Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (208)

Search Parameters:
Journal = IoT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 6916 KiB  
Review
The Role of IoT in Enhancing Sports Analytics: A Bibliometric Perspective
by Yuvanshankar Azhagumurugan, Jawahar Sundaram, Zenith Dewamuni, Pritika, Yakub Sebastian and Bharanidharan Shanmugam
IoT 2025, 6(3), 43; https://doi.org/10.3390/iot6030043 (registering DOI) - 31 Jul 2025
Abstract
The use of Internet of Things (IoT) for sports innovation has transformed the way athletes train, compete, and recover in any sports activity. This study performs a bibliometric analysis to examine research trends, collaborations, and publications in the realm of IoT and Sports. [...] Read more.
The use of Internet of Things (IoT) for sports innovation has transformed the way athletes train, compete, and recover in any sports activity. This study performs a bibliometric analysis to examine research trends, collaborations, and publications in the realm of IoT and Sports. Our analysis included 780 Scopus articles and 150 WoS articles published during 2012–2025, and duplicates were removed. We analyzed and visualized the bibliometric data using R version 3.6.1, VOSviewer version 1.6.20, and the bibliometrix library. The study provides insights from a bibliometric analysis, showcasing the allocation of topics, scientific contributions, patterns of co-authorship, prominent authors and their productivity over time, notable terms, key sources, publications with citations, analysis of citations, source-specific citation analysis, yearly publication patterns, and the distribution of research papers. The results indicate that China and India have the leading scientific production in the development of IoT and Sports research, with prominent authors like Anton Umek, Anton Kos, and Emiliano Schena making significant contributions. Wearable technology and wearable sensors are the most trending topics in IoT and Sports, followed by medical sciences and artificial intelligence paradigms. The analysis also emphasizes the importance of open-access journals like ‘Journal of Physics: Conference Series’ and ‘IEEE Access’ for their contributions to IoT and Sports research. Future research directions focus on enhancing effective, lightweight, and efficient wearable devices while implementing technologies like edge computing and lightweight AI in wearable technologies. Full article
Show Figures

Figure 1

26 pages, 3844 KiB  
Article
A No-Code Educational Platform for Introducing Internet of Things and Its Application to Agricultural Education
by George Lagogiannis and Avraam Chatzopoulos
IoT 2025, 6(3), 42; https://doi.org/10.3390/iot6030042 (registering DOI) - 31 Jul 2025
Abstract
This study introduces a no-code educational platform created to introduce Internet of Things (IoT) to university students who lack programming experience. The platform allows users to set IoT sensor nodes, and create a wireless sensor network through a simple graphical interface. Sensors’ data [...] Read more.
This study introduces a no-code educational platform created to introduce Internet of Things (IoT) to university students who lack programming experience. The platform allows users to set IoT sensor nodes, and create a wireless sensor network through a simple graphical interface. Sensors’ data can be sent to cloud services but they can also be stored locally, which makes our platform particularly realistic in fieldwork settings where internet access may be limited. The platform was tested in a pilot activity within a university course that previously covered IoT only in theory and was evaluated using the Technology Acceptance Model (TAM). Results showed strong student engagement and high ratings for ease of use, usefulness, and future use intent. These findings suggest that a no-code approach can effectively bridge the gap between IoT technologies and learners in non-engineering fields. Full article
Show Figures

Figure 1

18 pages, 651 KiB  
Article
Enhancing IoT Connectivity in Suburban and Rural Terrains Through Optimized Propagation Models Using Convolutional Neural Networks
by George Papastergiou, Apostolos Xenakis, Costas Chaikalis, Dimitrios Kosmanos and Menelaos Panagiotis Papastergiou
IoT 2025, 6(3), 41; https://doi.org/10.3390/iot6030041 (registering DOI) - 31 Jul 2025
Abstract
The widespread adoption of the Internet of Things (IoT) has driven major advancements in wireless communication, especially in rural and suburban areas where low population density and limited infrastructure pose significant challenges. Accurate Path Loss (PL) prediction is critical for the effective deployment [...] Read more.
The widespread adoption of the Internet of Things (IoT) has driven major advancements in wireless communication, especially in rural and suburban areas where low population density and limited infrastructure pose significant challenges. Accurate Path Loss (PL) prediction is critical for the effective deployment and operation of Wireless Sensor Networks (WSNs) in such environments. This study explores the use of Convolutional Neural Networks (CNNs) for PL modeling, utilizing a comprehensive dataset collected in a smart campus setting that captures the influence of terrain and environmental variations. Several CNN architectures were evaluated based on different combinations of input features—such as distance, elevation, clutter height, and altitude—to assess their predictive accuracy. The findings reveal that CNN-based models outperform traditional propagation models (Free Space Path Loss (FSPL), Okumura–Hata, COST 231, Log-Distance), achieving lower error rates and more precise PL estimations. The best performing CNN configuration, using only distance and elevation, highlights the value of terrain-aware modeling. These results underscore the potential of deep learning techniques to enhance IoT connectivity in sparsely connected regions and support the development of more resilient communication infrastructures. Full article
Show Figures

Figure 1

15 pages, 271 KiB  
Article
Evaluating the Energy Costs of SHA-256 and SHA-3 (KangarooTwelve) in Resource-Constrained IoT Devices
by Iain Baird, Isam Wadhaj, Baraq Ghaleb, Craig Thomson and Gordon Russell
IoT 2025, 6(3), 40; https://doi.org/10.3390/iot6030040 - 11 Jul 2025
Viewed by 351
Abstract
The rapid expansion of Internet of Things (IoT) devices has heightened the demand for lightweight and secure cryptographic mechanisms suitable for resource-constrained environments. While SHA-256 remains a widely used standard, the emergence of SHA-3 particularly the KangarooTwelve variant offers potential benefits in flexibility [...] Read more.
The rapid expansion of Internet of Things (IoT) devices has heightened the demand for lightweight and secure cryptographic mechanisms suitable for resource-constrained environments. While SHA-256 remains a widely used standard, the emergence of SHA-3 particularly the KangarooTwelve variant offers potential benefits in flexibility and post-quantum resilience for lightweight resource-constrained devices. This paper presents a comparative evaluation of the energy costs associated with SHA-256 and SHA-3 hashing in Contiki 3.0, using three generationally distinct IoT platforms: Sky Mote, Z1 Mote, and Wismote. Unlike previous studies that rely on hardware acceleration or limited scope, our work conducts a uniform, software-only analysis across all motes, employing consistent radio duty cycling, ContikiMAC (a low-power Medium Access Control protocol) and isolating the cryptographic workload from network overhead. The empirical results from the Cooja simulator reveal that while SHA-3 provides advanced security features, it incurs significantly higher CPU and, in some cases, radio energy costs particularly on legacy hardware. However, modern platforms like Wismote demonstrate a more balanced trade-off, making SHA-3 viable in higher-capability deployments. These findings offer actionable guidance for designers of secure IoT systems, highlighting the practical implications of cryptographic selection in energy-sensitive environments. Full article
Show Figures

Figure 1

18 pages, 721 KiB  
Article
An Adaptive Holt–Winters Model for Seasonal Forecasting of Internet of Things (IoT) Data Streams
by Samer Sawalha and Ghazi Al-Naymat
IoT 2025, 6(3), 39; https://doi.org/10.3390/iot6030039 - 10 Jul 2025
Viewed by 270
Abstract
In various applications, IoT temporal data play a crucial role in accurately predicting future trends. Traditional models, including Rolling Window, SVR-RBF, and ARIMA, suffer from a potential accuracy decrease because they generally use all available data or the most recent data window during [...] Read more.
In various applications, IoT temporal data play a crucial role in accurately predicting future trends. Traditional models, including Rolling Window, SVR-RBF, and ARIMA, suffer from a potential accuracy decrease because they generally use all available data or the most recent data window during training, which can result in the inclusion of noisy data. To address this critical issue, this paper proposes a new forecasting technique called Adaptive Holt–Winters (AHW). The AHW approach utilizes two models grounded in an exponential smoothing methodology. The first model is trained on the most current data window, whereas the second extracts information from a historical data segment exhibiting patterns most analogous to the present. The outputs of the two models are then combined, demonstrating enhanced prediction precision since the focus is on the relevant data patterns. The effectiveness of the AHW model is evaluated against well-known models (Rolling Window, SVR-RBF, ARIMA, LSTM, CNN, RNN, and Holt–Winters), utilizing various metrics, such as RMSE, MAE, p-value, and time performance. A comprehensive evaluation covers various real-world datasets at different granularities (daily and monthly), including temperature from the National Climatic Data Center (NCDC), humidity and soil moisture measurements from the Basel City environmental system, and global intensity and global reactive power from the Individual Household Electric Power Consumption (IHEPC) dataset. The evaluation results demonstrate that AHW constantly attains higher forecasting accuracy across the tested datasets compared to other models. This indicates the efficacy of AHW in leveraging pertinent data patterns for enhanced predictive precision, offering a robust solution for temporal IoT data forecasting. Full article
Show Figures

Figure 1

24 pages, 76230 KiB  
Article
Secure and Efficient Video Management: A Novel Framework for CCTV Surveillance Systems
by Swarnalatha Camalapuram Subramanyam, Ansuman Bhattacharya and Koushik Sinha
IoT 2025, 6(3), 38; https://doi.org/10.3390/iot6030038 - 4 Jul 2025
Viewed by 324
Abstract
This paper presents a novel video encoding and decoding method aimed at enhancing security and reducing storage requirements, particularly for CCTV systems. The technique merges two video streams of matching frame dimensions into a single stream, optimizing disk space usage without compromising video [...] Read more.
This paper presents a novel video encoding and decoding method aimed at enhancing security and reducing storage requirements, particularly for CCTV systems. The technique merges two video streams of matching frame dimensions into a single stream, optimizing disk space usage without compromising video quality. The combined video is secured using an advanced encryption standard (AES)-based shift algorithm that rearranges pixel positions, preventing unauthorized access. During decoding, the AES shift is reversed, enabling precise reconstruction of the original videos. This approach provides a space-efficient and secure solution for managing multiple video feeds while ensuring accurate recovery of the original content. The experimental results demonstrate that the transmission time for the encoded video is consistently shorter compared to transmitting the video streams separately. This, in turn, leads to about 54% reduction in energy consumption across diverse outdoor and indoor video datasets, highlighting significant improvements in both transmission efficiency and energy savings by our proposed scheme. Full article
Show Figures

Figure 1

22 pages, 557 KiB  
Article
Using Blockchain Ledgers to Record AI Decisions in IoT
by Vikram Kulothungan
IoT 2025, 6(3), 37; https://doi.org/10.3390/iot6030037 - 3 Jul 2025
Viewed by 718
Abstract
The rapid integration of AI into IoT systems has outpaced the ability to explain and audit automated decisions, resulting in a serious transparency gap. We address this challenge by proposing a blockchain-based framework to create immutable audit trails of AI-driven IoT decisions. In [...] Read more.
The rapid integration of AI into IoT systems has outpaced the ability to explain and audit automated decisions, resulting in a serious transparency gap. We address this challenge by proposing a blockchain-based framework to create immutable audit trails of AI-driven IoT decisions. In our approach, each AI inference comprising key inputs, model ID, and output is logged to a permissioned blockchain ledger, ensuring that every decision is traceable and auditable. IoT devices and edge gateways submit cryptographically signed decision records via smart contracts, resulting in an immutable, timestamped log that is tamper-resistant. This decentralized approach guarantees non-repudiation and data integrity while balancing transparency with privacy (e.g., hashing personal data on-chain) to meet data protection norms. Our design aligns with emerging regulations, such as the EU AI Act’s logging mandate and GDPR’s transparency requirements. We demonstrate the framework’s applicability in two domains: healthcare IoT (logging diagnostic AI alerts for accountability) and industrial IoT (tracking autonomous control actions), showing its generalizability to high-stakes environments. Our contributions include the following: (1) a novel architecture for AI decision provenance in IoT, (2) a blockchain-based design to securely record AI decision-making processes, and (3) a simulation informed performance assessment based on projected metrics (throughput, latency, and storage) to assess the approach’s feasibility. By providing a reliable immutable audit trail for AI in IoT, our framework enhances transparency and trust in autonomous systems and offers a much-needed mechanism for auditable AI under increasing regulatory scrutiny. Full article
(This article belongs to the Special Issue Blockchain-Based Trusted IoT)
Show Figures

Figure 1

27 pages, 569 KiB  
Article
Construction Worker Activity Recognition Using Deep Residual Convolutional Network Based on Fused IMU Sensor Data in Internet-of-Things Environment
by Sakorn Mekruksavanich and Anuchit Jitpattanakul
IoT 2025, 6(3), 36; https://doi.org/10.3390/iot6030036 - 28 Jun 2025
Viewed by 383
Abstract
With the advent of Industry 4.0, sensor-based human activity recognition has become increasingly vital for improving worker safety, enhancing operational efficiency, and optimizing workflows in Internet-of-Things (IoT) environments. This study introduces a novel deep learning-based framework for construction worker activity recognition, employing a [...] Read more.
With the advent of Industry 4.0, sensor-based human activity recognition has become increasingly vital for improving worker safety, enhancing operational efficiency, and optimizing workflows in Internet-of-Things (IoT) environments. This study introduces a novel deep learning-based framework for construction worker activity recognition, employing a deep residual convolutional neural network (ResNet) architecture integrated with multi-sensor fusion techniques. The proposed system processes data from multiple inertial measurement unit sensors strategically positioned on workers’ bodies to identify and classify construction-related activities accurately. A comprehensive pre-processing pipeline is implemented, incorporating Butterworth filtering for noise suppression, data normalization, and an adaptive sliding window mechanism for temporal segmentation. Experimental validation is conducted using the publicly available VTT-ConIoT dataset, which includes recordings of 16 construction activities performed by 13 participants in a controlled laboratory setting. The results demonstrate that the ResNet-based sensor fusion approach outperforms traditional single-sensor models and other deep learning methods. The system achieves classification accuracies of 97.32% for binary discrimination between recommended and non-recommended activities, 97.14% for categorizing six core task types, and 98.68% for detailed classification across sixteen individual activities. Optimal performance is consistently obtained with a 4-second window size, balancing recognition accuracy with computational efficiency. Although the hand-mounted sensor proved to be the most effective as a standalone unit, multi-sensor configurations delivered significantly higher accuracy, particularly in complex classification tasks. The proposed approach demonstrates strong potential for real-world applications, offering robust performance across diverse working conditions while maintaining computational feasibility for IoT deployment. This work advances the field of innovative construction by presenting a practical solution for real-time worker activity monitoring, which can be seamlessly integrated into existing IoT infrastructures to promote workplace safety, streamline construction processes, and support data-driven management decisions. Full article
Show Figures

Figure 1

24 pages, 9073 KiB  
Article
Data-Bound Adaptive Federated Learning: FedAdaDB
by Fotios Zantalis and Grigorios Koulouras
IoT 2025, 6(3), 35; https://doi.org/10.3390/iot6030035 - 24 Jun 2025
Viewed by 445
Abstract
Federated Learning (FL) enables decentralized Machine Learning (ML), focusing on preserving data privacy, but faces a unique set of optimization challenges, such as dealing with non-IID data, communication overhead, and client drift. Adaptive optimizers like AdaGrad, Adam, and Adam variations have been applied [...] Read more.
Federated Learning (FL) enables decentralized Machine Learning (ML), focusing on preserving data privacy, but faces a unique set of optimization challenges, such as dealing with non-IID data, communication overhead, and client drift. Adaptive optimizers like AdaGrad, Adam, and Adam variations have been applied in FL, showing good results in convergence speed and accuracy. However, it can be quite challenging to combine good convergence, model generalization, and stability in an FL setup. Data-bound adaptive methods like AdaDB have demonstrated promising results in centralized settings by incorporating dynamic, data-dependent bounds on Learning Rates (LRs). In this paper, FedAdaDB is introduced, which is an FL version of AdaDB aiming to address the aforementioned challenges. FedAdaDB uses the AdaDB optimizer at the server-side to dynamically adjust LR bounds based on the aggregated client updates. Extensive experiments have been conducted comparing FedAdaDB with FedAvg and FedAdam on three different datasets (EMNIST, CIFAR100, and Shakespeare). The results show that FedAdaDB consistently offers better and more robust outcomes, in terms of the measured final validation accuracy across all datasets, for a trade-off of a small delay in the convergence speed at an early stage. Full article
(This article belongs to the Special Issue IoT Meets AI: Driving the Next Generation of Technology)
Show Figures

Figure 1

24 pages, 1446 KiB  
Article
MQTT Broker Architectural Enhancements for High-Performance P2P Messaging: TBMQ Scalability and Reliability in Distributed IoT Systems
by Dmytro Shvaika, Andrii Shvaika and Volodymyr Artemchuk
IoT 2025, 6(3), 34; https://doi.org/10.3390/iot6030034 - 23 Jun 2025
Viewed by 587
Abstract
The Message Queuing Telemetry Transport (MQTT) protocol remains a key enabler for lightweight and low-latency messaging in Internet of Things (IoT) applications. However, traditional broker implementations often struggle with the demands of large-scale point-to-point (P2P) communication. This paper presents a performance and architectural [...] Read more.
The Message Queuing Telemetry Transport (MQTT) protocol remains a key enabler for lightweight and low-latency messaging in Internet of Things (IoT) applications. However, traditional broker implementations often struggle with the demands of large-scale point-to-point (P2P) communication. This paper presents a performance and architectural evaluation of TBMQ, an open source MQTT broker designed to support reliable P2P messaging at scale. The broker employs Redis Cluster for session persistence and Apache Kafka for message routing. Additional optimizations include asynchronous Redis access via Lettuce and Lua-based atomic operations. Stepwise load testing was performed using Kubernetes-based deployments on Amazon EKS, progressively increasing message rates to 1 million messages per second (msg/s). The results demonstrate that TBMQ achieves linear scalability and stable latency as the load increases. It reaches an average throughput of 8900 msg/s per CPU core, while maintaining end-to-end delivery latency within two-digit millisecond bounds. These findings confirm that TBMQ’s architecture provides an effective foundation for reliable, high-throughput messaging in distributed IoT systems. Full article
(This article belongs to the Special Issue IoT and Distributed Computing)
Show Figures

Figure 1

16 pages, 2690 KiB  
Article
Empowering Energy Transition: IoT-Driven Heat Pump Management for Optimal Thermal Comfort
by Ivica Glavan, Ivan Gospić and Igor Poljak
IoT 2025, 6(2), 33; https://doi.org/10.3390/iot6020033 - 17 Jun 2025
Viewed by 380
Abstract
This paper analyzes the process of energy transition from traditional solid fuel heating to an air-to-air (A2A) heat pump-based heating system. Special emphasis was placed on the implementation of new technologies for improved management of energy systems, aiming to elevate both comfort levels [...] Read more.
This paper analyzes the process of energy transition from traditional solid fuel heating to an air-to-air (A2A) heat pump-based heating system. Special emphasis was placed on the implementation of new technologies for improved management of energy systems, aiming to elevate both comfort levels and energy efficiency. This paper explores the use of the open-source software Home Assistant as an integration platform for home automation, designed to manage smart home devices while preserving local control, user privacy, and increasing cybersecurity. The proposed hardware platform includes a Raspberry Pi with appropriate IoT modules, providing a flexible and economically viable solution for household needs. Full article
Show Figures

Figure 1

24 pages, 7839 KiB  
Article
Wireless Environmental Monitoring and Control in Poultry Houses: A Conceptual Study
by António Godinho, Romeu Vicente, Sérgio Silva and Paulo Jorge Coelho
IoT 2025, 6(2), 32; https://doi.org/10.3390/iot6020032 - 3 Jun 2025
Viewed by 1273
Abstract
Modern commercial poultry farming typically occurs indoors, where partial or complete environmental control is employed to enhance production efficiency. Maintaining optimal conditions, such as temperature, relative humidity, carbon dioxide, and ammonia levels, is essential for ensuring bird comfort and maximizing productivity. Monitoring the [...] Read more.
Modern commercial poultry farming typically occurs indoors, where partial or complete environmental control is employed to enhance production efficiency. Maintaining optimal conditions, such as temperature, relative humidity, carbon dioxide, and ammonia levels, is essential for ensuring bird comfort and maximizing productivity. Monitoring the conditions of poultry houses requires reliable and intelligent management systems. This study introduces a Wireless Monitoring and Control System developed to regulate environmental conditions within poultry facilities. The system continuously monitors key parameters via a network of distributed sensor nodes, which transmit data wirelessly to a centralized control unit using Wi-Fi. The control unit processes the incoming data, stores it in a database, and adjusts actuators accordingly to maintain ideal conditions. A web-based dashboard allows users to monitor and control the environment in real time. Field testing confirmed the system’s effectiveness in keeping conditions optimal, supporting poultry welfare and operational efficiency. Full article
Show Figures

Figure 1

22 pages, 3864 KiB  
Article
Raspberry Pi-Based Face Recognition Door Lock System
by Seifeldin Sherif Fathy Ali Elnozahy, Senthill C. Pari and Lee Chu Liang
IoT 2025, 6(2), 31; https://doi.org/10.3390/iot6020031 - 20 May 2025
Viewed by 1784
Abstract
Access control systems protect homes and businesses in the continually evolving security industry. This paper designs and implements a Raspberry Pi-based facial recognition door lock system using artificial intelligence and computer vision for reliability, efficiency, and usability. With the Raspberry Pi as its [...] Read more.
Access control systems protect homes and businesses in the continually evolving security industry. This paper designs and implements a Raspberry Pi-based facial recognition door lock system using artificial intelligence and computer vision for reliability, efficiency, and usability. With the Raspberry Pi as its CPU, the system uses facial recognition for authentication. A camera module for real-time image capturing, a relay module for solenoid lock control, and OpenCV for image processing are essential. The system uses the DeepFace library to detect user emotions and adaptive learning to improve recognition accuracy for approved users. The device also adapts to poor lighting and distances, and it sends real-time remote monitoring messages. Some of the most important things that have been achieved include adaptive facial recognition, ensuring that the system changes as it is used, and integrating real-time notifications and emotion detection without any problems. Face recognition worked well in many settings. Modular architecture facilitated hardware–software integration and scalability for various applications. In conclusion, this study created an intelligent facial recognition door lock system using Raspberry Pi hardware and open-source software libraries. The system addresses traditional access control limits and is practical, scalable, and inexpensive, demonstrating biometric technology’s potential in modern security systems. Full article
Show Figures

Figure 1

28 pages, 2489 KiB  
Article
A Hybrid Learnable Fusion of ConvNeXt and Swin Transformer for Optimized Image Classification
by Jaber Qezelbash-Chamak and Karen Hicklin
IoT 2025, 6(2), 30; https://doi.org/10.3390/iot6020030 - 16 May 2025
Cited by 1 | Viewed by 1717
Abstract
Medical image classification often relies on CNNs to capture local details (e.g., lesions, nodules) or on transformers to model long-range dependencies. However, each paradigm alone is limited in addressing both fine-grained structures and broader anatomical context. We propose ConvTransGFusion, a hybrid model that [...] Read more.
Medical image classification often relies on CNNs to capture local details (e.g., lesions, nodules) or on transformers to model long-range dependencies. However, each paradigm alone is limited in addressing both fine-grained structures and broader anatomical context. We propose ConvTransGFusion, a hybrid model that fuses ConvNeXt (for refined convolutional features) and Swin Transformer (for hierarchical global attention) using a learnable dual-attention gating mechanism. By aligning spatial dimensions, scaling each branch adaptively, and applying both channel and spatial attention, the proposed architecture bridges local and global representations, melding fine-grained lesion details with the broader anatomical context essential for accurate diagnosis. Tested on four diverse medical imaging datasets—including X-ray, ultrasound, and MRI scans—the proposed model consistently achieves superior accuracy, precision, recall, F1, and AUC over state-of-the-art CNNs and transformers. Our findings highlight the benefits of combining convolutional inductive biases and transformer-based global context in a single learnable framework, positioning ConvTransGFusion as a robust and versatile solution for real-world clinical applications. Full article
Show Figures

Figure 1

21 pages, 4686 KiB  
Article
Low-Memory-Footprint CNN-Based Biomedical Signal Processing for Wearable Devices
by Zahra Kokhazad, Dimitrios Gkountelos, Milad Kokhazadeh, Charalampos Bournas, Georgios Keramidas and Vasilios Kelefouras
IoT 2025, 6(2), 29; https://doi.org/10.3390/iot6020029 - 8 May 2025
Viewed by 631
Abstract
The rise of wearable devices has enabled real-time processing of sensor data for critical health monitoring applications, such as human activity recognition (HAR) and cardiac disorder classification (CDC). However, the limited computational and memory resources of wearables necessitate lightweight yet accurate classification models. [...] Read more.
The rise of wearable devices has enabled real-time processing of sensor data for critical health monitoring applications, such as human activity recognition (HAR) and cardiac disorder classification (CDC). However, the limited computational and memory resources of wearables necessitate lightweight yet accurate classification models. While deep neural networks (DNNs), including convolutional neural networks (CNNs) and long short-term memory networks, have shown high accuracy for HAR and CDC, their large parameter sizes hinder deployment on edge devices. On the other hand, various DNN compression techniques have been proposed, but exploiting the combination of various compression techniques with the aim of achieving memory efficient DNN models for HAR and CDC tasks remains under-investigated. This work studies the impact of CNN architecture parameters, focusing on the convolutional and dense layers, to identify configurations that balance accuracy and efficiency. We derive two versions of each model—lean and fat—based on their memory characteristics. Subsequently, we apply three complementary compression techniques: filter-based pruning, low-rank factorization, and dynamic range quantization. Experiments across three diverse DNNs demonstrate that this multi-faceted compression approach can significantly reduce memory and computational requirements while maintaining validation accuracy, leading to DNN models suitable for intelligent health monitoring on resource-constrained wearable devices. Full article
Show Figures

Figure 1

Back to TopTop