.66). Additionally, EMG activity normalized to maximal activation (EMG/EMGmax) was significantly greater in gymnasts during both early and mid-to-late contraction phases (0–100 ms and 0–200 ms), (p < 0.05 to <0.001; η2 = 0.04–0.48). Conclusions: These findings highlight gymnasts’ superior explosive neuromuscular capacity. Metrics like RTD, RTD/BM, and EMG offer valuable insights into rapid force production and neural activation, supporting performance monitoring, training optimization, and injury prevention across both athletic and general populations. Full article
(This article belongs to the Section Neuromechanics)
Show Figures

Figure 1

10 pages, 921 KB  
Article
Electromyographic Activation of Flexed Arm Circumference, With or Without Contralateral Opposition
by Rafael Bizarelo, Luiz Paulo Pimenta Rambal, Taís de Souza Lopes, Sara Lucia Silveira de Menezes, Pablo B. Costa and Claudio Melibeu Bentes
Biomechanics 2025, 5(3), 44; https://doi.org/10.3390/biomechanics5030044 - 1 Jul 2025
Viewed by 1353
Abstract
Flexed and tensed arm (FTA) circumference is a fundamental anthropometric measurement for determining the mesomorphic component in somatotype. This study examined the impact of contralateral limb opposition (+OP) on arm circumference measurement and biceps brachii muscle activation. Fifty physically active men and women, [...] Read more.
Flexed and tensed arm (FTA) circumference is a fundamental anthropometric measurement for determining the mesomorphic component in somatotype. This study examined the impact of contralateral limb opposition (+OP) on arm circumference measurement and biceps brachii muscle activation. Fifty physically active men and women, mean (22.7 ± 2.9 years), participated in this study. FTA circumference measurements were taken with FTA + OP and without opposition FTA, following ISAK protocols. Additionally, biceps brachii muscle activation was assessed using surface electromyography (sEMG). Significant differences were identified in the flexed and tensed arm circumference (>1%) and in the mesomorphic component between the FTA and FTA + OP conditions (p < 0.001). In addition, contralateral limb opposition resulted in a significant average increase of 39.02% in biceps brachii muscle activation, with variations between 24.57% to 47.46% across the time intervals analyzed (p < 0.05). A moderate correlation was observed between the percentage difference in sEMG and arm circumference during the middle second of contraction (r = 0.418). However, during the first (r = 0.393), third (r = 0.376), and mean (r = 0.385) contraction periods, the correlation was considered weak. Contralateral limb opposition caused greater biceps brachii muscle activation, resulting in an increase in flexed and tensed arm circumference in physically active young adults. Full article
(This article belongs to the Section Neuromechanics)
Show Figures

Figure 1

15 pages, 2729 KB  
Article
Asymmetric Knee Joint Loading in Post-Stroke Gait: A Musculoskeletal Modeling Analysis of Medial and Lateral Compartment Forces
by Georgios Giarmatzis, Nikolaos Aggelousis, Marinos Marinidis, Styliani Fotiadou, Erasmia Giannakou, Evangelia Makri, Junshi Liu and Konstantinos Vadikolias
Biomechanics 2025, 5(2), 39; https://doi.org/10.3390/biomechanics5020039 - 11 Jun 2025
Cited by 1 | Viewed by 2161
Abstract
Background/Objectives: Stroke survivors often develop asymmetric gait patterns that may lead to abnormal knee joint loading and potentially increased risk of osteoarthritis. This study aimed to investigate differences in knee joint loading between paretic and non-paretic limbs during walking in individuals post-stroke. Methods [...] Read more.
Background/Objectives: Stroke survivors often develop asymmetric gait patterns that may lead to abnormal knee joint loading and potentially increased risk of osteoarthritis. This study aimed to investigate differences in knee joint loading between paretic and non-paretic limbs during walking in individuals post-stroke. Methods: Twenty-one chronic stroke survivors underwent three-dimensional gait analysis. A modified musculoskeletal model with a specialized knee mechanism was used to estimate medial and lateral tibiofemoral contact forces during the stance phase. Statistical parametric mapping was used to identify significant differences in joint kinematics, kinetics, and contact forces between limbs. Stepwise regression analyses examined relationships between knee moments and compartmental contact forces. Results: Significant differences in knee loading were observed between limbs, with the non-paretic limb experiencing higher medial compartment forces during early stance (6.7–15.1%, p = 0.001; 21.9–30.7%, p = 0.001) and late stance (72.3–93.7%, p < 0.001), and higher lateral compartment forces were recorded during pre-swing (86.2–99.0%, p < 0.001). In the non-paretic limb, knee extensor moment was the primary predictor of first peak medial contact force (R2 = 0.573), while knee abductor moment was the primary predictor in the paretic limb (R2 = 0.559). Conclusions: Musculoskeletal modeling revealed distinct asymmetries in knee joint loading between paretic and non-paretic limbs post-stroke, with the non-paretic limb experiencing consistently higher loads, particularly during late stance. These findings suggest that rehabilitation strategies should address not only paretic limb function but also potentially harmful compensatory mechanisms in the non-paretic limb to prevent long-term joint degeneration. Full article
(This article belongs to the Special Issue Gait and Balance Control in Typical and Special Individuals)
Show Figures

Figure 1

9 pages, 889 KB  
Article
Curve Analysis of Foot Coupling Kinematics in Runners with Plantar Heel Pain During Running Gait
by Hanieh Pazhooman, Robin L. Pomeroy, Mohammed S. Alamri, Zahra Mollaei and Stephen C. Cobb
Biomechanics 2025, 5(2), 34; https://doi.org/10.3390/biomechanics5020034 - 30 May 2025
Viewed by 1843
Abstract
(1) Background: Plantar heel pain (PHP), a common overuse foot injury, significantly impacts runners. While the mechanical role of the plantar fascia during gait is established, its effect on foot function during running, particularly foot joint coupling, remains unclear. This study investigated foot [...] Read more.
(1) Background: Plantar heel pain (PHP), a common overuse foot injury, significantly impacts runners. While the mechanical role of the plantar fascia during gait is established, its effect on foot function during running, particularly foot joint coupling, remains unclear. This study investigated foot joint coupling during running in runners with and without PHP using statistical parametric mapping (SPM). (2) Methods: Thirteen uninjured runners (seven m, six f; age = 30.5 ± 5.9 years; BMI = 23.5 ± 3.0 kg/m2) and thirteen runners with PHP (six m, seven f; age = 29.0 ± 8.0 years; BMI = 23.1 ± 2.0 kg/m2) performed running trials at 4.0 m/s. A seven-segment foot model that defined six functional articulations (rearfoot, medial and lateral midfoot, medial and lateral forefoot, first metatarsophalangeal) was used to quantify foot kinematics, vector coding was used to calculate joint coupling between adjacent foot segments, and SPM was used to analyze joint stance phase coupling angles. (3) Results: There were statistically significant differences in rearfoot frontal plane–medial midfoot frontal plane joint coupling between runners with and without PHP from 69 to 70% stance phase (mean difference = 39.41°) and at 76% stance (mean difference = 47.89°). The differences were indicative of greater medial midfoot eversion rotation relative to rearfoot complex inversion in the PHP group. (4) Conclusions: The difference in the rearfoot complex and medial midfoot frontal plane coupling occurred during the propulsion phase of the running stance when the foot should be transitioning to a more supinated position, which may reflect compromised supination due to plantar fascia degeneration. Full article
(This article belongs to the Special Issue Gait and Balance Control in Typical and Special Individuals)
Show Figures

Figure 1

14 pages, 3010 KB  
Article
Effects of Simulated Hyper-Gravity on Lower Limb Kinematics and Electromyography During Walking
by Christopher A. Malaya, Pranav J. Parikh, Dean L. Smith and Charles S. Layne
Biomechanics 2025, 5(2), 31; https://doi.org/10.3390/biomechanics5020031 - 4 May 2025
Viewed by 1859
Abstract
Background: Gravity profoundly influences human locomotion. Studies examining the effects of hyper-gravity on gait have largely relied on added external mass, potentially confounding results with changes in inertia and center of mass. This study attempted to isolate the effects of increased gravitational load [...] Read more.
Background: Gravity profoundly influences human locomotion. Studies examining the effects of hyper-gravity on gait have largely relied on added external mass, potentially confounding results with changes in inertia and center of mass. This study attempted to isolate the effects of increased gravitational load on kinematics and electromyography during walking at several different levels of load. Methods: Fifteen healthy adults were exposed to simulated gravitational loads ranging from 100% to 130% of body weight using a novel harness and spring-based system that increased weight without the addition of external mass and without altering limb inertia. Participants walked on a treadmill at a self-selected speed through incremental loading and unloading. Lower limb kinematics and electromyography data were recorded. Traditional measures of gait, as well as more dynamical measures, including angle–angle analysis and phase portraits, were examined. Results: Data demonstrated that a 130% load is sufficient to induce kinematic changes at the hip and knee; however, these changes become significant only during the transition from 130% to lower load levels. Ankle kinematics and electromyography appeared to be unaffected. Conclusions: These findings suggest that the presence of external mass and alterations in limb inertias should be considered seriously as independent variables in future loading studies, and that weight and mass may need to be considered as separate effectors during locomotion. This study also found that the act of loading and unloading elicit distinct responses in the joints of the lower extremities, as well as that it may induce an adaptative after-effect. Full article
(This article belongs to the Special Issue Gait and Balance Control in Typical and Special Individuals)
Show Figures

Figure 1

14 pages, 1379 KB  
Article
Evaluation of Muscle Synergy Flexibility Induced by a Muscle Nerve Block in Chronic Stroke Patients
by Anthony Supiot, Nicolas Roche, Bastien Berret and Didier Pradon
Biomechanics 2025, 5(2), 27; https://doi.org/10.3390/biomechanics5020027 - 1 May 2025
Viewed by 1309
Abstract
Background: Drug treatments for gait disorders in post-stroke patients aim to reduce muscular hyperactivity. The analysis of muscle activity is essential to help clinicians understand these disorders. This study aimed to quantify changes in muscle synergies before (PRE) and after (POST) a rectus [...] Read more.
Background: Drug treatments for gait disorders in post-stroke patients aim to reduce muscular hyperactivity. The analysis of muscle activity is essential to help clinicians understand these disorders. This study aimed to quantify changes in muscle synergies before (PRE) and after (POST) a rectus femoris nerve block. Methods: Gait analysis of 8 post-stroke patients before and immediately after nerve block. Muscle synergies were quantified from electromyographic signals. We have selected the account for variance, which indicates the effectiveness of the synergies, the recruitment selectivity index, which indicates the degree of multiplexing of the synergies, and the recruitment consistency index, which indicates the variability of the synergy activations across gait cycles. Results: A decrease in Variance Account For (VAF) is observed, showing a lack of robustness of the underlying muscle synergies between PRE and POST. We also note that spatial and temporal primitives result in different Index of Recruitment Selectivity (IRS) but similar Index of Recruitment Consistency (IRC) for PRE vs. POST. This shows that the synergies’ activations remain consistent across cycles but are more distributed in POST than in PRE. Conclusions: The motor nerve block has not created new muscle synergies of the paretic limb during gait but indicates that there is flexibility in motor organization. This method of quantification may enable clinicians to assess the motor adaptation potential of their post-stroke patients. Full article
(This article belongs to the Section Neuromechanics)
Show Figures

Figure 1

10 pages, 458 KB  
Article
Exploring the Effect of Prolonged Ankle Plantar-Flexed Standing on Postural Control, Balance Confidence, Falls Efficacy, and Perceived Balance in Older Adults
by Daniel Craig Low
Biomechanics 2025, 5(2), 19; https://doi.org/10.3390/biomechanics5020019 - 24 Mar 2025
Viewed by 1187
Abstract
Background/Objectives: Postural control describes our ability to maintain an upright position. This study explored the impact of prolonged ankle plantar-flexed standing on postural control variability and strategy in an older adult population. The ability to perceive balance change was also assessed via subjective [...] Read more.
Background/Objectives: Postural control describes our ability to maintain an upright position. This study explored the impact of prolonged ankle plantar-flexed standing on postural control variability and strategy in an older adult population. The ability to perceive balance change was also assessed via subjective balance-related variables. Methods: Twenty-four community-dwelling older adults were recruited via convenience sampling. Each participant completed a balance confidence and falls efficacy questionnaire at baseline. Five barefoot quiet standing trials on a force plate then followed (Timepoint 1). After this, the participants stood with their ankles in a plantar-flexed position for up to 7.5 min before completing another quiet standing trial on the force plate. Four further ankle plantar-flexed standing trials of 2 min were then completed, interspersed with quiet standing trials on a force plate (Timepoint 2). The balance confidence and falls efficacy questionnaires were then completed again. For measures of postural control variability (sway path length, root mean square [RMS], sway area) and strategy (fractal dimension), mean values for the five trials were calculated for Timepoints 1 and 2 separately. Results: The sway path length and RMS measures were significantly increased (p < 0.05) at Timepoint 2. However, the fractal dimension did not change. There was also no change in balance confidence or falls efficacy. Conclusions: The findings suggest that prolonged standing can impact measures of postural variability without a change in postural control strategy. Postural control change also occurred without a change in subjective balance measures, suggesting that the altered balance may not be practically significant or perceptible to the individual. Full article
(This article belongs to the Special Issue Gait and Balance Control in Typical and Special Individuals)
Show Figures

Figure 1

11 pages, 7766 KB  
Article
Nonlinear Gait Variability Increases with Age in Children from 2–10 Years Old
by Bryon C. Applequist, Zachary L. Motz and Anastasia Kyvelidou
Biomechanics 2025, 5(1), 10; https://doi.org/10.3390/biomechanics5010010 - 3 Feb 2025
Viewed by 1473
Abstract
Background: Linear methods of analysis of variability are concerned with the magnitude of variability and often consider deviations from a central mean as errors. The utilization of nonlinear tools to examine variability allows for the exploration and measurement of the patterns of variability [...] Read more.
Background: Linear methods of analysis of variability are concerned with the magnitude of variability and often consider deviations from a central mean as errors. The utilization of nonlinear tools to examine variability allows for the exploration and measurement of the patterns of variability displayed by the system. This methodology explores the deterministic properties of biological signals, in this case, gait, or how previous iterations within the gait cycle influence subsequent and future iterations. The nonlinear analysis of gait variability of the joint angle time series has not been investigated in developing children. Methods: We collected 3 min of treadmill walking data for 28 children between the ages of 2 and 10 years old and analyzed their joint angle time series using nonlinear methods of analysis (sample entropy, largest Lyapunov exponent, and recurrence quantification analysis). Results: Our results indicate that the nonlinear variability of children’s gait increases as children age. Interestingly, this contrasts with the findings from our previous work that showed a decrease in linear variability as children age. The combination of a decrease in linear variability, or a refined and improved stability of gait, as well as an increase in nonlinear variability, or an increase in the sophistication and quality of movement patterns, suggest an overall maturation of the neuromuscular system. Conclusions: Our study indicate that there is a refining of gait with age and motor maturation. This refining speaks to the overall multifaceted organization of systems that defines the maturation of gait. Full article
(This article belongs to the Special Issue Gait and Balance Control in Typical and Special Individuals)
Show Figures

Figure 1

13 pages, 1379 KB  
Article
People with Parkinson’s Disease Are Able to Couple Eye Movements and Postural Sway to Improve Stability
by Fabio Augusto Barbieri, Paula Favaro Polastri, José Angelo Barela, Cédrick T. Bonnet, Matheus Belizario Brito and Sergio Tosi Rodrigues
Biomechanics 2024, 4(3), 460-472; https://doi.org/10.3390/biomechanics4030032 - 1 Aug 2024
Cited by 1 | Viewed by 3969
Abstract
Considering that people with Parkinson’s disease (PD) experience challenges in the control of both balance and eye movements, this study investigated the effects of saccadic eye movements on body sway in people with PD in two bases of support positions (side-by-side and tandem [...] Read more.
Considering that people with Parkinson’s disease (PD) experience challenges in the control of both balance and eye movements, this study investigated the effects of saccadic eye movements on body sway in people with PD in two bases of support positions (side-by-side and tandem stances). Ten people with PD and 11 healthy individuals performed (a) fixation; (b) horizontal saccadic eye movements to the right and left; and (c) vertical saccadic eye movements up and down. The protocol for each postural task consisted of one block of six trials, making a total of 12 trials. Body sway and gaze parameters were measured during the trials. In both people with PD and healthy individuals, anterior–posterior body sway was significantly reduced in horizontal saccadic eye movements in contrast to fixation, regardless of the body position (side-by-side and tandem stances). Furthermore, vertical saccadic eye movements increased the area of sway in contrast to horizontal ones (and not to fixation) in people with PD. In addition, people with PD showed a higher number of fixations in all experimental conditions, without changes in the mean duration of fixations in both body positions. In conclusion, individuals with PD can improve body sway by coupling eye movements and postural sway when performing horizontal saccadic eye movements but not when performing vertical saccadic eye movements. Full article
(This article belongs to the Special Issue Gait and Balance Control in Typical and Special Individuals)
Show Figures

Figure 1

13 pages, 1229 KB  
Article
Evaluation of Voluntary Dynamic Balance through Standardized Squat-Lift Movements: A Comparison between Gymnasts and Athletes from Other Sports
by Jair Wesley Ferreira Bueno, Daniel Boari Coelho and Luis Augusto Teixeira
Biomechanics 2024, 4(3), 439-451; https://doi.org/10.3390/biomechanics4030030 - 21 Jul 2024
Cited by 1 | Viewed by 2013
Abstract
In the quotidian, people perform voluntary whole-body movements requiring dynamic body balance. However, the literature is scarce of dynamic balance evaluations employing standardized voluntary movements. In this investigation, we aimed to analyze the sensitivity of balance evaluation between gymnasts and athletes from other [...] Read more.
In the quotidian, people perform voluntary whole-body movements requiring dynamic body balance. However, the literature is scarce of dynamic balance evaluations employing standardized voluntary movements. In this investigation, we aimed to analyze the sensitivity of balance evaluation between gymnasts and athletes from other sports in the performance of balance tasks. Participants were evaluated in upright quiet standing and the performance of cyclic dynamic tasks of hip flexion-extension and squat-lift movements. Movements were individually standardized in amplitude, while the rhythm was externally paced at the frequency of 0.5 Hz. Tasks were performed on a force plate, with dynamic balance measured through the center of pressure displacement. Results showed that in quiet standing and the dynamic hip flexion-extension task, no significant differences were found between the groups. Conversely, results for the squat-lift task revealed a better balance of the gymnasts over controls, as indicated by the reduced amplitude and velocity of the center of pressure displacement during the task execution. The superior balance performance of gymnasts in the squat-lift task was also observed when vision was suppressed. These findings suggest the employed squat-lift task protocol is a potentially sensitive procedure for the evaluation of voluntary dynamic balance. Full article
(This article belongs to the Special Issue Gait and Balance Control in Typical and Special Individuals)
Show Figures

Figure 1

Back to TopTop