Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (531)

Search Parameters:
Journal = Agronomy
Section = Plant-Crop Biology and Biochemistry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7215 KiB  
Article
Transcriptome Profiling Reveals Mungbean Defense Mechanisms Against Powdery Mildew
by Sukanya Inthaisong, Pakpoom Boonchuen, Akkawat Tharapreuksapong, Panlada Tittabutr, Neung Teaumroong and Piyada Alisha Tantasawat
Agronomy 2025, 15(8), 1871; https://doi.org/10.3390/agronomy15081871 (registering DOI) - 1 Aug 2025
Abstract
Powdery mildew (PM), caused by Sphaerotheca phaseoli, severely threatens mungbean (Vigna radiata) productivity and quality, yet the molecular basis of resistance remains poorly defined. This study employed transcriptome profiling to compare defense responses in a resistant genotype, SUPER5, and a [...] Read more.
Powdery mildew (PM), caused by Sphaerotheca phaseoli, severely threatens mungbean (Vigna radiata) productivity and quality, yet the molecular basis of resistance remains poorly defined. This study employed transcriptome profiling to compare defense responses in a resistant genotype, SUPER5, and a susceptible variety, CN84-1, following pathogen infection. A total of 1755 differentially expressed genes (DEGs) were identified, with SUPER5 exhibiting strong upregulation of genes encoding pathogenesis-related (PR) proteins, disease resistance proteins, and key transcription factors. Notably, genes involved in phenylpropanoid and flavonoid biosynthesis, pathways associated with antimicrobial compound and lignin production, were markedly induced in SUPER5. In contrast, CN84-1 showed limited activation of defense genes and downregulation of essential regulators such as MYB14. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses highlighted the involvement of plant–pathogen interaction pathways, MAPK signaling, and reactive oxygen species (ROS) detoxification in the resistant response. Quantitative real-time PCR validated 11 candidate genes, including PAL3, PR2, GSO1, MLO12, and P21, which function in pathogen recognition, signaling, the biosynthesis of antimicrobial metabolites, the production of defense proteins, defense regulation, and the reinforcement of the cell wall. Co-expression network analysis revealed three major gene modules linked to flavonoid metabolism, chitinase activity, and responses to both abiotic and biotic stresses. These findings offer valuable molecular insights for breeding PM-resistant mungbean varieties. Full article
Show Figures

Figure 1

4 pages, 153 KiB  
Editorial
The Mechanisms and Pathways of Crop Responses to Stress
by Weibing Yang and Tie Cai
Agronomy 2025, 15(8), 1866; https://doi.org/10.3390/agronomy15081866 - 31 Jul 2025
Abstract
Rice (Oryza sativa L [...] Full article
13 pages, 1092 KiB  
Article
Exogenous Application of Nano-Silicon and Melatonin Ameliorates Salinity Injury in Coix Seedlings
by Beibei Qi, Junkai Liu, Ruixue Zheng, Jiada Huang and Chao Wu
Agronomy 2025, 15(8), 1862; https://doi.org/10.3390/agronomy15081862 (registering DOI) - 31 Jul 2025
Abstract
Soil salinization is a major environmental constraint that poses a significant threat to global agricultural productivity and food security. Coix lacryma-jobi L., a minor cereal crop that is valued for its nutritional and medicinal properties, displays moderate susceptibility to salinity stress. Although exogenous [...] Read more.
Soil salinization is a major environmental constraint that poses a significant threat to global agricultural productivity and food security. Coix lacryma-jobi L., a minor cereal crop that is valued for its nutritional and medicinal properties, displays moderate susceptibility to salinity stress. Although exogenous treatments have been demonstrated to enhance plant resilience against various biotic and abiotic stresses, the potential of nano-silicon (NaSi), melatonin (MT), and their combined application in mitigating salinity-induced damage, particularly in relation to the medicinal properties of this medicinal and edible crop, remains poorly understood. This study investigated the effects of exogenous NaSi and MT application on Coix under salinity stress using two varieties with contrasting salinity tolerances. The plants were subjected to salinity stress and treated with NaSi, MT, or a combination of both. The results revealed that salinity stress significantly impaired the agronomic traits, physiological performance, and accumulation of medicinal compounds of Coix. Exogenous MT application effectively alleviated salinity-induced damage to agronomic and physiological parameters, exhibiting superior protective effects compared to NaSi treatment. Strikingly, the combined application of MT and NaSi demonstrated synergistic effects, leading to substantial improvements in growth and physiological indices. However, the medicinal components were only marginally affected by exogenous treatments under both control and salinity-stressed conditions. Further clarification of the molecular mechanisms underlying salinity stress responses and exogenous substance-induced effects is critical to achieving a comprehensive understanding of these protective mechanisms. Full article
Show Figures

Figure 1

22 pages, 4065 KiB  
Article
Characteristics of Lodging Resistance of Wheat Cultivars from Different Breeding Decades as Affected by the Application of Paclobutrazol Under Shading Stress
by Dianliang Peng, Haicheng Xu, Zhen Guo, Wenchao Cao, Jingmin Zhang, Mei Liu, Xingcui Wang, Yuhai Tang and Tie Cai
Agronomy 2025, 15(8), 1848; https://doi.org/10.3390/agronomy15081848 - 31 Jul 2025
Viewed by 62
Abstract
Low solar radiation, caused by climate change or dense planting patterns, now limits wheat production. Although wheat breeding has increased lodging resistance and yield potential through the introduction of dwarfing genes, it still reduces wheat yields. Few studies have been conducted to clarify [...] Read more.
Low solar radiation, caused by climate change or dense planting patterns, now limits wheat production. Although wheat breeding has increased lodging resistance and yield potential through the introduction of dwarfing genes, it still reduces wheat yields. Few studies have been conducted to clarify the lodging sensitivity to shading of different-era wheat cultivars in China’s Huang-Huai-Hai region, as well as the characteristics of lodging resistance as affected by paclobutrazol under shading stress. To address this gap, the experiment included two wheat cultivars released in different decades, grown under shade and treated with or without paclobutrazol. The results showed that reductions in filling degree and lignin content, together with increases in length of the basal internode and gravity center height, markedly reduced the section modulus and breaking strength of shaded wheat culms. These changes impaired lodging resistance and raised lodging risk. However, paclobutrazol application effectively reduced lodging incidence and increased wheat yield under shading stress. Furthermore, these responses were more pronounced in the old cultivar (YZM) than in the modern cultivar (S28). This indicates that the culm mechanical parameters of the old cultivar were more shade-sensitive than those of the modern cultivar. Moreover, shading downregulated the relative expression levels of key genes associated with lignin biosynthesis to decrease the activities of key enzymes, thereby inhibiting the biosynthesis and deposition of lignin in culms to increase the risk of wheat lodging. Paclobutrazol application alleviated the inhibitory effects of shading on lignin biosynthesis, thereby strengthening culms and enhancing lodging resistance. These findings may provide a basis for exploring cultivation regulation methods to enhance wheat lodging resistance under overcast and low-sunshine conditions, and to offer guidance for the breeding of wheat cultivars with lodging resistance and shade tolerance. Full article
Show Figures

Figure 1

19 pages, 2110 KiB  
Article
Comprehensive Quality Comparison of Camellia vietnamensis Seed Oil from Different Cultivars in Hainan Island
by Shuao Xie, Jin Zhao, Shuaishuai Shen, Yougen Wu, Huageng Yang, Jing Yu, Ya Liu and Dongmei Yang
Agronomy 2025, 15(8), 1845; https://doi.org/10.3390/agronomy15081845 - 30 Jul 2025
Viewed by 96
Abstract
Camellia vietnamensis grows in a unique tropical environment, and its seed oil has a rich aroma. The content of unsaturated fatty acids in C. vietnamensis oil is up to 90%, which can regulate human lipid metabolism and prevent cardiovascular and cerebrovascular diseases. Compared [...] Read more.
Camellia vietnamensis grows in a unique tropical environment, and its seed oil has a rich aroma. The content of unsaturated fatty acids in C. vietnamensis oil is up to 90%, which can regulate human lipid metabolism and prevent cardiovascular and cerebrovascular diseases. Compared with olive oil, C. vietnamensis oil has a higher content of unsaturated fatty acids. This study used eleven C. vietnamensis cultivars cultivated on Hainan Island. Among the 11 cultivars, “Boao 1” had fruits with the largest vertical diameter of 45.05 mm, while “Haida 1” had fruits with the largest horizontal diameter, single-fruit weight, and fresh 100-grain weight of 53.5 mm, 70.6 g, and 479.01 g, respectively. “Boao 3” had an acid value and peroxide value of 1.59 mg/g and 3.50 mmol/kg, respectively, and its saponification value content was 213.18 mg/g. “Boao 5” had the highest iodine value, 101.86 g/100 g, among the 11 cultivars. The content of unsaturated fatty acids in the seed oil of 11 cultivars ranged from 84.87% to 87.38%. The qRT-PCR results confirmed that “Boao 3” had a higher content of flavonoids and fatty acids than other cultivars. The comprehensive analysis of physiological and biochemical indices showed that the top five cultivars were “Haida 1”, “Boao 3”, “Haida 2”, “Boao 1”, and “Boao 5”. These five cultivars were suitable for large-scale cultivation in tropical regions, such as Hainan Island. This study provided a theoretical basis for the breeding of C. vietnamensis cultivars in tropical regions. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

14 pages, 2583 KiB  
Article
Transcriptome and Metabolome Analyses Reveal the Physiological Variations of a Gradient-Pale-Green Leaf Mutant in Sorghum
by Kuangzheng Qu, Dan Li, Zhenxing Zhu and Xiaochun Lu
Agronomy 2025, 15(8), 1841; https://doi.org/10.3390/agronomy15081841 - 30 Jul 2025
Viewed by 158
Abstract
Sorghum is an important cereal crop. The maintenance of leaf color significantly influences sorghum growth and development. Although the mechanisms of leaf color mutation have been well studied in many plants, those in sorghum remain largely unclear. Here, we identified a sorghum gradient-pale-green [...] Read more.
Sorghum is an important cereal crop. The maintenance of leaf color significantly influences sorghum growth and development. Although the mechanisms of leaf color mutation have been well studied in many plants, those in sorghum remain largely unclear. Here, we identified a sorghum gradient-pale-green leaf mutant (sbgpgl1) from the ethyl methanesulfonate (EMS) mutagenesis mutant library. Phenotypic, photosynthesis-related parameter, ion content, transcriptome, and metabolome analyses were performed on wild-type BTx623 and the sbgpgl1 mutant at the heading stage, revealing changes in several agronomic traits and physiological indicators. Compared with BTx623, sbgpgl1 showed less height, with a smaller length and width of leaf and panicle. The overall Chl a and Chl b contents in sbgpgl1 were lower than those in BTx623. The net photosynthetic rate, stomatal conductance, and transpiration rate were significantly reduced in sbgpgl1 compared to BTx623. The content of copper (Cu), zinc (Zn), and manganese (Mn) was considerably lower in sbgpgl1 leaves than in BTx623. A total of 4469 differentially expressed genes (DEGs) and 775 differentially accumulated metabolites (DAMs) were identified by RNA-seq and UPLC-MS/MS. The results showed that sbgpgl1 primarily influenced sorghum metabolism by regulating metabolic pathways and the biosynthesis of secondary metabolites, especially flavonoids and phenolic acids, resulting in the gradient-pale-green leaf phenotype. These findings reveal key genes and metabolites involved on a molecular basis in physiological variations of the sorghum leaf color mutant. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

15 pages, 4805 KiB  
Article
Postharvest 2,4-Epibrassinolide Treatment Delays Senescence and Increases Chilling Tolerance in Flat Peach
by Bin Xu, Haixin Sun, Xuena Rang, Yanan Ren, Ting Zhang, Yaoyao Zhao and Yuquan Duan
Agronomy 2025, 15(8), 1835; https://doi.org/10.3390/agronomy15081835 - 29 Jul 2025
Viewed by 150
Abstract
Chilling injury (CI) frequently occurs in postharvest flat peach fruit during cold storage, leading to quality deterioration and a reduced shelf life. Therefore, investigating the key factors involved in alleviating CI and developing effective preservatives are vital scientific issues for the industry. 2,4-Epibrassinolide [...] Read more.
Chilling injury (CI) frequently occurs in postharvest flat peach fruit during cold storage, leading to quality deterioration and a reduced shelf life. Therefore, investigating the key factors involved in alleviating CI and developing effective preservatives are vital scientific issues for the industry. 2,4-Epibrassinolide (EBR) is a crucial endogenous hormone involved in plant response to both biological and environmental stressors. At present, most studies focus on the mechanisms of mitigating CI using a single concentration of EBR treatment, while few studies focus on the effects varying EBR concentrations have on CI. The purpose of this research is to explore the effects of varying concentrations of EBR on the postharvest quality and cold resistance of peach fruit, thereby establishing a basis for refining a technical framework of environmentally sustainable strategies to mitigate postharvest CI. The results show that EBR treatment effectively inhibits the generation of reactive oxygen species (ROS) and malondialdehyde (MDA) by maintaining the activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), thereby delaying the internal browning process of postharvest peaches. In addition, EBR treatment reduced the consumption of total phenolics by inhibiting the activities of polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL). Experimental results identify that 5 μmol L−1 EBR treatment emerged as the most effective concentration for maintaining core postharvest quality attributes. It significantly delayed the decrease in firmness, reduced weight loss, effectively inhibited the production of H2O2 and O2·, particularly during the early storage period, strongly restrained the activity of PAL, and maintained lower rot rates and internal browning indexes. While the 15 μmol L−1 EBR treatment enhanced antioxidant activity, increased total phenolic content at certain stages, and maintained higher soluble solids and acid content, its effects on key physical quality parameters, like firmness and weight loss, were less pronounced compared to the 5 μmol L−1 treatment. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

25 pages, 1258 KiB  
Review
Seed Priming Beyond Stress Adaptation: Broadening the Agronomic Horizon
by Mujo Hasanović, Adaleta Durmić-Pašić and Erna Karalija
Agronomy 2025, 15(8), 1829; https://doi.org/10.3390/agronomy15081829 - 28 Jul 2025
Viewed by 151
Abstract
Seed priming, traditionally viewed as a method for enhancing crop resilience to abiotic stress, has evolved into a multifaceted agronomic strategy. This review synthesizes the current findings demonstrating that priming influences plant development, metabolic regulation, and yield enhancement even under optimal conditions. By [...] Read more.
Seed priming, traditionally viewed as a method for enhancing crop resilience to abiotic stress, has evolved into a multifaceted agronomic strategy. This review synthesizes the current findings demonstrating that priming influences plant development, metabolic regulation, and yield enhancement even under optimal conditions. By covering a wide range of crops, including cereals (e.g., wheat, maize, rice, and barley) as well as vegetables and horticultural species (e.g., tomato, carrot, spinach, and lettuce), we highlight the broad applicability of priming across agricultural systems. The underlying mechanisms include hormonal modulation, altered source–sink dynamics, accelerated phenology, and epigenetic memory. Various priming techniques are discussed, including hydropriming, osmopriming, biopriming, chemopriming, and nanopriming, with attention to their physiological and molecular effects. Special focus is given to the role of seed priming in advancing climate-smart and precision agriculture. By shifting the narrative from stress mitigation to holistic crop performance optimization, seed priming emerges as a key tool for sustainable agriculture in the face of global challenges. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

16 pages, 1105 KiB  
Article
Ozone Stress During Rice Growth Impedes Grain-Filling Capacity of Inferior Spikelets but Not That of Superior Spikelets
by Shaowu Hu, Hairong Mu, Yunxia Wang, Liquan Jing, Yulong Wang, Jianye Huang and Lianxin Yang
Agronomy 2025, 15(8), 1809; https://doi.org/10.3390/agronomy15081809 - 26 Jul 2025
Viewed by 173
Abstract
Ozone pollution decreases rice yield and quality in general, but how ozone stress changes grain-filling capacity is unclear. A chamber experiment was conducted to compare the effects of ozone exposure during the rice growth season on the grain-filling capacity and quality of spikelets [...] Read more.
Ozone pollution decreases rice yield and quality in general, but how ozone stress changes grain-filling capacity is unclear. A chamber experiment was conducted to compare the effects of ozone exposure during the rice growth season on the grain-filling capacity and quality of spikelets located on the upper primary rachis (superior spikelets, SS) and the lower secondary rachis (inferior spikelets, IS). Ozone stress significantly decreased filled grain percentage by 41.4% and grain mass by 10.2% in IS, but had little effect on grain-filling capacity in SS. Consistent with the reduction in grain mass, ozone stress decreased grain volume, mainly due to reduced grain thickness, and IS was reduced more than SS. After removing the hull, brown rice obtained from ozone treatment exhibited higher proportions of immature and abnormal kernels, resulting in a substantially lower proportion of perfect kernels. Under ozone stress, the proportion of perfect kernels was only one-third in IS, compared with two-thirds in SS. Ozone stress affected the pasting properties of brown rice for both SS and IS, as shown by the decreased amylose content, and the increased maximum viscosity, minimum viscosity, final viscosity, setback, and peak time of the rapid visco analyzer profile. Out of fourteen traits related to nutritional quality of brown rice, only five showed significant increases under ozone stress, and they were the concentrations of albumin, prolamin, sulfur, copper, and manganese. The differential ozone responses between SS and IS were rather small for rice pasting properties and chemical compositions as shown by very few significant interactions between ozone and grain position. It is concluded that ozone stress during plant growth imposed more adverse effects on IS than SS in terms of grain-filling capacity and appearance quality, suggesting an enlarged asynchronous grain-filling pattern in rice panicles under ozone pollution. Strategies to improve the grain-filling capacity of IS are needed to mitigate ozone-induced damage to rice production. Full article
Show Figures

Figure 1

15 pages, 1081 KiB  
Article
More Similar than Different: The Cold Resistance and Yield Responses of the Yangmai23 Wheat Variety to Different Sowing Dates and Early Spring Low Temperatures
by Yangyang Zhu, Yun Gao, Yueping Zhou, Zeyang Zhang, Jingxian Wu, Siqi Yang, Min Zhu, Jinfeng Ding, Xinkai Zhu, Chunyan Li and Wenshan Guo
Agronomy 2025, 15(8), 1773; https://doi.org/10.3390/agronomy15081773 - 23 Jul 2025
Viewed by 211
Abstract
Late sowing and spring low temperatures have a great impact on the growth and maturation of wheat in the rice–wheat rotation region. In order to analyze the impacts of cold stress in February in early spring on yield formation and agronomic traits of [...] Read more.
Late sowing and spring low temperatures have a great impact on the growth and maturation of wheat in the rice–wheat rotation region. In order to analyze the impacts of cold stress in February in early spring on yield formation and agronomic traits of wheat on different sowing dates, a controlled pot experiment was performed using the widely promoted and applied spring-type wheat variety Yangmai23 (YM23). The yield of wheat treated with late sowing date II (SDII, 21 November) and overly late sowing date III (SDIII, 9 December) were both lower than that of wheat sown on the suitable date I (SDI, 1 November). The yield of late-sown wheat decreased by 40.82% for SDII and by 66.77% for SDIII, compared with SDI, and these three treatments of wheat all grew under the natural conditions as the control treatments. The plant height, stem diameter of the internode below the ear, flag leaf length and area, and total awn length of the spike, as well as the spike length of late-sown wheat, were all significantly lower than those of wheat in SDI treatment. Early spring low temperatures exacerbated the decline in yield of wheat sown on different dates, to some extent. Despite showing higher net photosynthetic rate, stomatal conductance, and transpiration rate in flag leaves of the SDIII treatment under low-temperature stress than those of the other treatments at anthesis, overly late sowing led to minimal leaf area, shorter plant height, fewer tillers, and smaller ears, ultimately resulting in the lowest yield. Our study suggested that additional focus and some regulation techniques are needed to be studied further to mitigate the combined negative impacts of late sowing and low-temperature stress in early spring on wheat production. Full article
(This article belongs to the Collection Crop Physiology and Stress)
Show Figures

Figure 1

15 pages, 3899 KiB  
Article
Transcriptome and Metabolome Revealed Impacts of Zn Fertilizer Application on Flavonoid Biosynthesis in Foxtail Millet
by Ke Ma, Xiangyu Li, Xiangyang Chen, Chu Wang, Zecheng Zhang, Xiangyang Yuan, Fu Chen and Xinya Wen
Agronomy 2025, 15(8), 1767; https://doi.org/10.3390/agronomy15081767 - 23 Jul 2025
Viewed by 185
Abstract
To explore the effects of various zinc (Zn) fertilizer application methods and concentrations on foxtail millet quality and flavonoid biosynthesis, we used Zhangzagu 13 as the experimental material. The transcriptome and metabolome were used to examine variations in flavonoid biosynthesis and metabolism in [...] Read more.
To explore the effects of various zinc (Zn) fertilizer application methods and concentrations on foxtail millet quality and flavonoid biosynthesis, we used Zhangzagu 13 as the experimental material. The transcriptome and metabolome were used to examine variations in flavonoid biosynthesis and metabolism in foxtail millet under different Zn application methods. The results showed that different Zn application methods significantly increased the total polyphenol, carotenoid, total flavonoid, and Zn contents in the grains of foxtail millet. Under the basal soil application (S3) and foliar spray (F2) treatments, the total flavonoid content significantly increased by 45.87% and 64.40%, respectively, compared with that of CK. Basal soil Zn fertilization increased the flavonoid content of foxtail millet by up-regulating genes related to flavonoid metabolism and biosynthesis, including flavanone-3-hydroxylase, chalcone isomerase, and leucoanthocyanidin reductase. Foliar Zn application enhanced flavonoid content by up-regulating genes involved in flavonoid metabolic and biosynthetic processes and chalcone isomerase. In conclusion, using Zn fertilizer can improve the synthesis and metabolism of foxtail millet flavonoids, effectively increase the content of functional substances in grains, and realize the biofortification of foxtail millet grains. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

18 pages, 666 KiB  
Review
Allelopathic Effects of Moringa oleifera Lam. on Cultivated and Non-Cultivated Plants: Implications for Crop Productivity and Sustainable Agriculture
by Blair Moses Kamanga, Donita L. Cartmill, Craig McGill and Andrea Clavijo McCormick
Agronomy 2025, 15(8), 1766; https://doi.org/10.3390/agronomy15081766 - 23 Jul 2025
Viewed by 368
Abstract
Moringa (Moringa oleifera Lam.) is widely recognised as a multipurpose crop suitable for human and animal consumption, medicinal, and industrial purposes, making it attractive for introduction into new ranges. Its extracts have been found to have beneficial impacts on various crop species [...] Read more.
Moringa (Moringa oleifera Lam.) is widely recognised as a multipurpose crop suitable for human and animal consumption, medicinal, and industrial purposes, making it attractive for introduction into new ranges. Its extracts have been found to have beneficial impacts on various crop species and biological activity against multiple weeds, making their use in agriculture promising. However, concerns have also been raised about moringa’s potential to negatively impact the growth and development of other cultivated and non-cultivated plant species, especially in areas where it has been introduced outside its native range. To understand the positive and negative interactions between moringa and other plants, it is essential to investigate its allelopathic potential. Allelopathy is a biological activity by which one plant species produces and releases chemical compounds that influence the reproduction, growth, survival, or behaviour of other plants with either beneficial or detrimental effects on the receiver. Plants produce and release allelochemicals by leaching, volatilisation, or through root exudation. These biochemical compounds can affect critical biological processes such as seed germination, root and shoot elongation, photosynthesis, enzymatic activities, and hormonal balance in neighboring plants. Therefore, allelopathy is an important driver of plant composition and ecological interactions in an ecosystem. This review explores the positive and negative allelopathic effects of moringa extracts on other plant species, which may help to inform decisions regarding its introduction into new biogeographical regions and incorporation into existing farming systems, as well as the use of moringa plant extracts in agriculture. Full article
Show Figures

Figure 1

15 pages, 2799 KiB  
Article
Revalorization of Olive Stones from Olive Pomace: Phenolic Compounds Obtained by Microwave-Assisted Extraction
by Alicia Castillo-Rivas, Paloma Álvarez-Mateos and Juan Francisco García-Martín
Agronomy 2025, 15(8), 1761; https://doi.org/10.3390/agronomy15081761 - 23 Jul 2025
Viewed by 207
Abstract
Olive stones (OS) are a by-product of great interest from olive oil mills and the table olive industry due to their high content of phenolic compounds. In this work, the extraction of phenolic compounds from OS via microwave-assisted extraction (MAE) with aqueous acetone [...] Read more.
Olive stones (OS) are a by-product of great interest from olive oil mills and the table olive industry due to their high content of phenolic compounds. In this work, the extraction of phenolic compounds from OS via microwave-assisted extraction (MAE) with aqueous acetone was assayed. A central composite design of experiments was used to determine the optimal extraction conditions, with the independent variables being temperature, process time, and aqueous acetone (v/v). The dependent variables were the total content of phenolic compounds (TPC) measured by the Folin–Ciocalteu method and the main phenolic compounds identified and quantified by UPLC. Under optimal conditions (75 °C, 20 min, and 60% acetone), 3.32 mg TPC was extracted from 100 g of dry matter (DM) OS. The most suitable extraction conditions were different for each polyphenol. Therefore, 292.11 μg vanillin/g DM; 10.94 μg oleuropein/g DM; and 10.11 protocatechuic acid μg/g DM were obtained under conditions of 60 °C, 15 min, and 100% acetone; 43.8 °C, 10.45 min, and 61.3% acetone; and 64.8 °C, 16.58 min, and 97.8% acetone, respectively. Finally, MAE was compared with the traditional Soxhlet method under the same conditions. As a result, MAE was proven to be an enhanced and more feasible method for polyphenol extraction from OS. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

18 pages, 1169 KiB  
Article
Multi-Dimensional Analysis of Quality-Related Traits Affecting the Taste of Main Cultivated Japonica Rice Varieties in Northern China
by Hongwei Yang, Liying Zhang, Xiangquan Gao, Shi Han, Zuobin Ma and Lili Wang
Agronomy 2025, 15(8), 1757; https://doi.org/10.3390/agronomy15081757 - 22 Jul 2025
Viewed by 297
Abstract
The quality of rice, one of the most important food crops in the world, is directly related to people’s dietary experience and nutritional health. With the improvement in living standards, consumer requirements for the taste quality of rice are becoming increasingly strict. Japonica [...] Read more.
The quality of rice, one of the most important food crops in the world, is directly related to people’s dietary experience and nutritional health. With the improvement in living standards, consumer requirements for the taste quality of rice are becoming increasingly strict. Japonica rice occupies an important position in rice production due to its rich genetic diversity and excellent agronomic characteristics. In this study, LJ433, JY653, LJ218, LJ177, LY66, and LX21, which are mainly popularized in northern China and have different taste values, were selected as the experimental subjects, and YJ219, which won the gold award in the third China high-quality rice variety taste quality evaluation, was taken as the control (CK). Low-field nuclear magnetic resonance and spectral analysis were adopted as the main detection techniques. The effects of free water (peak area increased by 13.24–86.68% when p < 0.05), bound water, appearance characteristics (such as chalkiness, which decreased by 18.48–86.48%), and chemical composition (amylose content decreased by 3.76–26.47%) on the taste value of rice were systematically analyzed, and a multi-dimensional “appearance–palatability–nutrition” evaluation system was constructed. The experimental results indicated that increasing the free water content, reducing the chalkiness and chemical component content could significantly improve the taste value of rice (p < 0.05). The results of this research provide a theoretical basis for breeding new high-yield and high-quality rice varieties and have guiding significance for the practice of rice planting and processing. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

17 pages, 5468 KiB  
Article
Combining Transcriptome Analysis and Comparative Genomics to Identify Key Components of the Lignin Biosynthesis Gene Network in Sorghum bicolor
by Hao Niu, Yanbo Wang, Ruizhen Liu, Xiaoqiang Cheng, Yao Wang, Yubin Wang, Xin Lv, Fangfang Fan, Lan Ju, Jianqiang Chu, Haisheng Yan, Hongru Wang, Hetan Chang, Yancong Zhang, Yongfu Tao and Junai Ping
Agronomy 2025, 15(7), 1751; https://doi.org/10.3390/agronomy15071751 - 21 Jul 2025
Viewed by 254
Abstract
Sorghum is a versatile crop that serves as a major source of food, feed, fodder and biofuel globally. Lignin content in sorghum affects multiple important traits, including lodging resistance, forage digestibility and the efficiency of bioenergy production. However, the genetic regulation of lignin [...] Read more.
Sorghum is a versatile crop that serves as a major source of food, feed, fodder and biofuel globally. Lignin content in sorghum affects multiple important traits, including lodging resistance, forage digestibility and the efficiency of bioenergy production. However, the genetic regulation of lignin content in sorghum remains poorly understood. In this study, we combined transcriptomic and comparative genomic approaches to uncover the genetic network underlying lignin biosynthesis in sorghum. Through comparative genomic analysis, we identified 104 candidate genes involved in lignin biosynthesis. Transcriptome analysis of four sorghum accessions with contrasting lignin contents identified 6132 differentially expressed genes with an enrichment of genes related to phenylpropanoid biosynthesis and cell wall biogenesis. The 104 lignin biosynthesis candidates were significantly enriched (p-value < 0.01) in these differentially expressed genes, with most differentially expressed candidate genes related to monolignol biosynthesis and polymerization being up-regulated in high-lignin accessions. These up-regulated genes are related to all key enzymes involved in lignin biosynthesis, suggesting that the elevated lignin content in these accessions results from a collective increase in enzyme activity. Sequence analysis revealed a significant reduction in genetic diversity across lignin biosynthesis genes in cultivated sorghum compared to wild sorghum. Moreover, selection signals during domestication were identified in 30 lignin biosynthesis genes, 22 of which were differentially expressed, further supporting the functional relevance of these differentially expressed genes in lignin biosynthesis. Overall, our findings uncover the lignin biosynthesis gene network in sorghum and offer potential targets for future functional studies and trait manipulation. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

Back to TopTop