Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Authors = Zhi Wei Deng

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7428 KiB  
Article
Sialic Acid-Loaded Nanoliposomes with Enhanced Stability and Transdermal Delivery for Synergistic Anti-Aging, Skin Brightening, and Barrier Repair
by Fan Yang, Hua Wang, Dan Luo, Jun Deng, Yawen Hu, Zhi Liu and Wei Liu
Pharmaceutics 2025, 17(8), 956; https://doi.org/10.3390/pharmaceutics17080956 - 24 Jul 2025
Viewed by 323
Abstract
Objectives: Sialic acid (SA), a naturally occurring compound abundantly found in birds’ nests, holds immense promise for skincare applications owing to its remarkable biological properties. However, its low bioavailability, poor stability, and limited skin permeability have constrained its widespread application. Methods: [...] Read more.
Objectives: Sialic acid (SA), a naturally occurring compound abundantly found in birds’ nests, holds immense promise for skincare applications owing to its remarkable biological properties. However, its low bioavailability, poor stability, and limited skin permeability have constrained its widespread application. Methods: To overcome these challenges, SA was encapsulated within nanoliposomes (NLPs) by the high-pressure homogenization technique to develop an advanced and efficient transdermal drug delivery system. The skincare capabilities of this novel system were comprehensively evaluated across multiple experimental platforms, including in vitro cell assays, 3D skin models, in vivo zebrafish studies, and clinical human trials. Results: The SA-loaded NLPs (SA-NLPs) substantially improved the transdermal penetration and retention of SA, facilitating enhanced cellular uptake and cell proliferation. Compared to free SA, SA-NLPs demonstrated a 246.98% increase in skin retention and 1.8-fold greater cellular uptake in HDF cells. Moreover, SA-NLPs protected cells from oxidative stress-induced damage, stimulated collagen synthesis, and effectively suppressed the secretion of matrix metalloproteinases, tyrosinase activity, and melanin production. Additionally, zebrafish-based assays provided in vivo evidence of the skincare efficacy of SA-NLPs. Notably, clinical evaluations demonstrated that a 56-day application of the SA-NLPs-containing cream resulted in a 4.20% increase in L*, 7.87% decrease in b*, 8.45% decrease in TEWL, and 4.01% reduction in wrinkle length, indicating its superior brightening, barrier-repair, and anti-aging effects. Conclusions: This multi-level, systematic investigation strongly suggests that SA-NLPs represent a highly promising transdermal delivery strategy, capable of significantly enhancing the anti-aging, barrier-repair, and skin-brightening properties of SA, thus opening new avenues for its application in the fields of dermatology and cosmeceuticals. Full article
(This article belongs to the Special Issue Lipid/Polymer-Based Drug Delivery Systems)
Show Figures

Figure 1

11 pages, 512 KiB  
Article
Validation with the Dynamic Prediction Model of Protein and Amino Acid Requirements for Growth Performance and Health in Layer Chicks
by Zhi-Yuan Xia, Alainaa Refaie, Miao Liu, You-Yang Wei, Lv-Hui Sun and Zhang-Chao Deng
Animals 2025, 15(13), 1968; https://doi.org/10.3390/ani15131968 - 4 Jul 2025
Viewed by 280
Abstract
This study evaluated an established dynamic prediction model for protein and amino acid nutritional requirements on growth performance and health in layer chicks. A total of 288 one-day-old healthy Jing Tint 6 chicks were randomly divided into four treatment groups with 6 replicates [...] Read more.
This study evaluated an established dynamic prediction model for protein and amino acid nutritional requirements on growth performance and health in layer chicks. A total of 288 one-day-old healthy Jing Tint 6 chicks were randomly divided into four treatment groups with 6 replicates of 12 chicks each. The chicks in the four groups were fed a basal diet (BD) according to the feeding standards and a model diet (MD) based on the dynamic prediction model for protein and amino acid values at 90%, 100%, or 110% for 6 weeks. The results showed that, compared to the BD, the 110% MD increased (p < 0.05) the FI and the 100% MD had no effect (p > 0.05) on FI, BWG, and FCR of chicks throughout the entire feeding phase. The 90% MD, however, significantly reduced (p < 0.05) FI and BWG, while also increasing (p < 0.05) FCR during the 3–6- and 0–6-week periods. Additionally, compared to the BD, the 100% MD had a lower (p < 0.05) intake of crude protein, methionine, lysine, and threonine than that of the BD. Both the 100% and 110% MDs increased (p < 0.05) bursa weight and its index at the 2nd week, while the 90% MD reduced (p < 0.05) the weights of the liver, spleen, and pancreas at the 6th week when compared to the BD. Moreover, the 100% MD increased (p < 0.05) the weights of the duodenum and jejunum, while the 90% MD decreased (p < 0.05) jejunum and ileum length at the 2nd or 6th week. Furthermore, no differences (p > 0.05) were found in serum ALT, AST, BUN, and UA between the 100% MD and BD groups. In conclusion, the dynamic prediction model can minimize protein waste while supporting healthy growth and development in layer chicks. Full article
Show Figures

Figure 1

18 pages, 11197 KiB  
Article
Transcriptomic and Metabolomic Characterization of Volatile Flavor Compound Dynamics in Dragon Fruit (Selenicereus spp.) Development
by Zhi-Jiang Wu, Ri-Wen Ji, Ze-Jian Huang, Xiao-Ying Ye, Li-Fang Huang, Hai-Yan Deng, Gui-Feng Lu, Shuo-Tong Wei, Chao-An Liu, Zhen-Ying Li, Hong-Li Li and Gui-Dong Liang
Horticulturae 2025, 11(6), 599; https://doi.org/10.3390/horticulturae11060599 - 27 May 2025
Viewed by 496
Abstract
Dragon fruit comprises a wide variety of species that are rich in nutritional value and have great economic potential; however, numerous studies have focused on their nutritional and commercial quality. In contrast, few studies have addressed their flavor quality, particularly with respect to [...] Read more.
Dragon fruit comprises a wide variety of species that are rich in nutritional value and have great economic potential; however, numerous studies have focused on their nutritional and commercial quality. In contrast, few studies have addressed their flavor quality, particularly with respect to the regulatory networks responsible for their flavor-related substance contents. To this end, we sequenced the transcriptomes and metabolomes of red-skin/white-fleshed and red-skin/red-fleshed dragon fruit at different timepoints during fruit development. RNA-seq and metabolome data were used to divide the seven developmental stages of the dragon fruit into four categories (young fruit, expansion, maturity, and senescence). In all, 16,827 differentially expressed genes (DEGs), including 958 transcription factors, were identified and grouped into 10 clusters, and the pathways in each cluster were annotated. Additionally, 318 differentially accumulated metabolites (DAMs) were identified, including 88 common metabolites. The main flavor-related substances and the key genes regulating them were determined via joint analysis via RNA-seq and metabolomics. Furthermore, 10 volatile active components related to green flavors and aromas were screened according to the relative odor activity value (ROAV), and 15 candidate genes related to key flavor compounds were screened via WGCNA, 3 of which encoded transcription factors. In conclusion, our results provide a theoretical basis for an in-depth understanding of the volatile flavor compounds in dragon fruit and provide new genetic resources for the subsequent study of fruit flavor compounds. Full article
Show Figures

Figure 1

16 pages, 4088 KiB  
Article
Whole Genome Sequencing of Kodamaea ohmeri SSK and Its Characterization for Degradation of Inhibitors from Lignocellulosic Biomass
by Yong-Qiang Yang, Xu Li, Zhi-Fei Wang, Yu-Long Deng, Zhen-Zhi Wang, Xing-Yu Fang, Mao-Dong Zhang, Wei Sun, Xin-Qing Zhao, Zhi-Qiang Liu and Feng-Li Zhang
Biology 2025, 14(5), 458; https://doi.org/10.3390/biology14050458 - 24 Apr 2025
Viewed by 496
Abstract
Lignocellulosic biomass is widely recognized as a renewable resource for bioconversion. However, the presence of inhibitors such as furfural, 5-HMF, and acetic acid can inhibit cell growth, thereby affecting the overall efficiency of the bioconversion process. The studies on the degradation of lignocellulosic [...] Read more.
Lignocellulosic biomass is widely recognized as a renewable resource for bioconversion. However, the presence of inhibitors such as furfural, 5-HMF, and acetic acid can inhibit cell growth, thereby affecting the overall efficiency of the bioconversion process. The studies on the degradation of lignocellulosic hydrolysate inhibitors by Saccharomyces cerevisiae have been limited. In this research, a yeast strain Kodamaea ohmeri can degrade inhibitors furfural, 5-HMF, and acetic acid, and the genome sequence of the strain was analyzed. Furthermore, the molecular detoxification mechanism of K. ohmeri SSK against lignocellulosic hydrolysate inhibitors was predicted using whole genome sequencing. Annotation based on the COG/KEGG databases identified 57 key detoxification genes, including the alcohol dehydrogenase (ADH) gene, aldo-keto/aldehyde reductase (AKR/ARI) gene, and aldehyde dehydrogenase (ALDH) gene. Stress tolerance experiments revealed that the maximum tolerance concentration for the strain was 5.2 g/L of furfural, 2.5 g/L of 5-HMF, and 5.9 g/L of acetic acid, respectively. A NAD(P)+-dependent bifunctional enzyme with possible ADH and ARI activities was found by conserved domain analysis. Phylogenetic analysis indicated that this enzyme shared 99% homology with the detoxification enzyme from S. cerevisiae S288C (GenBank: Q04894.1). This study represents the first comprehensive analysis of the inhibitor detoxification network in K. ohmeri SSK from a genome perspective, providing theoretical targets and design strategies for developing highly efficient biorefinery strains. Full article
Show Figures

Figure 1

19 pages, 11386 KiB  
Article
Potential Biomarkers of Fatal Hypothermia Revealed by UHPLC-MS Metabolomics in Mice
by Xin-Zhi Cao, Zhong-Wen Wu, Xing-Yu Ma, Wei-Liang Deng, Ding-Hao Chen, Jia-Li Liu, Jia-Hao Li, Hui Wang, Bao-Qing Pei, Dong Zhao and Qi Wang
Metabolites 2025, 15(2), 116; https://doi.org/10.3390/metabo15020116 - 11 Feb 2025
Viewed by 1014
Abstract
Background: The postmortem diagnosis of fatal hypothermia presents a considerable challenge in forensic medicine. Metabolomics, a powerful tool reflecting comprehensive changes in endogenous metabolites, offers significant potential for exploring disease mechanisms and identifying diagnostic markers. Methods: In this study, we employed ultra-high-performance liquid [...] Read more.
Background: The postmortem diagnosis of fatal hypothermia presents a considerable challenge in forensic medicine. Metabolomics, a powerful tool reflecting comprehensive changes in endogenous metabolites, offers significant potential for exploring disease mechanisms and identifying diagnostic markers. Methods: In this study, we employed ultra-high-performance liquid chromatography–mass spectrometry (UHPLC–MS) to perform a non-targeted metabolomic analysis of liver, stomach, spleen, and musculus gastrocnemius tissues from mice subjected to fatal hypothermia. Result: A substantial number of differential metabolites were identified in each tissue: 1601 in the liver, 420 in the stomach, 732 in the spleen, and 668 in the gastrocnemius muscle. The most significantly altered metabolites were as follows: magnoflorine (liver, upregulated, ranked first in fold-change), gibberellic acid (stomach, downregulated, ranked first in fold-change), nitrofurantoin (spleen, upregulated, ranked first in fold-change), and isoreserpin (gastrocnemius muscle, downregulated, ranked first in fold-change). Glycerophospholipid metabolism exhibited notable enrichment in all tissues (spleen: second, liver: tenth, stomach: eleventh, gastrocnemius muscle: twenty-first), as did tryptophan metabolism (spleen: thirteenth, liver: eighth, stomach: third, gastrocnemius muscle: seventeenth). Conclusions: Our findings provide insights into the metabolic perturbations associated with fatal hypothermia in different tissues and lay a foundation for the identification of potential tissue biomarkers for forensic diagnosis. Full article
(This article belongs to the Section Animal Metabolism)
Show Figures

Graphical abstract

15 pages, 10156 KiB  
Article
Deformation Behavior and Microstructure Evolution of High-Strength and -Toughness Ti55531 Titanium Alloy
by Yucheng Yang, Tongsheng Deng, Zhi Liu, Hai Liu, Yupeng Yuan and Wei Chen
Metals 2025, 15(2), 176; https://doi.org/10.3390/met15020176 - 10 Feb 2025
Viewed by 811
Abstract
In this paper, constant strain rate compression was carried out by means of an MMS-100 thermal/force simulation tester in a temperature range of 790~940 °C, with a strain rate of 0.01–1 s−1 and a compression volume of 60%. A linear regression method [...] Read more.
In this paper, constant strain rate compression was carried out by means of an MMS-100 thermal/force simulation tester in a temperature range of 790~940 °C, with a strain rate of 0.01–1 s−1 and a compression volume of 60%. A linear regression method was used to fit the relationship between strain stress, strain rate, and deformation temperature, and the Arrhenius-type constitutive equation of Ti55531 titanium alloy was established; the heat deformation activation energy of Ti55531 titanium alloy was obtained as 211,747.5 kJ·mol−1. A thermal processing map of Ti55531 alloy was established. EBSD results show that after hot compression, the recrystallization volume fraction greatly increased. The original sample recrystallization volume fraction was 23.2%. Under a deformation temperature of 850 degrees Celsius and deformation rate of 0.01, the recrystallization volume fraction rose to 38.5%; after the annealing process, the recrystallization volume fraction further increased to 72.6%. Under the deformation temperature of the thermal compression process, the higher the deformation rate, the larger its recrystallization volume fraction. After annealing, the recrystallization volume fraction further increased. This study can provide a reference and theoretical guidance for the development and optimization of the thermal processing process of Ti55531 titanium alloy. Full article
Show Figures

Figure 1

16 pages, 3197 KiB  
Article
Transcriptome Proffling, Physiological and Biochemical Analyses Reveal Comprehensive Insights into Cadmium Stress in Myricaria laxiflora
by Yang Peng, Yu-Bing Yang, Jing-Cheng Wang, Mao-Yuan Tian, Xing-Hai Yuan, Zhi-Jiang Yang, You-Wei Zuo and Hong-Ping Deng
Plants 2024, 13(23), 3433; https://doi.org/10.3390/plants13233433 - 6 Dec 2024
Cited by 4 | Viewed by 1206
Abstract
With the expansion of cities and the development of industries, heavy metal pollution has caused a serious negative impact on the growth and development of animals and plants, which has become a global economic and social problem. Cadmium (Cd) is one of the [...] Read more.
With the expansion of cities and the development of industries, heavy metal pollution has caused a serious negative impact on the growth and development of animals and plants, which has become a global economic and social problem. Cadmium (Cd) is one of the main heavy metals that threaten the growth and development of plants, and it can lead to the imminent extinction of plants in severe cases. The part of upper reaches of the Yangtze River in China from Yibin to the Three Gorges Reservoir has been contaminated with varying degrees of Cd, and a rare and endangered plant called Myricaria laxiflora also lives in this area. The stress of heavy metal Cd on M. laxiflora populations is still unknown. In this study, we used the seedlings of M. laxiflora as materials, and adopted conventional physiological and biochemical analyses to characterize the morphological and physiological responses of M. laxiflora under different concentrations of Cd, and analyzed its response to Cd stress at the transcriptional level. The results showed that the wild population of M. laxiflora was stressed by the heavy metal Cd. High concentrations of Cd can inhibit the growth of M. laxiflora. M. laxiflora responded to the Cd stress through resistance substances such as malondialdehyde (MDA), hydrogen peroxide (H2O2), superoxide dismutase (SOD), catalase (CAT), and phytohormones such as auxin (IAA), gibberellin (GA) and abscisic acid (ABA). Transcriptome analysis was carried out on M. lasiflora seedlings exposed to 24 h, 48 h, and 72 h of Cd stress. Compared with 0 h (control), 2470, 11,707, and 11,733 differential expressed genes (DEGs) were identified, respectively. Among them, the number of down-regulated genes is more than the number of up-regulated genes. Transcriptome analysis showed that the upregulated genes were mainly enriched in MAPK signaling pathway, ethylene-induced pathway, ABA response pathway and other pathways, and the downregulated genes were mainly enriched in photosynthesis related pathways. Cd stress affected photosynthesis of M. laxiflora, and M. laxiflora may activate the MAPK signaling pathway through ethylene and ABA to improve the ability of Cd stress tolerance. These results reveal morphological changes, physiological and biochemical reactions and related key response pathways of M. laxiflora during Cd stress. It can provide a reference basis for habitat restoration and selection of wildlife environments for M. laxiflora. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

21 pages, 4617 KiB  
Article
Pd/Ag-Cocatalyzed Merging Intramolecular Oxidative Coupling and Cascade [4 + 2] Cycloaddition: Synthesis and Photophysical Properties of Novel Polycyclic N-Heterocycles Fused Naphthoquinones
by Yu Dong, Lin Chen, Han-Qing Wu, Li Xie, Jing-Hao Yu, Fan Yang, Yu-Ting Wang, Yu-Rong Liu, Guo-Wei Deng and Zhi-Fan Wang
Molecules 2024, 29(23), 5639; https://doi.org/10.3390/molecules29235639 - 28 Nov 2024
Cited by 1 | Viewed by 794
Abstract
We report a step-economic strategy for the direct synthesis of novel polycyclic N-heterocycle-fused naphthoquinones by merging intramolecular oxidative coupling and cascade [4 + 2] cycloaddition. In the protocol, mechanistic investigations suggest that the cascade reaction involves the intermediate spiro polycyclic N-heterocycles [...] Read more.
We report a step-economic strategy for the direct synthesis of novel polycyclic N-heterocycle-fused naphthoquinones by merging intramolecular oxidative coupling and cascade [4 + 2] cycloaddition. In the protocol, mechanistic investigations suggest that the cascade reaction involves the intermediate spiro polycyclic N-heterocycles and [4 + 2] cycloaddition processes. This protocol is featured with moderate to excellent yields, wide substrate scope, and divergent structures of products. In addition, the photophysical properties of the synthesized products were evaluated. These products exhibit interesting fluorescence properties, and surprisingly, the compounds have the ability to selectively recognize trifluoroacetic acid. Full article
Show Figures

Figure 1

25 pages, 25762 KiB  
Article
Intermedin Alleviates Diabetic Cardiomyopathy by Up-Regulating CPT-1β through Activation of the Phosphatidyl Inositol 3 Kinase/Protein Kinase B Signaling Pathway
by Jie Zhao, Ling Han, Ya-Rong Zhang, Shi-Meng Liu, Deng-Ren Ji, Rui Wang, Yan-Rong Yu, Mo-Zhi Jia, San-Bao Chai, Hui-Fang Tang, Wei Huang and Yong-Fen Qi
Pharmaceuticals 2024, 17(9), 1204; https://doi.org/10.3390/ph17091204 - 12 Sep 2024
Cited by 1 | Viewed by 1754
Abstract
Diabetic cardiomyopathy (DCM), one of the most serious long-term consequences of diabetes, is closely associated with myocardial fatty acid metabolism. Carnitine palmitoyltransferase-1β (CPT-1β) is the rate-limiting enzyme responsible for β-oxidation of long-chain fatty acids. Intermedin (IMD) is a pivotal bioactive small molecule peptide, [...] Read more.
Diabetic cardiomyopathy (DCM), one of the most serious long-term consequences of diabetes, is closely associated with myocardial fatty acid metabolism. Carnitine palmitoyltransferase-1β (CPT-1β) is the rate-limiting enzyme responsible for β-oxidation of long-chain fatty acids. Intermedin (IMD) is a pivotal bioactive small molecule peptide, participating in the protection of various cardiovascular diseases. However, the role and underlying mechanisms of IMD in DCM are still unclear. In this study, we investigated whether IMD alleviates DCM via regulating CPT-1β. A rat DCM model was established by having rats to drink fructose water for 12 weeks. A mouse DCM model was induced by feeding mice a high-fat diet for 16 weeks. We showed that IMD and its receptor complexes levels were significantly down-regulated in the cardiac tissues of DCM rats and mice. Reduced expression of IMD was also observed in neonatal rat cardiomyocytes treated with palmitic acid (PA, 300 μM) in vitro. Exogenous and endogenous IMD mitigated cardiac hypertrophy, fibrosis, dysfunction, and lipid accumulation in DCM rats and IMD-transgenic DCM mice, whereas knockout of IMD worsened these pathological processes in IMD-knockout DCM mice. In vitro, IMD alleviated PA-induced cardiomyocyte hypertrophy and cardiac fibroblast activation. We found that CPT-1β enzyme activity, mRNA and protein levels, and acetyl-CoA content were increased in T2DM patients, rats and mice. IMD up-regulated the CPT-1β levels and acetyl-CoA content in T2DM rats and mice. Knockdown of CPT-1β blocked the effects of IMD on increasing acetyl-CoA content and on inhibiting cardiomyocyte hypertrophy and cardiac fibroblast activation. IMD receptor antagonist IMD17–47 and the phosphatidyl inositol 3 kinase (PI3K)/protein kinase B (Akt) inhibitor LY294002 reversed the effects of IMD on up-regulating CPT-1β and acetyl-CoA expression and on inhibiting cardiomyocyte hypertrophy and cardiac fibroblast activation. We revealed that IMD alleviates DCM by up-regulating CPT-1β via calcitonin receptor-like receptor/receptor activity-modifying protein (CRLR/RAMP) receptor complexes and PI3K/Akt signaling. IMD may serve as a potent therapeutic target for the treatment of DCM. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

15 pages, 3588 KiB  
Article
Nutrient Utilization and Gut Microbiota Composition in Giant Pandas of Different Age Groups
by Chengdong Wang, Wenwen Deng, Zhi Huang, Caiwu Li, Rongping Wei, Yan Zhu, Kai Wu, Chengyao Li, Linhua Deng, Ming Wei, Xuemei Chen and Desheng Li
Animals 2024, 14(16), 2324; https://doi.org/10.3390/ani14162324 - 12 Aug 2024
Cited by 1 | Viewed by 1654
Abstract
Proper feeding and nutrition are vital for maintaining the health of giant pandas (GPs), yet the impact of dietary changes and gut microbiota on their nutrient utilization remains unclear. To address these uncertainties, we investigated nutrient intake and apparent digestibility, as well as [...] Read more.
Proper feeding and nutrition are vital for maintaining the health of giant pandas (GPs), yet the impact of dietary changes and gut microbiota on their nutrient utilization remains unclear. To address these uncertainties, we investigated nutrient intake and apparent digestibility, as well as gut microbiota composition across different age groups of giant pandas: sub-adults (SGPs), adults (AGPs), and geriatrics (GGPs). Our findings revealed notable shifts in dietary patterns from SGPs to GGPs. As they aged, significantly more bamboo shoots and less bamboo were consumed. Consequently, GGPs showed significantly reduced crude fiber (CF) intake and digestibility, while crude protein (CP) did not alter significantly. In addition, 16S rRNA microbial sequencing results showed that unidentified_Enterobacteriaceae and Streptococcus were the dominant genera among all age groups. The relative abundance of the genus Enterococcus in GGPs was significantly higher than that in SGPs and AGPs (p < 0.05). Overall, our results indicated the importance of bamboo shoots as a major source of protein in GGPs’ diet, which can effectively compensate for the certain nutritional loss caused by the reduction in bamboo intake. Age-related changes in bacterial abundance have an effect on specific nutrient apparent digestibility in the gut of GPs. The data presented in this study serve as a useful reference for nutritional management in different ages of GPs under healthy conditions. Full article
(This article belongs to the Section Mammals)
Show Figures

Figure 1

16 pages, 6140 KiB  
Article
An Interpretable System for Screening the Severity Level of Retinopathy in Premature Infants Using Deep Learning
by Wenhan Yang, Hao Zhou, Yun Zhang, Limei Sun, Li Huang, Songshan Li, Xiaoling Luo, Yili Jin, Wei Sun, Wenjia Yan, Jing Li, Jianxiang Deng, Zhi Xie, Yao He and Xiaoyan Ding
Bioengineering 2024, 11(8), 792; https://doi.org/10.3390/bioengineering11080792 - 5 Aug 2024
Cited by 2 | Viewed by 1736
Abstract
Accurate evaluation of retinopathy of prematurity (ROP) severity is vital for screening and proper treatment. Current deep-learning-based automated AI systems for assessing ROP severity do not follow clinical guidelines and are opaque. The aim of this study is to develop an interpretable AI [...] Read more.
Accurate evaluation of retinopathy of prematurity (ROP) severity is vital for screening and proper treatment. Current deep-learning-based automated AI systems for assessing ROP severity do not follow clinical guidelines and are opaque. The aim of this study is to develop an interpretable AI system by mimicking the clinical screening process to determine ROP severity level. A total of 6100 RetCam Ⅲ wide-field digital retinal images were collected from Guangdong Women and Children Hospital at Panyu (PY) and Zhongshan Ophthalmic Center (ZOC). A total of 3330 images of 520 pediatric patients from PY were annotated to train an object detection model to detect lesion type and location. A total of 2770 images of 81 pediatric patients from ZOC were annotated for stage, zone, and the presence of plus disease. Integrating stage, zone, and the presence of plus disease according to clinical guidelines yields ROP severity such that an interpretable AI system was developed to provide the stage from the lesion type, the zone from the lesion location, and the presence of plus disease from a plus disease classification model. The ROP severity was calculated accordingly and compared with the assessment of a human expert. Our method achieved an area under the curve (AUC) of 0.95 (95% confidence interval [CI] 0.90–0.98) in assessing the severity level of ROP. Compared with clinical doctors, our method achieved the highest F1 score value of 0.76 in assessing the severity level of ROP. In conclusion, we developed an interpretable AI system for assessing the severity level of ROP that shows significant potential for use in clinical practice for ROP severity level screening. Full article
Show Figures

Figure 1

22 pages, 9994 KiB  
Article
Dynamic Modeling and Optimization of Tension Distribution for a Cable-Driven Parallel Robot
by Kai Wang, Zhong Hua Hu, Chen Shuo Zhang, Zhi Wei Han and Chao Wen Deng
Appl. Sci. 2024, 14(15), 6478; https://doi.org/10.3390/app14156478 - 25 Jul 2024
Cited by 2 | Viewed by 2029
Abstract
Cable-driven parallel robots (CDPRs) have been gaining much attention due to their many advantages over traditional parallel robots or serial robots, such as their markedly large workspace and lightweight design. However, one of the main issues that needs to be urgently solved is [...] Read more.
Cable-driven parallel robots (CDPRs) have been gaining much attention due to their many advantages over traditional parallel robots or serial robots, such as their markedly large workspace and lightweight design. However, one of the main issues that needs to be urgently solved is the tension in the distribution of CDPRs due to two reasons. The first is that a cable can only be stretched but not compressed, and the other is the redundancy of the parallel robot. To address the problem, an optimization method for tension distribution is proposed in the paper. The structural design of the parallel robot is first discussed. The dynamics model of the parallel robot is established by the Newton–Euler method. Based on the minimum variance of cables’ tension, an optimization method of tension distribution is presented for the parallel robot. Furthermore, the tension extreme average term is introduced in the optimization method, and the firefly algorithm is applied to obtain the optimal solution for tension distribution. Finally, the proposed approach is tested in the simulation case where the end-effector of the robot moves in a circular motion. Simulation results demonstrate that the uniformity and continuity of tension are both outstanding for the proposed method. In contrast with traditional solving methods, the efficiency of this method is largely improved. Full article
Show Figures

Figure 1

14 pages, 913 KiB  
Article
Association between United States Environmental Contaminants and the Prevalence of Psoriasis Derived from the National Health and Nutrition Examination Survey
by Linfen Guo, Beilin Tu, Deng Li, Lin Zhi, Yange Zhang, Haitao Xiao, Wei Li and Xuewen Xu
Toxics 2024, 12(7), 522; https://doi.org/10.3390/toxics12070522 - 19 Jul 2024
Cited by 3 | Viewed by 1921
Abstract
(1) Background: Prolonged coexposure to environmental contaminants is reportedly associated with adverse impacts on skin health. However, the collective effects of contaminant mixtures on psoriasis prevalence remain unclear. (2) Methods: A nationally representative cohort study was conducted using data from the National Health [...] Read more.
(1) Background: Prolonged coexposure to environmental contaminants is reportedly associated with adverse impacts on skin health. However, the collective effects of contaminant mixtures on psoriasis prevalence remain unclear. (2) Methods: A nationally representative cohort study was conducted using data from the National Health and Nutrition Examination Survey 2003–2006 and 2009–2014. The association between contaminant exposures and psoriasis prevalence was analyzed through weighted quantile sum regressions, restricted cubic splines, and multivariable logistic regression. (3) Results: 16,453 participants and 60 contaminants in 8 groups were involved. After adjusting for demographics and comorbidities, exposure to urinary perchlorate, nitrate, and thiocyanate mixtures (OR: 1.10, 95% CI: 1.00–1.21) demonstrated a significant positive linear association with psoriasis prevalence. Ethyl paraben (OR: 1.21, 95% CI: 1.02–1.44) exhibited a significant positive correlation with psoriasis risk as an individual contaminant. The association between blood cadmium, lead, and mercury mixtures (OR: 1.10, 95% CI: 1.00–1.21), urinary perchlorate, nitrate, and thiocyanate mixtures (OR: 1.16, 95% CI: 1.00–1.34), and psoriasis prevalence was more pronounced in the lower healthy lifestyle score subgroup. (4) Conclusions: Exposure to perchlorate, nitrate, and thiocyanate mixtures, and ethyl paraben was associated with an elevated psoriasis prevalence. Furthermore, the association between cadmium and lead and mercury mixtures as well as perchlorate, nitrate and thiocyanate mixtures, and psoriasis prevalence was more pronounced in individuals with less healthy lifestyles. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Figure 1

9 pages, 2905 KiB  
Article
Detection and Genomic Characterization of Torque Teno Virus in Pneumoconiosis Patients in China
by Xiao-Wei Yu, Qiong Wang, Lang Liu, Zhi-Jian Zhou, Tuo Cai, Hua-Ming Yuan, Mei-An Tang, Jian Peng, Sheng-Bao Ye, Xiu-Hong Yang, Xiao-Bin Deng and Xing-Yi Ge
Viruses 2024, 16(7), 1059; https://doi.org/10.3390/v16071059 - 30 Jun 2024
Cited by 1 | Viewed by 1620
Abstract
Pneumoconiosis is a common occupational disease that can worsen with accompanying infection. Torque teno virus (TTV) is a prevalent human virus with multiple genotypes that can chronically and persistently infect individuals. However, the prevalence of TTV in pneumoconiosis patients is still unclear. This [...] Read more.
Pneumoconiosis is a common occupational disease that can worsen with accompanying infection. Torque teno virus (TTV) is a prevalent human virus with multiple genotypes that can chronically and persistently infect individuals. However, the prevalence of TTV in pneumoconiosis patients is still unclear. This research aims to detect the presence and prevalence of TTV in the alveolar lavage fluid of pneumoconiosis patients in the Hunan Province of China using PCR. As a result, a 65.5% positive rate (19 out of 29) of TTV was detected. The TTV detection rate varies among different stages of silicosis and different pneumoconiosis patient ages. Nine novel TTV genomes ranging in size from 3719 to 3908 nt, named TTV HNPP1, HNPP2, HNPP3, HNPP4, HNPP5, HNPP6-1, HNPP6-2, HNPP7-1 and HNPP7-2, were identified. A genomic comparison and phylogenetic analysis indicated that these nine TTVs represent five different species with high genetic diversity which belong to the genus Alphatorquevirus. HNPP6-1 and HNPP6-2 belong to TTV3, HNPP5 belongs to TTV13, HNPP1 belongs to TTV24, HNPP4 belongs to TTV20, and the others belong to TTV19. The genomes of TTV HNPP1, HNPP6-1, and HNPP6-2 contain three putative open reading frames (ORFs) coding for proteins, ORF1, ORF2, and ORF3, while the other six TTV genomes contain two ORFs coding for proteins, ORF1 and ORF2. These results provide the first description of TTV epidemiology in pneumoconiosis patients in China. The newly identified TTV genome sequences reveal the high genetic diversity of TTV in pneumoconiosis patients and could contribute to a deeper understanding of TTV retention and infection in humans. Full article
(This article belongs to the Special Issue Advancing Research of Anelloviruses)
Show Figures

Figure 1

18 pages, 8410 KiB  
Article
Shear Performance of Demountable High-Strength Bolted Connectors: An Experimental and Numerical Study Based on Reverse Push-Out Tests
by Peng Deng, Zhi-Wei Niu, Yu-Hao Shi, Yan Liu and Wen-Long Wang
Buildings 2024, 14(4), 1052; https://doi.org/10.3390/buildings14041052 - 9 Apr 2024
Cited by 2 | Viewed by 1551
Abstract
Steel–concrete composite beams, essential for large-span structures, benefit from connectors that reduce cracking at the supports. The crack resistance and alignment with sustainable building trends of high-strength bolted connectors have been extensively researched. Nevertheless, only a few studies exist on their load–slip behavior [...] Read more.
Steel–concrete composite beams, essential for large-span structures, benefit from connectors that reduce cracking at the supports. The crack resistance and alignment with sustainable building trends of high-strength bolted connectors have been extensively researched. Nevertheless, only a few studies exist on their load–slip behavior in hogging sections. In this study, the shear performance of high-strength bolted connectors subjected to tension due to hogging moments was studied based on experiments and numerical modeling according to numerous reverse push-out tests. The results revealed that tensile and splitting cracks were produced in the concrete. Their distribution was affected primarily by the concrete strength and bolt diameter; this distribution became denser at decreasing concrete strengths and increasing bolt diameters. Subsequently, an analysis of the out-of-plane displacement and load–slip response was performed to investigate the phenomenon of anchor rod sliding. A cost-effective and time-efficient finite-element (FE) model was developed to investigate the internal microstates of the specimens. It revealed a correlation between bolt cracking, specimen hardening, steel yield, and failure. A correction factor is also proposed for the shear capacity of bolts within concrete subjected to tension. The findings offer insights into the load–slip response of high-strength bolted connectors subjected to hogging moments, aiding in safer, more durable supports for steel–concrete composite beams. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop